Статті в журналах з теми "Heteroatomic1"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Heteroatomic1.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Heteroatomic1".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lin, Jin-Yi, Bin Liu, Meng-Na Yu, Chang-Jin Ou, Zhen-Feng Lei, Feng Liu, Xu-Hua Wang, et al. "Understanding the molecular gelation processes of heteroatomic conjugated polymers for stable blue polymer light-emitting diodes." Journal of Materials Chemistry C 5, no. 27 (2017): 6762–70. http://dx.doi.org/10.1039/c7tc01541k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ovchinnikov, V. V., L. R. Khazieva, L. I. Lapteva, and A. I. Konovalov. "Thermochemistry of heteroatomic compounds." Russian Chemical Bulletin 49, no. 1 (January 1990): 33–38. http://dx.doi.org/10.1007/bf02499061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ovchinnikov, V. V., T. B. Makeeva, L. I. Lapteva, V. A. Valiullina, L. M. Pilishkina, and A. I. Konovalov. "Thermochemistry of heteroatomic compounds." Journal of Thermal Analysis 45, no. 4 (October 1995): 735–39. http://dx.doi.org/10.1007/bf02548889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ovchinnikov, V. V., L. I. Lapteva, E. Yu Sitnikova, and A. I. Konovalov. "Thermochemistry of heteroatomic compounds." Russian Chemical Bulletin 49, no. 9 (September 2000): 1522–25. http://dx.doi.org/10.1007/bf02495153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ovchinnikov, V. V., L. I. Lapteva, and M. G. Kireev. "Thermochemistry of heteroatomic compounds." Russian Chemical Bulletin 53, no. 8 (August 2004): 1761–62. http://dx.doi.org/10.1007/s11172-005-0031-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Kai, Benjamin B. Noble, Adam C. Mater, Michael J. Monteiro, Michelle L. Coote, and Zhongfan Jia. "Effect of heteroatom and functionality substitution on the oxidation potential of cyclic nitroxide radicals: role of electrostatics in electrochemistry." Physical Chemistry Chemical Physics 20, no. 4 (2018): 2606–14. http://dx.doi.org/10.1039/c7cp07444a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roy, Matthew M. D., Michael J. Ferguson, Robert McDonald, Yuqiao Zhou, and Eric Rivard. "A vinyl silylsilylene and its activation of strong homo- and heteroatomic bonds." Chemical Science 10, no. 26 (2019): 6476–81. http://dx.doi.org/10.1039/c9sc01192g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lv, Jing-Hui, Xian-Yong Wei, Ying-Hua Wang, Tie-Min Wang, Jing Liu, Dong-Dong Zhang, and Zhi-Min Zong. "Characterization of condensed aromatics and heteroatomic species in Yanshan petroleum coke through ruthenium ion-catalyzed oxidation using three mass spectrometers." RSC Advances 6, no. 66 (2016): 61758–70. http://dx.doi.org/10.1039/c6ra09194f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Jiazhi, Fang Lu, and Jie Xu. "Formation of uniform hollow nanocages with heteroatom-doped MCM-41 structures." RSC Advances 5, no. 7 (2015): 5068–71. http://dx.doi.org/10.1039/c4ra13959c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Caixia, Shihua Dong, Rui Tang, Xiaoli Ge, Zhiwei Zhang, Chengxiang Wang, Yupeng Lu, and Longwei Yin. "Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries." Energy & Environmental Science 11, no. 11 (2018): 3201–11. http://dx.doi.org/10.1039/c8ee01046c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Reuter, K., R. G. M. Maas, A. Reuter, F. Kilgenstein, Y. Asfaha, and C. von Hänisch. "Synthesis of heteroatomic bridged paracyclophanes." Dalton Transactions 46, no. 14 (2017): 4530–41. http://dx.doi.org/10.1039/c7dt00321h.

Повний текст джерела
Анотація:
Heteroatomic bridged paracyclophanes with Si2N, Si2P, Si2(NGa)2and Si2(PGa)2linkers were accessed by diverse synthetic approaches and were characterised among others by X-ray diffraction.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tomio, L., M. T. Yamashita, T. Frederico, and F. Bringas. "Borromean three-body heteroatomic resonances." Laser Physics 21, no. 8 (July 4, 2011): 1464–69. http://dx.doi.org/10.1134/s1054660x11150229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Korch, Katerina M., and Donald A. Watson. "Cross-Coupling of Heteroatomic Electrophiles." Chemical Reviews 119, no. 13 (June 11, 2019): 8192–228. http://dx.doi.org/10.1021/acs.chemrev.8b00628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Laitinen, Risto S., Pentti Pekonen, and Reijo J. Suontamo. "Homo- and heteroatomic chalcogen rings." Coordination Chemistry Reviews 130, no. 1-2 (February 1994): 1–62. http://dx.doi.org/10.1016/0010-8545(94)80002-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sun, Fugen, Bo Zhang, Hao Tang, Zhihao Yue, Xiaomin Li, Chuanqiang Yin, and Lang Zhou. "Heteroatomic TexS1−x molecule/C nanocomposites as stable cathode materials in carbonate-based electrolytes for lithium–chalcogen batteries." Journal of Materials Chemistry A 6, no. 21 (2018): 10104–10. http://dx.doi.org/10.1039/c8ta02751j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Wang, Peng, Xuelin Shi, Chunhong Fu, Xiangjun Li, Junxi Li, Xiaoshu Lv, Yinghao Chu, Fan Dong, and Guangming Jiang. "Strong pyrrolic-N–Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles." Nanoscale 12, no. 2 (2020): 843–50. http://dx.doi.org/10.1039/c9nr07528c.

Повний текст джерела
Анотація:
We demonstrated that heteroatomic nitrogen (N) doping of graphene can significantly enhance the performance of the graphene–palladium nanoparticle composite catalyst (N/G-Pd) in the electrocatalytic hydrodechlorination (EHDC) reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Huang, Liping, Wenyao Li, Xudun Shen, Chunyan Sun, Jin Yang, Xue-rong Shi, and Min Zeng. "Phosphorus-bridged ternary metal alloy encapsulated in few-layered nitrogen-doped graphene for highly efficient electrocatalytic hydrogen evolution." Journal of Materials Chemistry A 10, no. 13 (2022): 7111–21. http://dx.doi.org/10.1039/d1ta10032g.

Повний текст джерела
Анотація:
A strategy of improving the stability and tuning the activity of transition metal catalysts via nitrogen-doped graphene encapsulation and heteroatomic doping is elaborated here. This work makes for achieving precise regulation of electrocatalysts.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Bhalothia, Dinesh, Po-Chun Chen, Che Yan, Wei Yeh, Dai-Ling Tsai, Ting-Shan Chan, Kuan-Wen Wang, and Tsan-Yao Chen. "Heterogeneous assembly of Pt-clusters on hierarchically structured CoOx@SnPd2@SnO2 quaternary nanocatalysts manifesting oxygen reduction reaction performance." New Journal of Chemistry 44, no. 23 (2020): 9712–24. http://dx.doi.org/10.1039/d0nj01154a.

Повний текст джерела
Анотація:
Atomic Pt clusters in the heterogeneous interface of CoOx@SnPd2@SnO2 possess high heteroatomic intermixing facilities, oxygen splitting and hydration reactions resulting in high performance ORR.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Meng, Yiming, Juan An, Lei Chen, Guorong Chen, Liyi Shi, Mi Lu, and Dengsong Zhang. "A NaNi0.5Mn0.5SnxO2 cathode with anti-structural deformation enhancing long lifespan and super power for a sodium ion battery." Chemical Communications 56, no. 58 (2020): 8079–82. http://dx.doi.org/10.1039/d0cc02168g.

Повний текст джерела
Анотація:
Introduction of Sn4+ enlarges the interlayer spacing and builds a heteroatomic skeleton preventing multiphase transition of O3-NaNi0.5Mn0.5O2 for a sodium ion battery.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Li, Guifang, Yawen Li, Jingxia Deng, Huiting Lin, Xinyi Hou, and Lishan Jia. "Ultrahigh rate capability supercapacitors based on tremella-like nitrogen and phosphorus co-doped graphene." Materials Chemistry Frontiers 4, no. 9 (2020): 2704–15. http://dx.doi.org/10.1039/d0qm00392a.

Повний текст джерела
Анотація:
The incorporation of heteroatomic atoms into the graphene crystal lattice not only effectively introduces the bandgap but also increases the defects and the localized reactivity of the graphene, and thereby the remarkable electrochemical properties of graphene are imparted.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zwanenburg, B. "Synthetic potential of heteroatomic ring systems." Pure and Applied Chemistry 71, no. 3 (March 30, 1999): 423–30. http://dx.doi.org/10.1351/pac199971030423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Vulovic, Bojan, and Donald A. Watson. "Heck-Like Reactions Involving Heteroatomic Electrophiles." European Journal of Organic Chemistry 2017, no. 34 (July 5, 2017): 4996–5009. http://dx.doi.org/10.1002/ejoc.201700485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Li, Da-Zhi, Li-Juan Zhang, Ting Ou, Hai-Xia Zhang, Ling Pei, Hua-Jin Zhai, and Si-Dian Li. "Ternary B2X2H2(X = O and S) rhombic clusters and their potential use as inorganic ligands in sandwich-type (B2X2H2)2Ni complexes." Physical Chemistry Chemical Physics 17, no. 26 (2015): 16798–804. http://dx.doi.org/10.1039/c5cp02394g.

Повний текст джерела
Анотація:
Boron-based ternary B2O2H2and B2S2H2clusters possess a rhombic, heteroatomic ring with 4π electrons in a nonbonding/bonding combination, differing from cyclobutadiene.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Maitte, Pierre, Marie-Claude Bellassoud-Fargeau, Bernadette Graffe, and Marie-Claude Sacquet. "Synthesis of Novel N-Heteroatomic Cannabinol Analogues." HETEROCYCLES 24, no. 10 (1986): 2831. http://dx.doi.org/10.3987/r-1986-10-2831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Rao, B. K., and P. Jena. "Electronic structure and geometries of heteroatomic clusters." Physical Review B 37, no. 6 (February 15, 1988): 2867–73. http://dx.doi.org/10.1103/physrevb.37.2867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zong, Jie, Joel T. Mague, E. Celeste Welch, Isaac M. K. Eckert, and Robert A. Pascal. "Sterically congested macrobicycles with heteroatomic bridgehead functionality." Tetrahedron 69, no. 48 (December 2013): 10316–21. http://dx.doi.org/10.1016/j.tet.2013.10.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zupancic, Joseph J., Peter B. Grasse, Stephen C. Lapin, and Gary B. Schuster. "The reactions of fluorenylidene with heteroatomic nucleophiles." Tetrahedron 41, no. 8 (January 1985): 1471–78. http://dx.doi.org/10.1016/s0040-4020(01)96388-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Vignolini, Silvia, Francesca Intonti, Francesco Riboli, Diederik Sybolt Wiersma, Laurent Balet, Lianhe H. Li, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. "Ideal homoatomic and heteroatomic photonic crystal molecules." Photonics and Nanostructures - Fundamentals and Applications 10, no. 3 (June 2012): 271–75. http://dx.doi.org/10.1016/j.photonics.2011.05.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Litinskii, G. B., and V. E. Krikunova. "FRee electron model for heteroatomic conjugate molecules." Journal of Structural Chemistry 50, no. 6 (December 2009): 1029–34. http://dx.doi.org/10.1007/s10947-009-0152-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Griffiths, J. "Diazo chemistry I: Aromatic and heteroatomic compounds." Dyes and Pigments 27, no. 3 (January 1995): 261–62. http://dx.doi.org/10.1016/0143-7208(95)90005-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

LAITINEN, R. S., P. PEKONEN, and R. J. SUONTAMO. "ChemInform Abstract: Homo- and Heteroatomic Chalcogen Rings." ChemInform 25, no. 23 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199423288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Li, Da-Zhi, Lin-Yan Feng, Ling Pei, Li-Juan Zhang, Shu-Guo Wu та Hua-Jin Zhai. "Pentagonal five-center four-electron π bond in ternary B3N2H5 cluster: an extension of the concept of three-center four-electron ω bond". Physical Chemistry Chemical Physics 19, № 3 (2017): 2479–86. http://dx.doi.org/10.1039/c6cp07954g.

Повний текст джерела
Анотація:
Ternary B3N2H5 (C2v, 1A1) cluster has a heteroatomic B3N2 ring, with 4π electrons in a robust bonding/nonbonding combination, which is proposed as a five-center four-electron o-bond.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mitzinger, Stefan, Jascha Bandemehr, Kevin Reiter, J. Scott McIndoe, Xiulan Xie, Florian Weigend, John F. Corrigan, and Stefanie Dehnen. "(Ge2P2)2−: a binary analogue of P4 as a precursor to the ternary cluster anion [Cd3(Ge3P)3]3−." Chemical Communications 54, no. 12 (2018): 1421–24. http://dx.doi.org/10.1039/c7cc08348c.

Повний текст джерела
Анотація:
The novel binary P4 analogue (Ge2P2)2− proved to be a suitable precursor for heteroatomic cluster synthesis. Upon reaction with CdPh2, an unprecedented cluster anion is formed, [Cd3(Ge3P)3].
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mukhin, Nikolay V., and Mykhailo M. Kutia. "Thiophene Determination in Liquid Hydrocarbons by In-line Acoustic Measurements." Journal of the Russian Universities. Radioelectronics 22, no. 4 (October 1, 2019): 82–88. http://dx.doi.org/10.32603/1993-8985-2019-22-4-82-88.

Повний текст джерела
Анотація:
Introduction. Petroleum is a complex mixture of hydrocarbons. Sulphur is the most common heteroatom in pe-troleum and petroleum products. Its content in oil can reach 14 %. The determination of sulphur in oil and its removal is of great importance, since sulphur compounds adversely affect the quality of petroleum products and pollute the environment. Desulphurization of hydrocarbons is important in the processing of petroleum products, which needs in usage of accurate and simple methods for the sulphur-containing components determination. Most of developed methods are difficult to apply for flow online analysis, which can create difficulties in using them to monitor the content of sulphur-containing heteroatomic components in real time. Acoustic sensors are one of the possible solutions. In term of sensing of flammable liquids, the use of the acoustic methods is attractive since the analyte is not a part of an electrical measuring circuit and it is only acoustically coupled that prevents an occurrence of a spark.Objective. The purpose of the work is to study the possibilities of online flow analysis of sulphur-containing heteroatomic components using acoustic measurements. The challenge is the development of a resonator system integrated with the pipe.Materials and methods. Thiophene and oil fraction with the boundary boiling point of 100–140 oC were used to prepare the mixtures. Thiophene is a representative of sulphur-containing components, which may be included in the composition of petroleum and its derivatives. Experimental measuring equipment includes impedance analyzer, a developed sensor structure integrated with a liquid-filled pipe, a pump and a tank with a measured liquid. A theoretical analysis of sensor structure was carried out on the basis of numerical simulation using COMSOL Multiphysics software.Results. The sensor structure was designed as a combination of 2D and 1D pipe periodic arrangements to achieve high Q-factor of acoustic resonance in the flow system. The eigenmodes of the sensor structure with a liquid analyte were carried out. The characteristic of sensor structure is determined. The sensor shows good sensitivity to the thiophene content with high resolution in-line analysis. This result is achieved by limiting the energy losses of acoustic resonance in radiation along the pipe by creating a periodic structure.Conclusion. The study of acoustic properties of solutions prepared on the basis of thiophene and oil fraction with boundary boiling point 100–140 °C was performed. It shows that methods based on acoustic spectroscopy make it possible to accurately determine the concentration of heteroatomic components in gasoline mixtures, since the presence of heteroatomic components leads to a change in mechanical properties of liquid hydrocarbons mixtures. Possible applications for developed acoustic sensor are flow analysis for monitoring the quality of oil products.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Dufresne, Stéphane, Thomas Skalski, and W. G. Skene. "Insights into the effect of ketylimine, aldimine, and vinylene group attachment and regiosubstitution on the fluorescence deactivation of fluorene." Canadian Journal of Chemistry 89, no. 2 (February 2011): 173–80. http://dx.doi.org/10.1139/v10-089.

Повний текст джерела
Анотація:
The spectroscopic and electrochemical properties of a 9-substituted fluorene ketylimine (3) were investigated and compared with those of its vinylene analogue (4) to determine the origins of the quenched fluorescence of these compounds. The predominate mode of singlet excited state deactivation of the heteroatomic fluorene was found to be internal conversion involving bond rotation. Meanwhile, its carbon counterpart was found to undergo deactivation preferentially by intersystem crossing to form its triplet, which was confirmed by laser flash photolysis. Both 3 and 4 quenched the fluorescence of fluorene with diffusion-controlled rate constants, implying that the singlet excited states of 3 and 4 are also quenched by intramolecular photoinduced electron transfer (PET). This deactivation mode was found to be exergonically favorable (–90 kJ/mol for 3 and –81 kJ/mol for 4) according to the Rehm–Weller equation. The position of the heteroatomic bond on the fluorene moiety was further found to influence the singlet excited state deactivation pathway. The 2-substituted regioisomer decayed predominately by intramolecular PET and its fluorescence can be restored by acid protonation. Conversely, the PET mechanism is a minor deactivation mode for the 9-substituted fluorene derivative and its fluorescence can be enhanced by suppressing bond rotational modes, possible at low temperature and potentially in thin films.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Chen, Xiao-Bo, Xin-Yang Zhang, Ru-Meng Qin, Sheng-Jie Shan, Pan-Deng Xia, Nan Li, Jun Pu, Ji-Xia Liu, Yi-Bin Liu, and Chao-He Yang. "Distribution of nitrogen and oxygen compounds in shale oil distillates and their catalytic cracking performance." Petroleum Science 17, no. 6 (September 15, 2020): 1764–78. http://dx.doi.org/10.1007/s12182-020-00508-z.

Повний текст джерела
Анотація:
AbstractThe positive- and negative-ion electrospray ionization (ESI) coupled with Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) was employed to identify the chemical composition of heteroatomic compounds in four distillates of Fushun shale oil, and their catalytic cracking performance was investigated. There are nine classes of basic nitrogen compounds (BNCs) and eleven classes of non-basic heteroatomic compounds (NBHCs) in the different distillates. The dominant BNCs are mainly basic N1 class species. The dominant NBHCs are mainly acidic O2 and O1 class species in the 300–350 °C, 350–400 °C, and 400–450 °C distillates, while the neutral N1, N1O1 and N2 compounds become relatively abundant in the > 450 °C fraction. The basic N1 compounds and acidic O1 and O2 compounds are separated into different distillates by the degree of alkylation (different carbon number) but not by aromaticity (different double-bond equivalent values). The basic N1O1 and N2 class species and neutral N1 and N2 class species are separated into different distillates by the degrees of both alkylation and aromaticity. After the catalytic cracking of Fushun shale oil, the classes of BNCs in the liquid products remain unchanged, while the classes and relative abundances of NBHCs vary significantly.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Xian-Mei, MENG, HUANG Xiao-Ming, and WANG Chuan-Kui. "Two-photon Absorption Properties of Heteroatomic Ring Molecules." Acta Physico-Chimica Sinica 23, no. 02 (2007): 228–31. http://dx.doi.org/10.3866/pku.whxb20070217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Gal'pern, Elena G., Vladimir V. Pinyaskin, Ivan V. Stankevich, and Leonid A. Chernozatonskii. "Heteroatomic Nanotubes with Quasi-One-Dimensional Superlattice Structure." Journal of Physical Chemistry B 101, no. 5 (January 1997): 705–9. http://dx.doi.org/10.1021/jp961669o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Lermontov, Sergei. "Book Review, Ligand Coupling Reactions with Heteroatomic Compounds." Synthesis 2000, no. 04 (2000): 609–10. http://dx.doi.org/10.1055/s-2000-6356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Golushkova, E. B., Alexander P. Ilyin, and A. V. Mostovshchikov. "Extraction of Oil Heteroatomic Compounds Using Metal Powders." Key Engineering Materials 685 (February 2016): 743–47. http://dx.doi.org/10.4028/www.scientific.net/kem.685.743.

Повний текст джерела
Анотація:
The paper presents results of scanning electron microscope (SEM) investigations, differential thermal and elemental analyses, and infrared (IR) spectroscopy of micron powders obtained by thermal decomposition of cupric and nickel oxalates before and after their blending with oil. The oil treatment modifies the powder compositions, heteroorganic compounds extracted from oil are observed on their surface. The analysis shows that materials based on copper and nickel micron powders can be used for the prepurification of crude hydrocarbons from heteroatomic compounds.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Levin, A. A. "Heteroatomic molecules and heteroligand complexes within perturbation theory." Journal of Structural Chemistry 29, no. 6 (1989): 828–36. http://dx.doi.org/10.1007/bf00748424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sharma, Pooja. "Spectroscopic analysis of Jet A-1 heteroatomic components." Chemical Engineering Science 207 (November 2019): 588–99. http://dx.doi.org/10.1016/j.ces.2019.06.059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Zwanenburg, Binne. "ChemInform Abstract: Synthetic Potential of Heteroatomic Ring Systems." ChemInform 30, no. 52 (June 12, 2010): no. http://dx.doi.org/10.1002/chin.199952279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Daoust, Benoit, Nicolas Gilbert, Paméla Casault, François Ladouceur, and Simon Ricard. "1,2-Dihaloalkenes in Metal-Catalyzed Reactions." Synthesis 50, no. 16 (July 9, 2018): 3087–113. http://dx.doi.org/10.1055/s-0037-1610174.

Повний текст джерела
Анотація:
1,2-Dihaloalkenes readily undergo simultaneous or sequential difunctionalization through transition-metal-catalyzed reactions, which makes them attractive building blocks for complex unsaturated motifs. This review summarizes recent applications of such transformations in C–C and C–heteroatom bond forming processes. The facile synthesis of stereodefined alkene derivatives, as well as aromatic and heteroatomic­ compounds, from 1,2-dihaloalkenes is thus outlined.1 Introduction2 Synthesis of 1,2-Dihaloalkenes3 C–C Bond Forming Reactions4 C–Heteroatom Bond Forming Reactions5 Conclusion
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Cheng, Xiong, and Dujie Hou. "Characterization of Severely Biodegraded Crude Oils Using Negative-Ion ESI Orbitrap MS, GC-NCD and GC-SCD: Insights into Heteroatomic Compounds Biodegradation." Energies 14, no. 2 (January 7, 2021): 300. http://dx.doi.org/10.3390/en14020300.

Повний текст джерела
Анотація:
A slightly and two severely biodegraded crude oils with the same origin were analysed using negative-ion electrospray ionization Orbitrap mass spectrometry (ESI Orbitrap MS), gas chromatography-nitrogen chemiluminescence detector (GC-NCD), and GC-sulfur chemiluminescence detector (GC-SCD) to investigate the composition of heteroatomic compounds and their fate during severe biodegradation and to provide insights into biodegradation pathway of hopanes, nitrogen- and sulfur-containing compounds. Twelve heteroatomic compound classes, including O1–O5, N1, N2, N1O1–N1O3, N1S1 and O3S1, were detected and assigned unambiguous molecular formulae. The O1 species are likely phenols with additional naphthenic and/or aromatic rings. Carboxylic acids (O2 species) are originated from oxidation of hydrocarbons, and the tricyclic naphthenic acids are the most resistant, followed by bicyclics. Hopanes could be biodegraded by demethylation or by unstable hopanoic acids as intermediates to yield 25-norhopanes. The N1 species are pyrrolic compounds with naphthenic and/or aromatic rings and are dominated by carbazole analogues. Carbazoles with more aromatic rings are more resistant to biodegradation. The N1 species could be converted to N1O1 and N1O2 compounds via ring-opening and hydroxylation pathways. The N1S1 species contain a pyrrolic and cyclic sulfide structure, which are highly recalcitrant to biodegradation. Benzothiophenes and dibenzothiophenes might be biodegraded via the complete pathway or the sulfur-specific pathway rather than by other pathways to yield acidic oxygenated sulfur compounds.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Cheng, Xiong, and Dujie Hou. "Characterization of Severely Biodegraded Crude Oils Using Negative-Ion ESI Orbitrap MS, GC-NCD and GC-SCD: Insights into Heteroatomic Compounds Biodegradation." Energies 14, no. 2 (January 7, 2021): 300. http://dx.doi.org/10.3390/en14020300.

Повний текст джерела
Анотація:
A slightly and two severely biodegraded crude oils with the same origin were analysed using negative-ion electrospray ionization Orbitrap mass spectrometry (ESI Orbitrap MS), gas chromatography-nitrogen chemiluminescence detector (GC-NCD), and GC-sulfur chemiluminescence detector (GC-SCD) to investigate the composition of heteroatomic compounds and their fate during severe biodegradation and to provide insights into biodegradation pathway of hopanes, nitrogen- and sulfur-containing compounds. Twelve heteroatomic compound classes, including O1–O5, N1, N2, N1O1–N1O3, N1S1 and O3S1, were detected and assigned unambiguous molecular formulae. The O1 species are likely phenols with additional naphthenic and/or aromatic rings. Carboxylic acids (O2 species) are originated from oxidation of hydrocarbons, and the tricyclic naphthenic acids are the most resistant, followed by bicyclics. Hopanes could be biodegraded by demethylation or by unstable hopanoic acids as intermediates to yield 25-norhopanes. The N1 species are pyrrolic compounds with naphthenic and/or aromatic rings and are dominated by carbazole analogues. Carbazoles with more aromatic rings are more resistant to biodegradation. The N1 species could be converted to N1O1 and N1O2 compounds via ring-opening and hydroxylation pathways. The N1S1 species contain a pyrrolic and cyclic sulfide structure, which are highly recalcitrant to biodegradation. Benzothiophenes and dibenzothiophenes might be biodegraded via the complete pathway or the sulfur-specific pathway rather than by other pathways to yield acidic oxygenated sulfur compounds.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zhang, Lei, Caiyi Lu, and Yingcai Long. "Synthesis, characterization of an AlPO-CJ2analogue containing heteroatomic Eu." Chem. Commun., no. 18 (2002): 2064–65. http://dx.doi.org/10.1039/b205254g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Scheit, Simona, Vitali Averbukh, Hans-Dieter Meyer, Jürgen Zobeley, and Lorenz S. Cederbaum. "Interatomic Coulombic decay in a heteroatomic rare gas cluster." Journal of Chemical Physics 124, no. 15 (April 21, 2006): 154305. http://dx.doi.org/10.1063/1.2185637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Grineva, O. V. "Intermolecular halogen...halogen contacts in crystals with heteroatomic halogens." Acta Crystallographica Section A Foundations of Crystallography 68, a1 (August 7, 2012): s67. http://dx.doi.org/10.1107/s0108767312098716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Labbe, Nicole J., Vikram Seshadri, Tina Kasper, Nils Hansen, Patrick Oßwald, and Phillip R. Westmoreland. "Flame chemistry of tetrahydropyran as a model heteroatomic biofuel." Proceedings of the Combustion Institute 34, no. 1 (January 2013): 259–67. http://dx.doi.org/10.1016/j.proci.2012.07.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії