Добірка наукової літератури з теми "Heterogeneous catalysis catalytic wet air oxidation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Heterogeneous catalysis catalytic wet air oxidation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Heterogeneous catalysis catalytic wet air oxidation"

1

Li, De-bin, Duo Wang, and Zi-sheng Jiang. "Catalytic Wet Air Oxidation of Sewage Sludge: A Review." Current Organocatalysis 7, no. 3 (November 30, 2020): 199–211. http://dx.doi.org/10.2174/2213337207999200819143311.

Повний текст джерела
Анотація:
Wet air oxidation (WAO) is an attractive technique for sewage sludge treatment. The WAO process and the factors influencing the process are examined in detail, together with the advantages and disadvantages. Catalytic wet air oxidation (CWAO) is emphasized because it can lower operational conditions, and the commonly-used and new homogeneous and heterogeneous catalysts are introduced. Homogeneous catalysts tend to be more appropriate for the CWAO treatment of sewage sludge, and Cu-based homogeneous catalysts such as CuSO4 are the most popular for industrial applications. Heterogeneous catalysts include non-noble metal catalysts, noble metal catalysts, metal-organic frameworks (MOFs) catalysts, and non-metal catalysts. Non-noble metal catalysts typically contain hetero-elements as in Mo-based, Ce-based, Cu-based, Fe-based catalysts, multi-metal supported catalysts, and polyoxometalates catalysts. In general, Mo-based catalysts and Ce-based catalysts have higher activities than other metal-based catalysts. The commonly-used noble metal elements are based on Ru, Pt, Pd, Rh, and Ir. The MOF catalysts tend to have high catalytic activity, and the non-metallic carbon catalysts may be used in environments that would otherwise be toxic to traditional metal catalysts. To conclude, a summary of the challenges and prospects of WAO technology in sewage sludge treatment is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xu, Jun Qiang, Fang Guo, Jun Li, Xiu Zhi Ran, and Yan Tang. "Synthesis of the Cu/Flokite Catalysts and their Performances for Catalytic Wet Peroxide Oxidation of Phenol." Advanced Materials Research 560-561 (August 2012): 869–72. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.869.

Повний текст джерела
Анотація:
The supported Cu/Flokite catalysts were prepared by conventional incipient wetness impregnation. The catalysis oxidation degradation of phenol was carried out in heterogeneous catalyst and H2O2 process. The results indicated that the reaction system with catalyst and hydrogen peroxide was more benefit to degradation of phenol. When the phenol initial concentration was 100 mg/L, the phenol removal over the 2.5%Cu -2.5% Fe/Flokite catalyst could reach 96%. The peroxide catalytic oxidation process over the enhanced heterogeneous catalyst would be a novel technique for the treatment of phenol wastewater.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ovejero, G., J. L. Sotelo, F. Martínez, and L. Gordo. "Novel heterogeneous catalysts in the wet peroxide oxidation of phenol." Water Science and Technology 44, no. 5 (September 1, 2001): 153–60. http://dx.doi.org/10.2166/wst.2001.0275.

Повний текст джерела
Анотація:
Catalytic wet peroxide oxidation (CWPO) of diluted aqueous solutions of phenol has been studied over a series of heterogeneous catalysts at 100°C under 1MPa air pressure. Several catalysts were prepared and tested including zeolitic materials exchanged with metallic ions such as Fe and Cu and different mixed oxides. Likewise, a Fe-TS- zeolite was synthesised by isomorphous substitution of Si atoms by Fe and Ti into the MFI zeolitic framework through hydrothermal synthesis of wetness-impregnated Fe2O3-TiO2-SiO2 xerogels. This material showed a complete phenol removal and TOC reduction of up to 68% under the reaction conditions, with a low leaching of iron species as compared to Fe-exchanged zeolitic materials. Perovskite of type LaTi0.45Cu0.55O3 was also tested, showing copper leaching of 22%, with a TOC conversion of 93% and total phenol removal. The capacity of Fe and Cu containing catalysts to promote free radicals in the presence of H2O2 as well as the thermal decomposition of the oxidant under the reaction conditions have also been studied. In the absence of hydrogen peroxide, Fe and Cu catalysts were not effective in order to decrease TOC content.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Xin, Junhai Wang, Qi Zhang, Xu Wang, Linlin Xu, Hongbo Wu, Xuee Jiang, and Fang Chai. "Fabrication of Core-Shell Structural SiO2@H3[PM12O40] Material and Its Catalytic Activity." Journal of Nanomaterials 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/835931.

Повний текст джерела
Анотація:
Through a natural tree grain template and sol-gel technology, the heterogeneous catalytic materials based on polyoxometalate compounds H3[PM12O40] encapsulating SiO2: SiO2@H3[PM12O40] (SiO2@PM12, M = W, Mo) with core-shell structure had been prepared. The structure and morphology of the core-shell microspheres were characterized by the XRD, IR spectroscopy, UV-Vis absorbance, and SEM. These microsphere materials can be used as heterogeneous catalysts with high activity and stability for catalytic wet air oxidation of pollutant dyes safranine T (ST) at room condition. The results show that the catalysts have excellent catalytic activity in treatment of wastewater containing 10 mg/L ST, and 94% of color can be removed within 60 min. Under different cycling runs, it is shown that the catalysts are stable under such operating conditions and the leaching tests show negligible leaching effect owing to the lesser dissolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yoon, C. H., S. H. Cho, S. H. Kim, and S. R. Ha. "Catalytic wet air oxidation of p-nitrophenol (PNP) aqueous solution using multi-component heterogeneous catalysts." Water Science and Technology 43, no. 2 (January 1, 2001): 229–36. http://dx.doi.org/10.2166/wst.2001.0094.

Повний текст джерела
Анотація:
This study investigated the decomposition of high strength p-nitrophenol (PNP) of 2,000 mg/l (3,400 mg of COD/1,250 mg of TOC) by catalytic wet air oxidation. Multi-component heterogeneous catalysts were used as catalysts for this purpose. The study results using a batch reactor showed that catalyst “D” (Mn-Ce-Zr 22.4 g plus CuSO4 1.0 g; Mn-Ce-Zr-Cu [CuSO4]) was more effective (56˜74%) than catalyst “A” (Mn-Ce-Zr 22.4 g) under the given conditions (O2 partial pressure of 1.0 MPa; temperature of 170˜190°C; 30 min of reaction time). The best result was obtained when 2 g of Mn-Ce-Zr-Cu [CuSO4] was used per 1L of PNP aqueous solution. COD and TOC removal efficiencies were 18% and 23% without catalysts during 20 min of reaction at 190°C. They were improved to 79% and 71% with 2 g/L of Mn-Ce-Zr-Cu [CuSO4] under the same conditions. The ratio of BOD5/COD was measured to evaluate biodegradability. It was 0.05 without catalyst and increased to 0.33 with 2 g/L of Mn-Ce-Zr-Cu [CuSO4] for 20 min of reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pham, Thien, Viet Bui, Thi Phan, and Ha Than. "CO oxidation over alumina monolith impregnated with oxides of copper and manganese." Journal of the Serbian Chemical Society 86, no. 6 (2021): 615–24. http://dx.doi.org/10.2298/jsc200509004p.

Повний текст джерела
Анотація:
In this work, simple methods for the preparation of highly efficient heterogeneous nanocatalysts for the low-temperature oxidation of CO are described. The main advantages of the reaction are high yields. The catalysts based on oxides of copper and manganese supported on alumina monoliths were prepared by different methods: plasma corona discharge and wet impregnation. Structure and physical properties of catalysts were characterized by FT- -IR, XRD, TEM, EDX and TG/DTA. The results showed that the use of a plasma corona discharge at atmospheric pressure for the preparation of the catalysts resulted in smaller particle size and uniform dispersion when compared with the catalysts prepared by wet impregnation methods. The catalytic activities of these catalysts were investigated for complete oxidation of carbon monoxide (3000 ppm) to carbon dioxide in the air at atmospheric pressure. On a single oxide catalyst, 10CuO/monolith was better than 10MnO2/monolith under the same experimental conditions. With multi-oxide catalysts, all catalyst samples are more active than a single-oxide catalyst with the same impregnated content. In particular, the catalyst prepared by plasma corona discharge indicates the best oxidation capacity of carbon monoxide.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maicaneanu, S. Andrada, Breanna McGhee, Razvan Stefan, Lucian Barbu-Tudoran, Christopher Sedwick, and Charles H. Lake. "Investigations on Cationic Dye Degradation Using Iron-Doped Carbon Xerogel." ChemEngineering 3, no. 3 (July 4, 2019): 61. http://dx.doi.org/10.3390/chemengineering3030061.

Повний текст джерела
Анотація:
Iron-doped carbon xerogels were prepared using sol-gel synthesis, with potassium-2,4-dihydroxybenzoate and formaldehyde as starting materials, followed by an ion exchange step. The obtained samples were characterized (XRD, FTIR, SED-EDX, TEM) and investigated as catalysts in heterogeneous Fenton and catalytic wet air oxidation (CWAO) processes. Experiments were conducted in the same conditions (0.1 g catalysts, 25 mL of 100 mg/L dye solution, 25 °C, initial solution pH, 3 h) in thermostated batch reaction tubes (shaking water bath, 50 rpm) at atmospheric pressure. A series of three cationic dyes were considered: Brilliant green (BG), crystal violet (CV), and methyl green (MG). Dyes and TOC removal efficiencies up to 99% and 92%, respectively, were obtained, in strong correlation with the iron content of the catalyst. Iron content measured in solution at the end of the reaction, indicated that its amount was less than 2 ppm for all tested catalysts.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Arena, Francesco, Cristina Italiano, Antonino Raneri, and Concetta Saja. "Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts." Applied Catalysis B: Environmental 99, no. 1-2 (August 2010): 321–28. http://dx.doi.org/10.1016/j.apcatb.2010.06.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, L., S. X. Wang, Q. R. Wu, F. Y. Wang, C. J. Lin, L. M. Zhang, M. L. Hui, and J. M. Hao. "Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review." Atmospheric Chemistry and Physics Discussions 15, no. 22 (November 24, 2015): 32889–929. http://dx.doi.org/10.5194/acpd-15-32889-2015.

Повний текст джерела
Анотація:
Abstract. Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34–85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60–95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66–82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29–90 %) from non-ferrous metal smelting, cement and iron/steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Lei, Shuxiao Wang, Qingru Wu, Fengyang Wang, Che-Jen Lin, Leiming Zhang, Mulin Hui, Mei Yang, Haitao Su, and Jiming Hao. "Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review." Atmospheric Chemistry and Physics 16, no. 4 (February 29, 2016): 2417–33. http://dx.doi.org/10.5194/acp-16-2417-2016.

Повний текст джерела
Анотація:
Abstract. Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34–85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60–95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66–82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29–90 %) from non-ferrous metal smelting, cement and iron and/or steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Heterogeneous catalysis catalytic wet air oxidation"

1

Wu, Qiang. "Wastewater treatment by catalytic wet air oxidation in a continuous pilot-scale trickle bed reactor /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CENG%202004%20WU.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Grosjean, Nicolas. "Oxydation par voie humide catalytique d’effluents industriels : catalyseurs métaux nobles supportés." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10021.

Повний текст джерела
Анотація:
L’industrie produit de grandes quantités d’effluents aqueux qu’il convient de traiter. Des traitements alternatifs aux procédés biologiques doivent être développés pour certains effluents toxiques et/ou non biodégradables. L’oxydation en voie humide catalytique repose sur l’action de l’oxygène sur les polluants en phase aqueuse à haute température et haute pression. Préalablement à cette étude, des catalyseurs au Ru ou Pt supportés sur ZrO2 ou TiO2très actifs et très stables pour l’OVHC de polluants modèles et de quelques effluents réels ont été développés. Ce travail a examiné ces catalyseurs sur d’autres effluents réels : un effluent provenant d’une unité de production de membranes contenant du glycérol et du DMF, uneffluent de sauce de couchage provenant de l’industrie papetière et un concentrât de lixiviatde décharge. Les catalyseurs se sont révélés très actifs et stables pour la minéralisation du glycérol, mais une forte lixiviation a été observée lors de l’OVHC du DMF du fait de la présence d’amines. L’oxydation de l’effluent de sauce de couchage permet de minéraliser la charge organique, facilitant le recyclage de la charge minérale, avec une amélioration accrue de la biodégradabilité du surnageant en présence des catalyseurs. Enfin, l’ajout de catalyseurs lors de l’OVH du concentrât de lixiviat de décharge permet d’améliorer sa minéralisation et d’éliminer totalement les ions ammonium
Industries produce huge volumes of effluents which need to be treated before disposal.Alternative treatments to the more classical biological techniques are required in the case oftoxic and/or non biodegradable effluents. The wet air oxidation (WAO) and catalytic wet airoxidation (CWAO) are based on the reaction of an oxidant (oxygen) with the pollutants in aqueous phase at high temperature and pressure. Ru or Pt catalysts supported on zirconium and titanium oxides were previously shown to be highly active and stable in the CWAO of awide range of model compounds and real complex effluents. These catalysts were evaluated in the CWAO of problematic effluents: one containing glycerol and DMF, one paper coatingslip effluent and one concentrated landfill leachate. The catalysts showed high activity and stability in the CWAO of glycerol, while the metal leached upon DMF CWAO due to the presence of amines. WAO leads to the partial mineralization of the organic load in paper coating slip, allowing an easy separation recycling of mineral pigments, with an improved biodegradability of the supernatant with the use of a catalyst. The use of a catalyst upon landfill leachate WAO leads higher COT conversion and complete ammonia elimination
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ayadi, Hana. "Catalyseurs performants pour le traitement de la pollution organique azotée par Oxydation en Voie Humide Catalytique." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1273/document.

Повний текст джерела
Анотація:
Des catalyseurs à base d'oxyde de manganèse ont été préparés par différentes voies et évalués dans l'Oxydation en Voie Humide Catalytique de l'ammoniaque. Les catalyseurs sont actifs, sélectifs en diazote et stables dans les conditions de la réaction. Diazote et nitrite sont des produits primaires de la réaction. Une étude approfondie de l'effet des paramètres opératoires (teneur en manganèse, pression partielle en oxygène, concentration en ammoniaque, pH initial de la solution, charge de surface du catalyseur) sur les performances catalytiques a été réalisée. La sélectivité en diazote est favorisée lorsque i) la quantité de catalyseur est faible, ii) le rapport nO2/nNH4+ est proche de la stœchiométrie (˜ 0,75) et iii) le pH au point de charge nulle du catalyseur est neutre. Bien qu'un pH fortement basique (pH 13) améliore l'activité catalytique, la conversion nitrite en nitrate est inhibée et la sélectivité en diazote est dégradée. D'un point de vue cinétique, les ordres partiels par rapport à l'oxygène et à l'ammoniaque sont de 0 et 1, respectivement. L'étude de l'influence de l'état d'oxydation du manganèse (+II, +III et +IV), en présence d'oxydes de manganèse massiques commerciaux ou de catalyseurs à base d'oxyde de manganèse supporté sur cérine, montre que le site actif serait constitué d'une paire Mn(+III)/Mn(+IV). La réaction « fait son site » et les oxydes pour lesquels le manganèse est initialement présent à un faible degré d'oxydation se trouvent fortement modifiés en cours de réaction. Une synergie entre le manganèse et le cérium est également confirmé, impliquant les deux couples redox Mn(+III)/Mn(+IV) et Ce(+III)/Ce(+IV) de manière concertée
Manganese oxide-based catalysts have been synthesized through different routes and evaluated in the Catalytic Wet Air Oxidation of ammonia. Such catalysts are active, selective towards molecular nitrogen and stable under the applied reaction conditions. Molecular nitrogen and nitrite are primary products. A detailed study of the impact of the operating conditions (manganese content, oxygen partial pressure, ammonia concentration, initial pH, and charge at the catalyst surface) on the catalytic performances was carried out. The selectivity in molecular nitrogen is optimum when i) the amount of catalyst is low, ii) the ratio nO2:nNH4+ is close to stoichiometry (˜ 0.75) and ii) the pH at the point of zero charge of the catalyst is neutral. Although strongly basic conditions (pH 13) improve the catalytic activity, the conversion nitrite to nitrate is inhibited and the selectivity in molecular nitrogen is degraded. From a kinetic point of view, the reaction order with respect to oxygen and ammonia are 0 and 1, respectively. The influence of the oxidation state of manganese (+II, +III and +IV) in the presence of bulk manganese oxides or ceria-supported manganese oxides indicated that the active site would consist of a pair of Mn(+III) and Mn(+IV). The reaction makes the active site and the oxides where manganese is initially present at a low oxidation state are markedly modified upon reaction. A synergy between manganese and cerium is also confirmed, involving the two Mn(+III)/Mn(+IV) and Ce(+III)/Ce(+IV) redox couples in a concerted way
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Heterogeneous catalysis catalytic wet air oxidation"

1

Besson, Michèle, Jean-Christophe Beziat, Bernard Blanc, Sylvain Durecu, and Pierre Gallezot. "Treatment of aqueous solutions of organic pollutants by heterogeneous catalytic wet air oxidation (CWAO)." In Studies in Surface Science and Catalysis, 1553–58. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80421-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nedyalkova, Radka, Michèle Besson, and Claude Descorme. "Catalytic wet air oxidation of succinic acid over monometallic and bimetallic gold based catalysts: Influence of the preparation method." In Scientific Bases for the Preparation of Heterogeneous Catalysts - Proceedings of the 10th International Symposium, Louvain-la-Neuve, Belgium, July 11-15, 2010, 177–84. Elsevier, 2010. http://dx.doi.org/10.1016/s0167-2991(10)75022-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Béziat, J. C., M. Besson, P. Gallezot, S. Juif, and S. Durécu. "Catalytic wet air oxidation of wastewaters." In Studies in Surface Science and Catalysis, 615–22. Elsevier, 1997. http://dx.doi.org/10.1016/s0167-2991(97)81023-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sanger, Alan R., Theo T. K. Lee, and Karl T. Chuang. "Catalytic wet air oxidation in the presence of hydrogen peroxide." In Progress in Catalysis, Proceedings of the 12th Canadian Symposium on Catalysis, 197–201. Elsevier, 1992. http://dx.doi.org/10.1016/s0167-2991(08)60814-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ishii, T., J. Miyake, T. Hashimoto, K. Mitsui, and M. Kobayashi. "108 Advanced technology for catalytic wet air oxidation of wastewater." In Science and Technology in Catalysis 2002, Proceedings of the Fourth Tokyo conference on Advance Catalytic Science and Technology, 471–72. Elsevier, 2003. http://dx.doi.org/10.1016/s0167-2991(03)80265-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії