Добірка наукової літератури з теми "Heterogeneous membranes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Heterogeneous membranes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Heterogeneous membranes"
Strzelewicz, Anna, Monika Krasowska, and Michał Cieśla. "Lévy Flights Diffusion with Drift in Heterogeneous Membranes." Membranes 13, no. 4 (April 7, 2023): 417. http://dx.doi.org/10.3390/membranes13040417.
Повний текст джерелаMagnone, Edoardo, Jae Yeon Hwang, Min Chang Shin, Xuelong Zhuang, Jeong In Lee, and Jung Hoon Park. "Al2O3-Based Hollow Fiber Membranes Functionalized by Nitrogen-Doped Titanium Dioxide for Photocatalytic Degradation of Ammonia Gas." Membranes 12, no. 7 (July 6, 2022): 693. http://dx.doi.org/10.3390/membranes12070693.
Повний текст джерелаSeptiawan, Muhammad Ridwan, Dian Permana, Sitti Hadijah Sabarwati, La Ode Ahmad, and La Ode Ahmad Nur Ramadhan. "Functionalization of Chitosan with Maleic Anhydride for Proton Exchange Membrane." Indonesian Journal of Chemistry 18, no. 2 (May 30, 2018): 313. http://dx.doi.org/10.22146/ijc.33141.
Повний текст джерелаHosseini, S. M., Z. Ahmadi, M. Nemati, F. Parvizian, and S. S. Madaeni. "Electrodialysis heterogeneous ion exchange membranes modified by SiO2 nanoparticles: fabrication and electrochemical characterization." Water Science and Technology 73, no. 9 (February 2, 2016): 2074–84. http://dx.doi.org/10.2166/wst.2016.030.
Повний текст джерелаReigada, Ramon. "Electroporation of heterogeneous lipid membranes." Biochimica et Biophysica Acta (BBA) - Biomembranes 1838, no. 3 (March 2014): 814–21. http://dx.doi.org/10.1016/j.bbamem.2013.10.008.
Повний текст джерелаZárybnická, Lucie, Eliška Stránská, Kristýna Janegová, and Barbora Vydrová. "The effect of 3D printing parameters on electrochemical properties of heterogeneous cation exchange membrane." Rapid Prototyping Journal 27, no. 8 (August 2, 2021): 1538–47. http://dx.doi.org/10.1108/rpj-08-2020-0207.
Повний текст джерелаPolak, Daniel, and Maciej Szwast. "Material and Process Tests of Heterogeneous Membranes Containing ZIF-8, SiO2 and POSS-Ph." Materials 15, no. 18 (September 17, 2022): 6455. http://dx.doi.org/10.3390/ma15186455.
Повний текст джерелаBejanidze, Irina, Oleksandr Petrov, Volodymyr Pohrebennyk, Tina Kharebava, Nunu Nakashidze, Nato Didmanidze, Nazi Davitadze, and Anton Petrov. "Sorption of Organic Electrolytes and Surfactants from Natural Waters by Heterogeneous Membranes." Applied Sciences 10, no. 20 (October 21, 2020): 7383. http://dx.doi.org/10.3390/app10207383.
Повний текст джерелаStenina, Irina A., and Andrey B. Yaroslavtsev. "Ionic Mobility in Ion-Exchange Membranes." Membranes 11, no. 3 (March 11, 2021): 198. http://dx.doi.org/10.3390/membranes11030198.
Повний текст джерелаSarapulova, Veronika, Ekaterina Nevakshenova, Kseniia Tsygurina, Valentina Ruleva, Anna Kirichenko, and Ksenia Kirichenko. "Short-Term Stability of Electrochemical Properties of Layer-by-Layer Coated Heterogeneous Ion Exchange Membranes." Membranes 13, no. 1 (December 29, 2022): 45. http://dx.doi.org/10.3390/membranes13010045.
Повний текст джерелаДисертації з теми "Heterogeneous membranes"
Turner, Josephine. "Heterogeneous polyelectrolyte gel membranes, effect of morphology on stimulus-responsive permeation control." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq63593.pdf.
Повний текст джерелаJohns, Brian Douglas. "Experimental verification of pointwise identification method for capturing heterogeneous properties in membranes." Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/824.
Повний текст джерелаFaaland, Sonia. "Heterogeneous ceramic interfaces in solid oxide fuel cells and dense oxygen permeable membranes." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemistry, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-53.
Повний текст джерелаSolid oxide fuel cells and oxygen permeable membranes have received considerable attention during the last decade due to the increasing demand for electrical energy and easily transportable fuels combined with the requirement of low emission of CO2. This work concentrates on the stability of ceramic interfaces in general, and more specifically to heterophase solid state interfaces related to solid oxide fuel cells and oxygen permeable membranes. Reaction mechanisms are discussed and requirements and properties of suitable materials are determined. This thesis consists of three parts: 1) Structure of Ca-substituted lanthanum manganite (Paper I), 2) Reactions between cathode and electrolyte for SOFC applications (Papers II-IV) and 3) Chemical and mechanical aspects of sealing dense oxygen permeable membranes (Papers V and VI).
Tichy, Robin Sarah. "Mechanisms and stability of oxide-ion transport in homogenous and heterogeneous ceramic membranes /." Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008457.
Повний текст джерелаZhao, Xuefeng. "Pointwise identification of elastic properties in nonlinear heterogeneous membranes, and application to soft tissues." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/222.
Повний текст джерелаPandžić, Elvis. "Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116842.
Повний текст джерелаLa thèse qui suit est a propos de l'adaptation de la technique de la spectroscopie par la corrélation des images dans l'espace de Fourier, appelle kICS. La nouveauté consiste en utilisation de kICS pour analyser les séries temporelles d'images fluorescentes afin de caractériser la diffusion des particules en présence des membranes hétérogénes, composées de micro-domaines.Tout d'abord, une parallèle est exposée entre l'analyse fondée sur kICS pro- posé ci-dessus et d'autres techniques de microscopie à fluorescence existantes et utilisées dans l'étude des membranes hétérogénes. Ensuite, on expose le développement de la théorie de kICS dans les cas de la diffusion des particules fluorescentes dans un espace hétérogène bidimensionnel (2D). Les deux hétérogénéités membranaires possibles, micro-domaines lipidiques isolés et le réseau de l'actine proximale, sont considérés séparément. Les modèles émergents suggèrent que la fonction de corrélation de kICS doit être caractérisé par une somme de deux Gaussiennes dans le cas de la dynamique des particules en présence de micro-domaines isolés. Ces deux éléments, appelés 'rapide' et 'lent', représentent les composantes dynamiques a deux échelles d'espace différentes. La rapide est associé à la décroissance rapide de la fonction de corrélation de kICS à petites fréquences spatiales dues au mouvement des particules sur de grandes échelles spatiales. La composante lente réfère au mouvement des particules confinées à des petites échelles spatiales, observées sur de grandes fréquences spatiales de kICS. D'autre part, la fonction de corrélation de kICS due au confinement par le réseau du cytosquelette peut être caractérise par unique décroissance Gaussienne. Ces modèles suggèrent que les exposants et les amplitudes obtenus par la caractérisation de la fonction kICS dépend des paramètres caractéristiques du système tels que les coefficients de diffusion à l'extérieur et à l'intérieur de domaines, les taux de migration de particules vers intérieur ou extérieur de micro-domaines ou des tailles de porosités du réseaux du cytosquelette.Les études systématiques par les simulations des scénarios différents de confinement et leurs effets sur la fonction de corrélation de kICS ont été explorés. La caractérisation des données simulées suggèrent que les fonctions de corrélation ont des caractéristiques qui dépendent de confinement et les propriétés spécifiques, tels que la dynamique des populations lents et rapides et la tailles effective de micro-domaines. La caractérisation des scénarios de confinement différents, représente les liens entre les propriétés apparentes mesurées de confinement, et un ensemble de paramètres définissant hétérogénéité. Nous explorons les limites pour lesquelles des effets de confinement ne sont pas observées dans la fonction de corrélation kICS. Les éventuelles erreurs systématiques dans les valeurs des paramètres extraits à cause du bruit de fond est discuté avec des possibles solutions. Finalement, nous utilisons l'analyse afin d'explorer la dynamique de confinement de la protéine ancrée à GPI-GFP dans la membrane plasmique basale des cellules COS-7. Nous explorons une approche nouvelle de la conjugaison entre le GPI-GFP et les anti-GFP-Alexa594 et imagé par la microscopie TIRF. Les cellules ont été exposées à des traitements enzymatiques, par Coase et SMase, afin de perturber domaines membranaires et changer la dynamique de confinement de GPI-GFP. Les réactions enzymatiques augmentent la mobilité et la taille effective des domaines de GPI-GFP. Nous attribuons cela à la conversion des constituants des domaines, le cholestérol et la sphingomyéline, par les réactions enzymatiques, ce qui conduit aux plus grandes et moins étanches domaines membranaires.
Pampel, André. "Pulsed field gradient NMR in combination with magic angle spinning - new possibilities for studying diffusion in lipid membranes and heterogeneous materials." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-197016.
Повний текст джерелаPampel, André. "Pulsed field gradient NMR in combination with magic angle spinning - new possibilities for studying diffusion in lipid membranes and heterogeneous materials." Diffusion fundamentals 2 (2005) 128, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14470.
Повний текст джерелаAbdalla, B. K. "Heterogeneous modelling of fixed bed and fluidized bed reactors without and with selected membranes for the catalytic dehydrogenation of ethylbenzene to styrene." Thesis, University of Salford, 1993. http://usir.salford.ac.uk/2029/.
Повний текст джерелаBesson, Arthur. "Etude de polymères pour l'utilisation en membranes de piles à combustible." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI070/document.
Повний текст джерелаFuel cells are an ever-expanding technology in the field of automotive transport. The polymer membranesthat are currently the most widely used are Nafion-based membranes. Their weakest point is their drastic lossof performances beyond the threshold of 80°C, where the membranes fails and water cannot ensure protonconduction anymore. The EUBECELLproject sets to achieve making a fuel cell system functioning above120°C and using ethanol as a fuel. This thesis is part of the project and focus on elaborating new protonconductingpolymer membranes. Two main ways are explored: improving the performances of Nafion athigh temperature and replacing Nafion with conductivity-added high-performance polymers.Improving Nafion's performances is achieved by adding proton conducting ionic liquids (PCILs), productsthat have a proton conductivity that adds to Nafion's own. A first PCIL is synthesized, characterized and thenadded to Nafion, the resulting membranes' performances then measured. The encouraging results that weobtain makes us synthesize more PCILs, from the same amine than the first, varying the counter-ion. OtherNafion-PCIL mixes are made and then characterized.The high-performance polymer investigated for replacing Nafion are, first, sulfonated polysulfones.Polysulfones are high-temperature resistant polymers and sulfonation gives them conductivity. To keep betterproperties after the sulfonation, we proceed to extrude the films before sulfonating them. We elaborate anheterogeneous sulfonation protocol for them. The resulting membranes are then characterized and theirperformances measured. Second, we work on macroporous membranes, with high mechanical strength,which we fill with the PCILs that we previously used. The membranes are then also characterized and theirperformances measured
Книги з теми "Heterogeneous membranes"
Turner, Josephine. Heterogeneous polyelectrolyte gel membranes: Effect of morphology on stimuli-responsive permeation control. 2001.
Знайти повний текст джерелаDoraiswamy, L. K. Organic Synthesis Engineering. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195096897.001.0001.
Повний текст джерелаЧастини книг з теми "Heterogeneous membranes"
Anderson, M. A., F. Tiscareño-Lechuga, Q. Xu, and C. G. Hill. "Catalytic Ceramic Membranes and Membrane Reactors." In Novel Materials in Heterogeneous Catalysis, 198–215. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0437.ch019.
Повний текст джерелаHiga, Mitsuru. "Heterogeneous Ion-Exchange Membranes." In Encyclopedia of Membranes, 915–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_278.
Повний текст джерелаHiga, Mitsuru. "Heterogeneous Ion-Exchange Membranes." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_278-1.
Повний текст джерелаMarguet, Didier, and Laurence Salomé. "Lateral Diffusion in Heterogeneous Cell Membranes." In Physics of Biological Membranes, 169–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00630-3_7.
Повний текст джерелаLeysen, R., W. Doyen, R. Proost, Ph Vermeiren, W. Adriansens, and R. Deknock. "THE USE OF HETEROGENEOUS MEMBRANES IN ELECTROCHEMICAL SYSTEMS." In Synthetic Polymeric Membranes, edited by Blahoslav Sedláček and Jaroslav Kahovec, 89–100. Berlin, Boston: De Gruyter, 1987. http://dx.doi.org/10.1515/9783110867374-011.
Повний текст джерелаŚlęzak, A., B. Turczyriski, and Z. Nawrat. "IRREVERSIBLE THERMODYNAMICS MODEL EQUATIONS OF THE TRANSPORT ACROSS VERTICAL-MOUNTED MEMBRANE IN MULTICOMFONENT, NON-IONIC AND HETEROGENEOUS SOLUTIONS." In Synthetic Polymeric Membranes, edited by Blahoslav Sedláček and Jaroslav Kahovec, 445–52. Berlin, Boston: De Gruyter, 1987. http://dx.doi.org/10.1515/9783110867374-044.
Повний текст джерелаLevine, Zachary A. "Effects of Heterogeneous Membranes and Electrolytes on Electropore Formation." In Handbook of Electroporation, 1–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26779-1_87-1.
Повний текст джерелаSchwille, Petra, Nicoletta Kahya, and Kirsten Bacia. "Protein and Lipid Partitioning in Locally Heterogeneous Model Membranes." In Protein-Lipid Interactions, 337–65. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606769.ch14.
Повний текст джерелаLevine, Zachary A. "Effects of Heterogeneous Membranes and Electrolytes on Electropore Formation." In Handbook of Electroporation, 133–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32886-7_87.
Повний текст джерелаŠachl, Radek, and Lennart B. Å. Johansson. "Heterogeneous Lipid Distributions in Membranes as Revealed by Electronic Energy Transfer." In Reviews in Fluorescence 2015, 171–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24609-3_7.
Повний текст джерелаТези доповідей конференцій з теми "Heterogeneous membranes"
Ghaffar, Mehmood, Niklas Biere, Daniel Jäger, Karsten Klein, Falk Schreiber, Olaf Kruse, and Björn Sommer. "3D Modelling and Visualisation of Heterogeneous Cell Membranes in Blender." In VINCI '18: The 11th International Symposium on Visual Information Communication and Interaction. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3231622.3231639.
Повний текст джерелаTabouillot, Tristan, Hari S. Muddana, and Peter J. Butler. "Shear Stress Induces Time- and Domain-Dependent Changes in Lipid Dynamics of Endothelial Cell Membranes." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206882.
Повний текст джерелаDehghannasiri, Razi, Reza Pourabolghasem, Ali Asghar Eftekhar, and Ali Adibi. "GHz Heterogeneous Phononic Crystal Slab Resonators." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52765.
Повний текст джерелаAhn, Geun Ho, Alexander D. White, Kevin Crust, Chris Andersson, Jakob Grzesik, Kasper Van Gasse, Giovanni Scuri, Harold Y. Hwang, and Jelena Vučković. "Silicon nitride electro-optic modulators enabled by heterogeneous integration of barium titanate films." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sf1p.7.
Повний текст джерелаDe Groote, A., P. Cardile, A. Z. Subramanian, M. Tassaert, D. Delbeke, R. Baets, and G. Roelkens. "A waveguide coupled LED on SOI by heterogeneous integration of InP-based membranes." In 2015 IEEE 12th International Conference on Group IV Photonics (GFP). IEEE, 2015. http://dx.doi.org/10.1109/group4.2015.7305939.
Повний текст джерелаKim, Jeehwan. "Advanced Heterogeneous Integration Enabled by 3D Freestanding Membranes—From Material Growths to Applications." In MRS Fall Meeting 2022. US DOE, 2022. http://dx.doi.org/10.2172/1961416.
Повний текст джерелаKim, Jeehwan. "Advanced Heterogeneous Integration Enabled by 3D Freestanding Membranes—From Material Growths to Applications." In Materials Research Society, Boston, Nov 2022. US DOE, 2022. http://dx.doi.org/10.2172/1923272.
Повний текст джерелаMartins, N. C., L. B. Rodrigues, F. T. do Nascimento, G. M. da Silveira, J. F. Corte, M. V. Flach, M. A. S. Rodrigues, F. Celso, V. D. Jahno, and R. M. de Martins. "Evaluation of the influence of method preparation in properties of heterogeneous ion exchange membranes." In WASTE MANAGEMENT 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/wm160351.
Повний текст джерелаShadmani, Atefeh, Rodrigo Thomas, Zhe Liu, Nicolas Volet, Martijn J. R. Heck, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Peter Lodahl, and Leonardo Midolo. "Integration of GaAs waveguides with quantum dots on Silicon substrates for quantum photonic circuits." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ff4j.6.
Повний текст джерелаElturki, Mukhtar, and Abdulmohsin Imqam. "An Experimental Study Investigating the Impact of Miscible and Immiscible Nitrogen Injection on Asphaltene Instability in Nano Shale Pore Structure." In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204294-ms.
Повний текст джерелаЗвіти організацій з теми "Heterogeneous membranes"
Kearney, M., V. Kochergin, R. Hess, T. Foust, R. Herbst, and N. Mann. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/838864.
Повний текст джерела