Статті в журналах з теми "Heat transfer enhancement, Homogenization"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Heat transfer enhancement, Homogenization.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Heat transfer enhancement, Homogenization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Nciri, Rached, Yahya Ali Rothan, Faouzi Nasri, and Chaouki Ali. "Fe3O4-Water Nanofluid Free Convection within an Inclined 2D Rectangular Enclosure Heated by Solar Energy Using Finned Absorber Plate." Applied Sciences 11, no. 2 (January 6, 2021): 486. http://dx.doi.org/10.3390/app11020486.

Повний текст джерела
Анотація:
This work investigates a hydrodynamic problem involving the Fe3O4-Water nanofluid. The novelty of this investigation lies in the fact that the nanofluid free convection is evaluated within a specific rectangular enclosure having a finned absorber plate as the top wall, heated by solar energy. The fins below the absorber plate permit to enhance heat transfer towards the nanofluid. A numerical simulation is carried out in order to predict the influence of Rayleigh number, nanofluid layer position, enclosure inclination angle, and absorber plate fins height on the nanofluid flow (in terms of streamlines and velocity magnitude) and heat transfer (in terms of temperature and Nusselt number divided by a certain thermal conductivity ratio). Numerical results show a nanofluid buoyancy enhancement and a temperature distribution homogenization, when the Rayleigh number increases, all the more important and pushed to the right area of the enclosure, as the inclination angle of the enclosure is higher. For relatively low fin heights, the nanofluid buoyancy enhancement is all the more important and pushed to the right area of the enclosure as the inclination angle is high. As the fin height increases, the temperature distribution becomes more homogenous.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Asianuaba, Ifeoma B. "Heat Transfer Augmentation." European Journal of Engineering Research and Science 5, no. 4 (April 25, 2020): 475–78. http://dx.doi.org/10.24018/ejers.2020.5.4.1869.

Повний текст джерела
Анотація:
This article presents a brief review of various methodologies applied for heat transfer enhancement in laminar flow convection regime. Experimental setup for laminar flow convection heat transfer enhancement using insertions has been explained along with the associated results. Nusselt’s number is found to be a key parameter for investigatigation in order to perceive the enhancement in heat transfer. Similarly, the magnetohydrodynamic mixed convection heat transfer enhancement technique has also been explored. The results of isotherms and fluid flow parameters are discussed which directly affect the heat transfer coefficient. This review article complements the literature in related field and thus will be helpful in order to carry out further experiments in heat transfer enhancement in future.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Asianuaba, Ifeoma B. "Heat Transfer Augmentation." European Journal of Engineering and Technology Research 5, no. 4 (April 25, 2020): 475–78. http://dx.doi.org/10.24018/ejeng.2020.5.4.1869.

Повний текст джерела
Анотація:
This article presents a brief review of various methodologies applied for heat transfer enhancement in laminar flow convection regime. Experimental setup for laminar flow convection heat transfer enhancement using insertions has been explained along with the associated results. Nusselt’s number is found to be a key parameter for investigatigation in order to perceive the enhancement in heat transfer. Similarly, the magnetohydrodynamic mixed convection heat transfer enhancement technique has also been explored. The results of isotherms and fluid flow parameters are discussed which directly affect the heat transfer coefficient. This review article complements the literature in related field and thus will be helpful in order to carry out further experiments in heat transfer enhancement in future.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gorshenin, A. S., J. I. Rakhimova, and N. P. Krasnova. "Conjugated Heat Exchange in Heat Treatment of Aluminum Ingots Simulation." Journal of Physics: Conference Series 2096, no. 1 (November 1, 2021): 012053. http://dx.doi.org/10.1088/1742-6596/2096/1/012053.

Повний текст джерела
Анотація:
Abstract Casting aluminum to obtain semi-finished products - round ingots, due to uneven cooling in the mold, leads to various defects that affect further machining. To eliminate such defects, heat treatment is carried out - homogenization annealing. One of the homogenization important stages is the cooling of the ingots after heating at a rate that does not lead to the ingot quenching. The cooling medium is air. Knowing the conditions of heat exchange between the cooling air and the high-temperature aluminum billet makes it possible to obtain the ingot’s necessary physical and mechanical properties. The article describes the developed mathematical model of conjugate heat transfer during homogenization annealing of aluminum ingot. It allows analytically calculating the temperature of the ingots depending on the cooling time. To verify the data obtained by the mathematical model, the conjugate heat transfer in the ANSYS program was simulated.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Habibi, Zakaria. "Homogenization of a Conductive-Radiative Heat Transfer Problem." ESAIM: Proceedings 35 (March 2012): 228–33. http://dx.doi.org/10.1051/proc/201235019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim Hang, Le Nguyen. "Homogenization of Heat Transfer Process in Composite Materials." Journal of Elliptic and Parabolic Equations 1, no. 1 (April 2015): 175–88. http://dx.doi.org/10.1007/bf03377374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

AYUB, ZAHID H. "Ammonia Refrigeration Heat Transfer Enhancement." Heat Transfer Engineering 25, no. 5 (July 2004): 4–5. http://dx.doi.org/10.1080/01457630490443514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ziegler, F., and G. Grossman. "Heat-transfer enhancement by additives." International Journal of Refrigeration 19, no. 5 (June 1996): 301–9. http://dx.doi.org/10.1016/s0140-7007(96)00032-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xuan, Yimin, and Qiang Li. "Heat transfer enhancement of nanofluids." International Journal of Heat and Fluid Flow 21, no. 1 (February 2000): 58–64. http://dx.doi.org/10.1016/s0142-727x(99)00067-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hsieh, Shou-Shing, Hao-Hsiang Liu, and Yi-Fan Yeh. "Nanofluids spray heat transfer enhancement." International Journal of Heat and Mass Transfer 94 (March 2016): 104–18. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Rangasamy Mahendren, Sharan Raj, Hélène Welemane, Olivier Dalverny, and Amèvi Tongne. "Steady-state heat transfer in microcracked media." Mechanics & Industry 21, no. 5 (2020): 519. http://dx.doi.org/10.1051/meca/2020034.

Повний текст джерела
Анотація:
Material behaviour is often affected by the heterogeneities existing at the microscopic level. Especially the presence of cracks, voids, etc collectively known as defects, can play a major role in their overall response. Homogenization can be used to study the influence of these heterogeneities and also to estimate the effective properties of a given material. Several research works have been dedicated to determining the elastic behaviour of microcracked media. Yet, thermal properties are not investigated as much. Moreover, the question of unilateral effect (opening/closing of cracks) still remains an important issue. So, this paper aims to provide the effective thermal conductivity of 2D microcracked media with arbitrarily orientated cracks, either open or closed. With the help of Eshelby-like approach, homogenization schemes (dilute and Mori-Tanaka) and bounds (Ponte Castañeda-Willis) are developed to provide the closed-form expressions. In addition, these results are compared to numerical simulations performed based on finite element modelling.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Allaire, Grégoire, and Karima El Ganaoui. "Homogenization of a Conductive and Radiative Heat Transfer Problem." Multiscale Modeling & Simulation 7, no. 3 (January 2009): 1148–70. http://dx.doi.org/10.1137/080714737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hummel, Hans-Karl. "Homogenization for heat transfer in polycrystals with interfacial resistances." Applicable Analysis 75, no. 3-4 (August 2000): 403–24. http://dx.doi.org/10.1080/00036810008840857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kamiński, Marcin. "Homogenization technique for transient heat transfer in unidirectional composites." Communications in Numerical Methods in Engineering 19, no. 7 (March 3, 2003): 503–12. http://dx.doi.org/10.1002/cnm.608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Dreitser, Guenrikh A. "Efficiency of Heat Transfer Enhancement in Heat Exchangers." Heat Transfer Research 32, no. 7-8 (2001): 9. http://dx.doi.org/10.1615/heattransres.v32.i7-8.130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Krishna, Maddali, M. Swamy, G. Manjunath, N. Rao, Battula Rao, and P. Murthy. "Heat Transfer Enhancement in Corrugated Plate Heat Exchanger." British Journal of Applied Science & Technology 18, no. 3 (January 10, 2016): 1–14. http://dx.doi.org/10.9734/bjast/2016/28438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chatys, Rafał, Milan Malcho, and Łukasz J. Orman. "HEAT TRANSFER ENHANCEMENT IN PHASE-CHANGE HEAT EXCHANGERS." Aviation 18, no. 1 (April 3, 2014): 40–43. http://dx.doi.org/10.3846/16487788.2014.865930.

Повний текст джерела
Анотація:
The paper presents the results of boiling heat transfer enhancement due to the application of additional mesh on the heat exchanger surface. The copper mesh of porosity of 75% was sintered to the copper heater producing strong bonds between the elements. The results indicate a possibility of significant improvement of heat transfer conditions in comparison to the smooth surface. The heat flux was found to be almost six times higher for the same superheat if the mesh structure was applied. Distilled water and ethanol were the working fluids. The investigations were performed under atmospheric pressure.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

X. X. Zhu, M. Zanfir, J. Klemes. "Heat Transfer Enhancement for Heat Exchanger Network Retrofit." Heat Transfer Engineering 21, no. 2 (March 2000): 7–18. http://dx.doi.org/10.1080/014576300270988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Apmann, Kevin, Ryan Fulmer, Branden Scherer, Sawyer Good, Jake Wohld, and Saeid Vafaei. "Nanofluid Heat Transfer: Enhancement of the Heat Transfer Coefficient inside Microchannels." Nanomaterials 12, no. 4 (February 11, 2022): 615. http://dx.doi.org/10.3390/nano12040615.

Повний текст джерела
Анотація:
The purpose of this paper is to investigate the effects of a connector between two microchannels, for the first time. A brief literature review is provided to offer a better understanding on the impacts of concentration and the characteristics of nanoparticles on thermal conductivity, viscosity, and, consequently, the heat transfer coefficient inside the microchannels. The given literature review aims to help engineer nanofluids to enhance the heat transfer coefficient inside the microchannels. In this research, Fe3O4 nanoparticles were introduced into the base liquid to enhance the heat transfer coefficient inside the microchannels and to provide a better understanding of the impact of the connector between two microchannels. It was observed that the connector has a significant impact on enhancing the heat transfer coefficient inside the second microchannel, by increasing the level of randomness of molecules and particles prior to entering the second channel. The connector would act to refresh the memory of the fluid before entering the second channel, and as a result, the heat transfer coefficient in the second channel would start at a maximum value. Therefore, the overall heat transfer coefficient in both microchannels would increase for given conditions. The impacts of the Reynolds number and introducing nanoparticles in the base liquid on effects induced by the connector were investigated, suggesting that both factors play a significant role on the connector’s impact on the heat transfer coefficient.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

BERGLES, ARTHUR E. "Heat Transfer Enhancement—The Maturing of Second-Generation Heat Transfer Technology." Heat Transfer Engineering 18, no. 1 (January 1997): 47–55. http://dx.doi.org/10.1080/01457639708939889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

He, Zeqing, Yingli Shi, Yuqing Shen, Zhigang Shen, Taihua Zhang, and Zhao Zhao. "Transient Heat Conduction in the Orthotropic Model with Rectangular Heat Source." Micromachines 13, no. 8 (August 16, 2022): 1324. http://dx.doi.org/10.3390/mi13081324.

Повний текст джерела
Анотація:
Epidermal electronic systems (EESs) are a representative achievement for utilizing the full advantages of ultra-thin, stretchable and conformal attachment of flexible electronics, and are extremely suitable for integration with human physiological systems, especially in medical hyperthermia. The stretchable heater with stable electrical characteristics and a uniform temperature field is an irreplaceable core component. The inorganic stretchable heater has the advantage of maintaining stable electrical characteristics under tensile deformation. However, the space between the patterned electrodes that provides tensile properties causes uneven distribution of the temperature field. Aiming at improving the temperature distribution uniformity of stretchable thermotherapy electrodes, an orthotropic heat transfer substrate for stretchable heaters is proposed in this paper. An analytical model for transient heat conduction of stretchable rectangular heaters based on orthotropic transfer characteristics is established, which is validated by finite element analysis (FEA). The homogenization effect of orthotropic heat transfer characteristics on temperature distribution and its evolutionary relationship with time are investigated based on this model. This study will provide beneficial help for the temperature distribution homogenization design of stretchable heaters and the exploration of its transient heat transfer mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Bergles, A. E. "Some Perspectives on Enhanced Heat Transfer—Second-Generation Heat Transfer Technology." Journal of Heat Transfer 110, no. 4b (November 1, 1988): 1082–96. http://dx.doi.org/10.1115/1.3250612.

Повний текст джерела
Анотація:
During the past twenty-five years, heat transfer enhancement has grown at a rapid rate to the point where it can be regarded as a major field of endeavor, a second-generation heat transfer technology. After some historical background, mention of the driving trends, and a review of the various convective enhancement techniques, four areas of major contemporary interest are discussed: structured surfaces for shellside boiling, rough surfaces in tubes, offset strip fins, and microfin tubes for refrigerant evaporators and condensers. The review concludes with developments in the major areas of application.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Yang Bo, 杨波, 王姣 Wang Jiao, and 刘军 Liu Jun. "Heat transfer enhancement of carbon nanofluids." High Power Laser and Particle Beams 26, no. 5 (2014): 51003. http://dx.doi.org/10.3788/hplpb20142605.51003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Gan Jia Gui, Nicolette, Cameron Stanley, Nam-Trung Nguyen, and Gary Rosengarten. "Ferrofluidic plug flow heat transfer enhancement." International Journal of Computational Methods and Experimental Measurements 6, no. 2 (November 1, 2017): 291–302. http://dx.doi.org/10.2495/cmem-v6-n2-291-302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Suman, Balram, and Raffaele Savino. "Capillary Flow-Driven Heat Transfer Enhancement." Journal of Thermophysics and Heat Transfer 25, no. 4 (October 2011): 553–60. http://dx.doi.org/10.2514/1.t3747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Abdulhadi Ethbayah, Waleed. "HEAT TRANSFER ENHANCEMENT USING HELICAL PIPES." International Journal of Advanced Research 9, no. 12 (December 31, 2021): 676–85. http://dx.doi.org/10.21474/ijar01/13959.

Повний текст джерела
Анотація:
The enhancement of laminar forced convection inside helical pipes is studied numerically and compared with plain pipes. The study is achieved numerically using the (Fluent-CFD 6.3.26) software program for solving the governing equations. The heat transfer factor and friction factor are calculated using the enhancement technique and compared with the plain tube. In this research the factors that affect the enhancement technique using helical pipes are studied, these factors are the ratio of (pitch /pipe length) (SL), Reynolds number and the heat flux applied to the external surface of the pipe. The results showed that there is an increasing in the heat transfer factor is related to the decreasing of (SL), increasing of Reynolds number and heat flux. The performance of the helical pipes is evaluated depending on the calculation of (Enhancement ratio), and its found that the enhancement ratio increases as Reynolds number increases and (SL) decreases. It is found that the best enhancement ratio was (200%) at (SR=0.05), (Re=2000),(Heat flux=3000W/m2).The results are compared with the literature and there is a good agreement.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mukilarasan, N. "Heat Transfer Enhancement Using Nanoparticles (Al2o3)." International Journal for Research in Applied Science and Engineering Technology 6, no. 5 (May 31, 2018): 994–99. http://dx.doi.org/10.22214/ijraset.2018.5159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zamfirescu, C., and M. Feidt. "Cascaded Fins for Heat Transfer Enhancement." Heat Transfer Engineering 28, no. 5 (May 2007): 451–59. http://dx.doi.org/10.1080/01457630601163835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Chen, Juin, Hans Müller-Steinhagen, and Geoffrey G. Duffy. "Heat transfer enhancement in dimpled tubes." Applied Thermal Engineering 21, no. 5 (April 2001): 535–47. http://dx.doi.org/10.1016/s1359-4311(00)00067-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Al-Dadah, R. K., and T. G. Karayiannis. "Passive enhancement of condensation heat transfer." Applied Thermal Engineering 18, no. 9-10 (September 1998): 895–909. http://dx.doi.org/10.1016/s1359-4311(97)00111-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Toé, R., A. Ajakh, and H. Peerhossaini. "Heat transfer enhancement by Görtler instability." International Journal of Heat and Fluid Flow 23, no. 2 (April 2002): 194–204. http://dx.doi.org/10.1016/s0142-727x(01)00149-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Babus'Haq, Ramiz F., and S. Douglas Probert. "Heat transfer enhancement in electronics cooling." Applied Energy 45, no. 3 (January 1993): 279. http://dx.doi.org/10.1016/0306-2619(93)90037-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Salam, Noaman. "Heat Transfer Enhancement Through Perforated Fin." IOSR Journal of Mechanical and Civil Engineering 17, no. 10 (March 2017): 72–78. http://dx.doi.org/10.9790/1684-17010047278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Liewkongsataporn, W., T. Patterson, and F. Ahrens. "Pulsating Jet Impingement Heat Transfer Enhancement." Drying Technology 26, no. 4 (March 26, 2008): 433–42. http://dx.doi.org/10.1080/07373930801929268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

FUKAGAWA, Masayuki, Kan OGATA, Jyunichi MIYAGAWA, Suguru YOSHIDA, and Hideo MORI. "Heat Transfer Enhancement in Honeycomb Elements." Transactions of the Japan Society of Mechanical Engineers Series B 71, no. 703 (2005): 893–900. http://dx.doi.org/10.1299/kikaib.71.893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

James, R. W. "Heat transfer enhancement and energy conservation." Cryogenics 32, no. 4 (January 1992): 414. http://dx.doi.org/10.1016/0011-2275(92)90065-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Trivedi, Maulin, Rangesh Jagannathan, and Craig T. Johansen. "Convective heat transfer enhancement with nanoaerosols." International Journal of Heat and Mass Transfer 102 (November 2016): 1180–89. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Sahiti, N., F. Durst, and A. Dewan. "Heat transfer enhancement by pin elements." International Journal of Heat and Mass Transfer 48, no. 23-24 (November 2005): 4738–47. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Helal Zgayer, Ajaj. "Heat Transfer Enhancement Using Helical Pipes." Anbar Journal of Engineering Sciences 5, no. 1 (August 1, 2012): 126–39. http://dx.doi.org/10.37649/aengs.2012.41143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kamiński, Marcin. "Homogenization of transient heat transfer problems for some composite materials." International Journal of Engineering Science 41, no. 1 (January 2003): 1–29. http://dx.doi.org/10.1016/s0020-7225(02)00144-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zhou, Q., H. W. Zhang, and Y. G. Zheng. "A homogenization technique for heat transfer in periodic granular materials." Advanced Powder Technology 23, no. 1 (January 2012): 104–14. http://dx.doi.org/10.1016/j.apt.2011.01.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Chalaev, Djamalutdin, Nina Silnyagina, Oleksii Shmatok, and Oleksandr Nedbailo. "Heat transfer enhancement in a corrugated tube heat exchanger." Ukrainian Food Journal 5, no. 2 (June 2016): 376–86. http://dx.doi.org/10.24263/2304-974x-2016-5-2-15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Abd zaid, Duaa Nadheer, and Dhafer A. Hamzah. "Heat Transfer Enhancement by Turbulence Generator inside Heat Receiver." Al-Qadisiyah Journal for Engineering Sciences 13, no. 4 (January 2, 2021): 268–73. http://dx.doi.org/10.30772/qjes.v13i4.680.

Повний текст джерела
Анотація:
Tubular heat exchanger (THEX), that has been in numerous engineering applications, represents an apparatus that makes heat to be exchanged between two fluids having different changing in temperatures and kept separated by means of a solid wall. In order to enhance the efficiency of the THEX, the rate of heat transfer at the tube side should be improved. Inserting a twisted tape inside the heat exchanger’s tube is one of the passive techniques that has been widely used to improve the heat transfer especially in air conditioning and cooling, processes of power recovery, processes for food and dairy, and plants for chemical processing. The heat exchanger enhancement is achieved by means of using a twisted tape inserted with twisting ratios (TR) equal to 3.2, 4.4, and 5.5, independently. The influences of 2-D parameters such as Nusselt number and frictional coefficient on the THEX’s effectiveness were investigated. The aim of the study is inserting a twisted tape inside the testing pipe to produced turbulent flow and, therefore, creating large turbulence rate inside the pipe that plays an significant role in improving the transferred heat and increasing the drop in the pressure. In this work, the inserted tape has a width and length equal to 21.5 mm and 1000 mm, respectively. The inner and outer diameters of the used pipes were 23 mm and 22 mm, respectively. The tested sectional length of the THEX was equal to 2000 mm. Reynolds number was changed from 500 to 7000. Results obtained from using twisted inserting tapes with varying TR were compared with result from plain tubes. These results were displayed in the contours show the distribution of the temperature and the trajectory of the flow trajectory by axial velocity for testing the low values of Reynolds number applicability in heat exchanger applications
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Thansekhar, M. R., and C. Anbumeenakshi. "Heat Transfer Enhancement of Nanofluid Cooled Microchannel Heat Sink." Advanced Science, Engineering and Medicine 10, no. 3 (March 1, 2018): 346–50. http://dx.doi.org/10.1166/asem.2018.2120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ponshanmugakumar, A., and R. Rajavel. "Enhancement of Heat Transfer in Double Pipe Heat Exchanger." Materials Today: Proceedings 16 (2019): 706–13. http://dx.doi.org/10.1016/j.matpr.2019.05.149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Hung, Tu-Chieh, Wei-Mon Yan, Xiao-Dong Wang, and Chun-Yen Chang. "Heat transfer enhancement in microchannel heat sinks using nanofluids." International Journal of Heat and Mass Transfer 55, no. 9-10 (April 2012): 2559–70. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.01.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Lin, Gui-Ping, and Xiu-Gan Yuan. "Mass and heat transfer enhancement of chemical heat pumps." Journal of Thermal Science 2, no. 3 (September 1993): 228–30. http://dx.doi.org/10.1007/bf02650860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Sayed Ahmed, Sayed Ahmed E., Osama M. Mesalhy, and Mohamed A. Abdelatief. "Flow and heat transfer enhancement in tube heat exchangers." Heat and Mass Transfer 51, no. 11 (August 30, 2015): 1607–30. http://dx.doi.org/10.1007/s00231-015-1669-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

., S. D. Ratnakar. "ENHANCEMENT OF HEAT TRANSFER FROM PLATE FIN HEAT SINKS." International Journal of Research in Engineering and Technology 04, no. 05 (May 25, 2015): 123–26. http://dx.doi.org/10.15623/ijret.2015.0405023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wang, Yufei, Robin Smith, and Jin-Kuk Kim. "Heat exchanger network retrofit optimization involving heat transfer enhancement." Applied Thermal Engineering 43 (October 2012): 7–13. http://dx.doi.org/10.1016/j.applthermaleng.2012.02.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії