Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Helium Superfluid.

Статті в журналах з теми "Helium Superfluid"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Helium Superfluid".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

BRUSOV, PETER, and PAVEL BRUSOV. "NOVEL SOUND PHENOMENA IN IMPURE SUPERFLUIDS." International Journal of Modern Physics B 20, no. 03 (January 30, 2006): 355–80. http://dx.doi.org/10.1142/s021797920603322x.

Повний текст джерела
Анотація:
In the last decade, new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities, superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and show that this coupling increases significantly. This leads to the existence in impure superfluids of such unusual sound phenomena as slow "pressure" waves and fast "temperature" waves. This also decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by high intensity waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which has never been observed in superfluids) could be observed in impure superfluids. Even the nature of the sound modes in impure superfluids turns out to be changed. We have also derived for the first time the nonlinear hydrodynamic equations for superfluid helium in aerogel.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

HIRSCH, J. E. "KINETIC ENERGY DRIVEN SUPERCONDUCTIVITY AND SUPERFLUIDITY." Modern Physics Letters B 25, no. 29 (November 20, 2011): 2219–37. http://dx.doi.org/10.1142/s0217984911027613.

Повний текст джерела
Анотація:
The theory of hole superconductivity proposes that superconductivity is driven by lowering of quantum kinetic energy and is associated with expansion of electronic orbits and expulsion of negative charge from the interior to the surface of superconductors and beyond. This physics provides a dynamical explanation of the Meissner effect. Here we propose that similar physics takes place in superfluid helium 4. Experimental manifestations of this physics in 4 He are the negative thermal expansion of 4 He below the λ point and the "Onnes effect", the fact that superfluid helium will creep up the walls of the container and escape to the exterior. The Onnes effect and the Meissner effect are proposed to originate in macroscopic zero point rotational motion of the superfluids. It is proposed that this physics indicates a fundamental inadequacy of conventional quantum mechanics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

OWCZAREK, ROBERT. "KNOTTED VORTICES AND SUPERFLUID PHASE TRANSITION." Modern Physics Letters B 07, no. 23 (October 10, 1993): 1523–26. http://dx.doi.org/10.1142/s0217984993001557.

Повний текст джерела
Анотація:
In this letter, studies of knotted vortex structures in superfluid helium are continued. A model of superfluid phase transition (λ-transition) is built in this framework. Similarities of this model to the two-dimensional Ising model are shown. Dependence of specific heat of superfluid helium on temperature near the λ point is explained.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SATO, Akio. "Superfluid Helium Cryogenics." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 28, no. 6 (1993): 304–15. http://dx.doi.org/10.2221/jcsj.28.304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sato, Yuki, and Richard Packard. "Superfluid helium interferometers." Physics Today 65, no. 10 (October 2012): 31–36. http://dx.doi.org/10.1063/pt.3.1749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tilley, John. "Superfluid helium 3." Contemporary Physics 32, no. 5 (September 1991): 339–40. http://dx.doi.org/10.1080/00107519108223708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gessner, Oliver, and Andrey F. Vilesov. "Imaging Quantum Vortices in Superfluid Helium Droplets." Annual Review of Physical Chemistry 70, no. 1 (June 14, 2019): 173–98. http://dx.doi.org/10.1146/annurev-physchem-042018-052744.

Повний текст джерела
Анотація:
Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kawasaki, Shinsuke, and Takahiro Okamura. "Cryogenic design for a high intensity ultracold neutron source at TRIUMF." EPJ Web of Conferences 219 (2019): 10001. http://dx.doi.org/10.1051/epjconf/201921910001.

Повний текст джерела
Анотація:
The TUCAN (TRIUMF Ultra-Cold Advanced Neutron) collaboration has been developing a source of high-intensity ultra-cold neutrons for use in a neutron electric dipole search. The source is composed of a spallation neutron source and a superfluid helium ultra-cold neutron converter, surrounded by a cold moderator. The temperature of the superfluid helium needs to be maintained at approximately 1.0 K to suppress up-scattering by phonons. The Kapitza conductance and the heat transport by the superfluid helium are key parameters which need to be well characterized. We have therefore investigated them in first experiments. Current efforts are directed at optimizing the design of the helium cryostat.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

OWCZAREK, ROBERT. "KNOTTED VORTICES AND FERMIONIC EXCITATIONS IN BULK SUPERFLUID HELIUM." Modern Physics Letters B 07, no. 21 (September 10, 1993): 1383–86. http://dx.doi.org/10.1142/s0217984993001429.

Повний текст джерела
Анотація:
In the present paper, knotted and linked vortices in superfluid helium were considered, following ideas presented in Ref. 1. The conclusion is that fermionic excitations could exist in bulk superfluid helium filled by knotted and linked vortex filaments.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Korostyshevskyi, O., C. K. Wetzel, D. M. Lee, and V. V. Khmelenko. "Enhanced luminescence of oxygen atoms in solid molecular nitrogen nanoclusters." Low Temperature Physics 50, no. 9 (September 1, 2024): 722–32. http://dx.doi.org/10.1063/10.0028138.

Повний текст джерела
Анотація:
We studied luminescence accompanied an injection of the nitrogen-helium gas mixture after passing discharge into dense cold helium gas. Initially, when the experimental beaker was filled with superfluid helium and the nitrogen-helium gas was injected into bulk superfluid helium at T ≈ 1.5 K, the dominant band in the emission spectra was the α-group of nitrogen atoms. At these conditions, the nanoclusters of molecular nitrogen with high concentrations of stabilized nitrogen atoms were formed. When superfluid helium was evaporated from the beaker and the temperature at the bottom of the beaker was increased to T ≈ 20 K, we observed a drastic change in the luminescence spectra. The β-group of oxygen atoms was dominated in the luminescence spectra, and the emission of the α-group became small. At high temperatures (T ≈ 20 K), most of the nitrogen atoms recombine on the surface of N2 nanoclusters with the formation of excited nitrogen molecules. We explained the effect of the enhancement of β-group emission by effective energy transfer from excited nitrogen molecules to the stabilized impurity oxygen atom inside N2 nanoclusters.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sótér, Anna, Hossein Aghai-Khozani, Dániel Barna, Andreas Dax, Luca Venturelli, and Masaki Hori. "High-resolution laser resonances of antiprotonic helium in superfluid 4He." Nature 603, no. 7901 (March 16, 2022): 411–15. http://dx.doi.org/10.1038/s41586-022-04440-7.

Повний текст джерела
Анотація:
AbstractWhen atoms are placed into liquids, their optical spectral lines corresponding to the electronic transitions are greatly broadened compared to those of single, isolated atoms. This linewidth increase can often reach a factor of more than a million, obscuring spectroscopic structures and preventing high-resolution spectroscopy, even when superfluid helium, which is the most transparent, cold and chemically inert liquid, is used as the host material1–6. Here we show that when an exotic helium atom with a constituent antiproton7–9 is embedded into superfluid helium, its visible-wavelength spectral line retains a sub-gigahertz linewidth. An abrupt reduction in the linewidth of the antiprotonic laser resonance was observed when the liquid surrounding the atom transitioned into the superfluid phase. This resolved the hyperfine structure arising from the spin–spin interaction between the electron and antiproton with a relative spectral resolution of two parts in 106, even though the antiprotonic helium resided in a dense matrix of normal matter atoms. The electron shell of the antiprotonic atom retains a small radius of approximately 40 picometres during the laser excitation7. This implies that other helium atoms containing antinuclei, as well as negatively charged mesons and hyperons that include strange quarks formed in superfluid helium, may be studied by laser spectroscopy with a high spectral resolution, enabling the determination of the particle masses9. The sharp spectral lines may enable the detection of cosmic-ray antiprotons10,11 or searches for antideuterons12 that come to rest in liquid helium targets.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Banaszkiewicz, T., M. Chorowski, P. Duda, P. Felisiak, and J. Poliński. "Cryogenic Distribution System for Polish Free Electron Laser Facility." IOP Conference Series: Materials Science and Engineering 1301, no. 1 (May 1, 2024): 012100. http://dx.doi.org/10.1088/1757-899x/1301/1/012100.

Повний текст джерела
Анотація:
Abstract Polish Free Electron Laser facility (PolFEL), presently under construction at the National Centre for Nuclear Research in Warsaw, will consist of an electron gun and four cryomodules each housing two 9-cell superconducting TESLA RF cavities. The cryomodules comprising the cavities will be supplied with superfluid helium at 2 K. Other PolFEL cooling power requirements result from the demand of the power couplers for the accelerating cryomodules (5 K) and thermal shields (40 K – 80 K). The machine will make use of several helium thermodynamic states like two-phase superfluid HeII, supercritical helium and low-pressure helium vapours supplied to cold compressors. A Cryogenic Distribution System (CDS) will provide supercritical helium to the valve-boxes where thermodynamic processing of the helium to a superfluid state will take place. The paper presents the CDS architecture and discusses the possible design options like methods of the power couplers cooling, optional use and location of cold compressors. The second law of thermodynamics has been used for the optimization of the CDS configuration. A generalized approach to the design of helium distribution systems, taking into account thermomechanical aspects and the consequences of the second law of thermodynamics, is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Krasnoperov, E., E. Meilikhov, R. Abela, D. Herlach, E. Morenzoni, F. N. Gygax, A. Schenck, and D. Eschenko. "Muonium in superfluid helium." Physical Review Letters 69, no. 10 (September 7, 1992): 1560–63. http://dx.doi.org/10.1103/physrevlett.69.1560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Woodhouse, C. E., A. Kashani, and A. T. Lukemire. "Superfluid helium tanker instrumentation." IEEE Transactions on Instrumentation and Measurement 39, no. 1 (1990): 274–78. http://dx.doi.org/10.1109/19.50464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

McClintock, Peter. "Whistles from superfluid helium." Nature 388, no. 6641 (July 1997): 421–23. http://dx.doi.org/10.1038/41209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Gully, P. "Superfluid Helium Heat Pipe." Physics Procedia 67 (2015): 625–30. http://dx.doi.org/10.1016/j.phpro.2015.06.106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kamiya, Naoki, Kazuki Kuramoto, Kento Takishima, Tatsuya Yumoto, Haruka Oda, Takeshi Shimi, Hiroshi Kimura, Michio Matsushita, and Satoru Fujiyoshi. "Superfluid helium nanoscope insert with millimeter working range." Review of Scientific Instruments 93, no. 10 (October 1, 2022): 103703. http://dx.doi.org/10.1063/5.0107395.

Повний текст джерела
Анотація:
A superfluid helium insert was developed for cryogenic microscopy of millimeter-sized specimens. An optical-interferometric position sensor, cryogenic objective mirror, and piezo-driven cryogenic stage were fixed to an insert holder that was immersed in superfluid helium. The single-component design stabilized the three-dimensional position of the sample, with root-mean-square deviations of ( x, lateral) 0.33 nm, ( y, lateral) 0.29 nm, and ( z, axial) 0.25 nm. Because of the millimeter working range of the optical sensor, the working range of the sample under the active stabilization was ( x, y) 5 mm and ( z) 3 mm in superfluid helium at 1.8 K. The insert was used to obtain the millimeter-sized fluorescence image of cell nuclei at 1.8 K without a sample exchange.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hizhnyakov, V., V. Boltrushko, G. Benedek, and P. Moroshkin. "Singular vibronic interaction in liquids: manifestation in the optical spectrum of impurity atoms in superfluid helium." Journal of Physics: Conference Series 2769, no. 1 (May 1, 2024): 012010. http://dx.doi.org/10.1088/1742-6596/2769/1/012010.

Повний текст джерела
Анотація:
Abstract The zero phonon line (ZPL) and its phonon-roton wing have been studied both experimentally and theoretically in the optical spectrum of the inner shell transition in the Dy atom in superfluid helium. It is shown that the linear vibronic interaction of impurity atom with long-wave acoustic phonons in the liquid phase is singularly enhanced. As a result, the ZPL of both the superfluid and normal components of liquid helium has a finite width. The temperature dependence of the spectrum is a consequence of the redistribution of the superfluid and normal components of the liquid helium and the temperature dependence of the spectrum of its normal component. Our calculations of the ZPL and its phonon-rotor wing are consistent with the experiment.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gauthier, Guillaume, Matthew T. Reeves, Xiaoquan Yu, Ashton S. Bradley, Mark A. Baker, Thomas A. Bell, Halina Rubinsztein-Dunlop, Matthew J. Davis, and Tyler W. Neely. "Giant vortex clusters in a two-dimensional quantum fluid." Science 364, no. 6447 (June 27, 2019): 1264–67. http://dx.doi.org/10.1126/science.aat5718.

Повний текст джерела
Анотація:
Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. In this study, we experimentally realize these vortex clusters in a planar superfluid: a 87Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstrate that the clusters persist for long time periods, maintaining the superfluid system in a high-energy state far from global equilibrium. Our experiments explore a regime of vortex matter at negative absolute temperatures and have relevance for the dynamics of topological defects, two-dimensional turbulence, and systems such as helium films, nonlinear optical materials, fermion superfluids, and quark-gluon plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Efimov, V. B., A. N. Izotov, and L. P. Mezhov-Deglin. "Helium impurity nanocluster gels in superfluid helium." Bulletin of the Russian Academy of Sciences: Physics 77, no. 1 (January 2013): 48–52. http://dx.doi.org/10.3103/s1062873813010085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Jahangiri, Ali, and Mojtaba Biglari. "The stability of vapor film immersed in superfluid helium on the surface of the hot ball." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 230, no. 6 (August 3, 2016): 433–39. http://dx.doi.org/10.1177/0954408914559571.

Повний текст джерела
Анотація:
In this article, the evolution of vapor film on the surfaces of hot objects immersed in a cryogenic superfluid helium liquid is considered. It is assumed that at the beginning of the process, a thin film of steam exists on the surface of the object that has a spherical shape. If the heat flux is greater than the critical heat flux, the growth of vapor film will continue, otherwise it will collapse. Survey and analysis of the previously mentioned problem has been done using numerical method and the main onjectives are as follows: (a) study the evolution of the vapor film immersed in superfluid helium on the surface of the hot ball and (b) the stability of vapor film immersed in superfluid helium on the surface of the hot ball.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

LO, SHUI-YIN. "HIGHLY CHARGED SUPERFLUID HELIUM CLUSTER BEAM." International Journal of Modern Physics B 10, no. 06 (March 15, 1996): 713–27. http://dx.doi.org/10.1142/s0217979296000301.

Повний текст джерела
Анотація:
A device is proposed that can produce highly charged superfluid helium clusters, which can be as small as a micron. Each cluster then contains a large number of coherent helium atoms that can be accelerated together.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gessner, Oliver, Christoph Bostedt, and Andrey Vilesov. "Single-Shot X-Ray Coherent Diffractive Imaging of Superfluid He Nanodroplets." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C289. http://dx.doi.org/10.1107/s2053273314097101.

Повний текст джерела
Анотація:
Single-shot coherent diffractive imaging (CDI) experiments were performed on pure and doped helium nanodroplets using femtosecond X-ray pulses from the Linac Coherent Light Source (LCLS). The superfluid nature of helium droplets presents a rare opportunity to study the onset of macroscopic quantum phenomena in finite, sub-micron scale systems. Despite the small X-ray scattering cross sections of atomic helium, high-quality single-shot CDI data were obtained that give direct access to sizes and shapes of individual nanodroplets. The diffraction patterns from helium droplets doped with xenon atoms differ starkly from the patterns from pure droplets. Strong indications for the formation of complex xenon structures inside the superfluid helium environment are observed, giving access to information about the structure and aggregation dynamics of the dopant species. The results are discussed with respect to the hydrodynamic properties of the superfluid droplets and compared to those of classical drops. An outlook on femtosecond time-resolved CDI experiments to study dynamics in pure and Xe-doped He nanodroplets will be given based on a new undulator-based X-ray pump/X-ray probe technique that is currently under development at LCLS.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Карабулин, А. В., М. И. Кулиш, В. И. Матюшенко та М. Е. Степанов. "Динамика теплового излучения, сопровождающего конденсацию паров вольфрама в газообразном и сверхтекучем гелии". Журнал технической физики 91, № 4 (2021): 649. http://dx.doi.org/10.21883/jtf.2021.04.50629.258-20.

Повний текст джерела
Анотація:
In this work the cooling of the products of pulsed laser ablation of a tungsten target in vacuum, helium gas and in liquid superfluid helium was investigated by pyrometric measurements. It was shown that quantitative measurements of the characteristics of thermal emission make it possible to clarify the features of the mechanisms of the condensation processes of nanostructures in these media. The obtained data were used to calculate the cross sections of the emitting particles. It was shown that in vacuum mainly submicron particles emit, while in superfluid helium - nanoparticles. The results obtained are confirmed by the data of electron microscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sachkou, Yauhen P., Christopher G. Baker, Glen I. Harris, Oliver R. Stockdale, Stefan Forstner, Matthew T. Reeves, Xin He, et al. "Coherent vortex dynamics in a strongly interacting superfluid on a silicon chip." Science 366, no. 6472 (December 19, 2019): 1480–85. http://dx.doi.org/10.1126/science.aaw9229.

Повний текст джерела
Анотація:
Quantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip. An on-chip optical microcavity allows laser initiation of clusters of quasi–two-dimensional vortices and nondestructive observation of their decay in a single shot. Coherent dynamics dominate, with thermal vortex diffusion suppressed by five orders of magnitude. This establishes an on-chip platform with which to study emergent phenomena in strongly interacting superfluids and to develop quantum technologies such as precision inertial sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

KOBAYASHI, Hisayasu. "Diversity of Superfluid Helium Cooling." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 55, no. 2 (March 20, 2020): 125–31. http://dx.doi.org/10.2221/jcsj.55.125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Nemirovskii, S. K. "Nonlinear acoustics of superfluid helium." Uspekhi Fizicheskih Nauk 160, no. 6 (1990): 51. http://dx.doi.org/10.3367/ufnr.0160.199006b.0051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Hall, H. E. "Mechanical experiments in superfluid helium." Uspekhi Fizicheskih Nauk 164, no. 12 (1994): 1278. http://dx.doi.org/10.3367/ufnr.0164.199412h.1278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Peterson, I. "Quantum Swirls in Superfluid Helium." Science News 138, no. 8 (August 25, 1990): 118. http://dx.doi.org/10.2307/3975195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Nemirovskii, S. K. "Rayleigh Problem in Superfluid Helium." Journal of Engineering Thermophysics 30, no. 4 (October 2021): 607–14. http://dx.doi.org/10.1134/s1810232821040044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Ceperley, David. "Numerical Simulations in Superfluid Helium." Physica Scripta T33 (January 1, 1990): 11. http://dx.doi.org/10.1088/0031-8949/1990/t33/002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Schott, W., J. M. Pendlebury, I. Altarev, S. Gröger, E. Gutsmiedl, F. J. Hartmann, S. Paul, G. Petzoldt, P. Schmidt-Wellenburg, and U. Trinks. "UCN production in superfluid helium." European Physical Journal A 16, no. 4 (April 2003): 599–601. http://dx.doi.org/10.1140/epja/i2002-10128-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ceperley, David. "Superfluid helium as a vacuum." Physics World 11, no. 6 (June 1998): 19. http://dx.doi.org/10.1088/2058-7058/11/6/19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Bowley, Roger. "Simplicity works for superfluid helium." Physics World 13, no. 2 (February 2000): 24–25. http://dx.doi.org/10.1088/2058-7058/13/2/31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Cramer, M. S., and R. Sen. "Nonlinearity parameters for superfluid helium." Journal of the Acoustical Society of America 82, S1 (November 1987): S11. http://dx.doi.org/10.1121/1.2024627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Buchanan, Mark. "Physics award acclaims superfluid helium." Nature 383, no. 6601 (October 1996): 562. http://dx.doi.org/10.1038/383562a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zurek, W. H. "Cosmological experiments in superfluid helium?" Nature 317, no. 6037 (October 1985): 505–8. http://dx.doi.org/10.1038/317505a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Harms, Jan, J. Peter Toennies, and Franco Dalfovo. "Density of superfluid helium droplets." Physical Review B 58, no. 6 (August 1, 1998): 3341–50. http://dx.doi.org/10.1103/physrevb.58.3341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Nemirovskiĭ, S. K. "Nonlinear acoustics of superfluid helium." Soviet Physics Uspekhi 33, no. 6 (June 30, 1990): 429–52. http://dx.doi.org/10.1070/pu1990v033n06abeh002599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Hall, H. E. "Mechanical experiments in superfluid helium." Physics-Uspekhi 37, no. 12 (December 31, 1994): 1188–89. http://dx.doi.org/10.1070/pu1994v037n12abeh001444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Efimov, V. B., A. N. Ganshin, G. V. Kolmakov, P. V. E. McClintock, and L. P. Mezhov-Deglin. "Rogue waves in superfluid helium." European Physical Journal Special Topics 185, no. 1 (July 2010): 181–93. http://dx.doi.org/10.1140/epjst/e2010-01248-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Stajic, J. "X-raying superfluid helium droplets." Science 345, no. 6199 (August 21, 2014): 886–88. http://dx.doi.org/10.1126/science.345.6199.886-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

S. Paoletti, Matthew, Ralph B. Fiorito, Katepalli R. Sreenivasan, and Daniel P. Lathrop. "Visualization of Superfluid Helium Flow." Journal of the Physical Society of Japan 77, no. 11 (November 15, 2008): 111007. http://dx.doi.org/10.1143/jpsj.77.111007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Koplik, Joel, and Herbert Levine. "Vortex reconnection in superfluid helium." Physical Review Letters 71, no. 9 (August 30, 1993): 1375–78. http://dx.doi.org/10.1103/physrevlett.71.1375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Caupin, F., D. O. Edwards, and H. J. Maris. "Thermodynamics of metastable superfluid helium." Physica B: Condensed Matter 329-333 (May 2003): 185–86. http://dx.doi.org/10.1016/s0921-4526(02)01943-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Chagovets, Tymofiy V. "Electric response in superfluid helium." Physica B: Condensed Matter 488 (May 2016): 62–66. http://dx.doi.org/10.1016/j.physb.2016.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Takita, Maika, and S. A. Lyon. "Isolating electrons on superfluid helium." Journal of Physics: Conference Series 568, no. 5 (December 8, 2014): 052034. http://dx.doi.org/10.1088/1742-6596/568/5/052034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Meichle, David P., and Daniel P. Lathrop. "Nanoparticle dispersion in superfluid helium." Review of Scientific Instruments 85, no. 7 (July 2014): 073705. http://dx.doi.org/10.1063/1.4886811.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

WILSON, ELIZABETH. "Helium Supersolid Has Superfluid Properties." Chemical & Engineering News 82, no. 3 (January 19, 2004): 14. http://dx.doi.org/10.1021/cen-v082n003.p014a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kebukawa, Takeji, and Shosuke Sasaki. "Josephson Oscillation in Superfluid Helium." Physica B: Condensed Matter 165-166 (August 1990): 763–64. http://dx.doi.org/10.1016/s0921-4526(90)81231-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії