Дисертації з теми "Heat of the cooling system"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Heat of the cooling system".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Determan, Matthew Delos. "Thermally activated miniaturized cooling system." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29618.
Повний текст джерелаCommittee Chair: Garimella, Srinivas; Committee Member: Allen, Mark; Committee Member: Fuller, Tom; Committee Member: Jeter, Sheldon; Committee Member: Wepfer, William. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Liu, Shuli. "A novel heat recovery/desiccant cooling system." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/11602/.
Повний текст джерелаSon, Changmin. "Gas turbine impingement cooling system studies." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670200.
Повний текст джерелаLister, Vincent Yves. "Particulate fouling in an industrial cooling system." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708736.
Повний текст джерелаMiller, Mark W. "Heat transfer in a coupled impingement-effusion cooling system." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4807.
Повний текст джерелаID: 030646180; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; .; Thesis (M.S.M.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 171-176).
M.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Thermo-Fluids Track
Glover, Garrett A. "The Next Generation Router System Cooling Design." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/191.
Повний текст джерелаMertzios, Christos. "A solar driven cooling system using innovative ground heat exchangers." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434089.
Повний текст джерелаKiflemariam, Robel. "Heat-Driven Self-Cooling System Based On Thermoelectric Generation Effect." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2281.
Повний текст джерелаNordlander, Erik. "Modelling and Validation of a Truck Cooling System." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-12220.
Повний текст джерелаIn the future, new challenges will occur during the product development in the vehicular industry when emission legislations getting tighter. This will also affect the truck cooling system and therefore increase needs for analysing the system at different levels of the product development. Volvo 3P wishes for these reasons to examine the possibility to use AMESim as a future 1D analysis tool. This tool can be used as a complement to existing analysis methods at Volvo 3P. It should be possible to simulate pressure, flow and heat transfer both steady state and transient.
In this thesis work a cooling system of a FH31 MD13 520hp truck with an engine driven coolant pump is studied. Further a model of the cooling system is built in AMESim together with necessary auxiliary system such as oil circuits. The model is validated using experimental data that have been produced by Volvo 3P at the Gothenburg facility.
The results from validation and other simulations show that the model gives a good picture of the cooling system. It also gives information about pressure, flow and heat transfer in steady state conditions. Further a design modification is done, showing how a change affects the flow in the cooling system.
The conclusion is that a truck cooling system can be built and simulated in AMESim. Further, it shows that AMESim meets the requirements Volvo 3P in Gothenburg has set up for the future 1D analysis tool and thereby AMESim is a good complement to the already existing analysis method.
Chen, Xiangjie. "Investigations of heat powered ejector cooling systems." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/29721/.
Повний текст джерелаRakkimuthu, Sathyaprabha. "Improved Thermoregulation Of Brain Temperature Using Phase Change Material-Mediated Head Cooling System." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613750048541054.
Повний текст джерелаBader, Tobias. "Solar desiccant evaporative cooling with multivalent use of solar thermal heat." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10891.
Повний текст джерелаKendrick, Clint Edward. "Development of model for large-bore engine cooling systems." Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/8721.
Повний текст джерелаDepartment of Mechanical and Nuclear Engineering
Kirby S. Chapman
The purpose of this thesis is to present on the development and results of the cooling system logic tree and model developed as part of the Pipeline Research Council International, Inc (PRCI) funded project at the Kansas State National Gas Machinery Laboratory. PRCI noticed that many of the legacy engines utilized in the natural gas transmission industry were plagued by cooling system problems. As such, a need existed to better understand the heat transfer mechanisms from the combusting gases to the cooling water, and then from the cooling water to the environment. To meet this need, a logic tree was developed to provide guidance on how to balance and identify problems within the cooling system and schedule appropriate maintenance. Utilizing information taken from OEM operating guides, a cooling system model was developed to supplement the logic tree in providing further guidance and understanding of cooling system operation. The cooling system model calculates the heat loads experienced within the engine cooling system, the pressures within the system, and the temperatures exiting the cooling equipment. The cooling system engineering model was developed based upon the fluid dynamics, thermodynamics, and heat transfer experienced by the coolant within the system. The inputs of the model are familiar to the operating companies and include the characteristics of the engine and coolant piping system, coolant chemistry, and engine oil system characteristics. Included in the model are the various components that collectively comprise the engine cooling system, including the water cooling pump, aftercooler, surge tank, fin-fan units, and oil cooler. The results of the Excel-based model were then compared to available field data to determine the validity of the model. The cooling system model was then used to conduct a parametric investigation of various operating conditions including part vs. full load and engine speed, turbocharger performance, and changes in ambient conditions. The results of this parametric investigation are summarized as charts and tables that are presented as part of this thesis.
Artieda, Urrutia Juan. "Desiccant Cooling Analysis : Simulation software, energy, cost and environmentalanalysis of desiccant cooling system." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-6994.
Повний текст джерелаBottau, Francesco. "Design and optimization af a race car cooling system." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Знайти повний текст джерелаSmith, Brandon. "Simulation of Heat/Mass Transfer of a Three-Layer Impingement/Effusion Cooling System." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5509.
Повний текст джерелаM.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Thermofluids
Gdhaidh, Farouq A. S. "Heat Transfer Characteristics of Natural Convection within an Enclosure Using Liquid Cooling System." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/7824.
Повний текст джерелаGdhaidh, Farouq Ali S. "Heat transfer characteristics of natural convection within an enclosure using liquid cooling system." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/7824.
Повний текст джерелаCelik, Serdar. "A study on the acoustics and heat transfer in cooling systems' heat exchangers /." Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1490073501&sid=6&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Повний текст джерела"Department of Mechanical Engineering and Energy Process." Keywords: Heat exchangers, Flow noise, Grooved evaporators, Acoustics, Heat transfer, Cooling systems Includes bibliographical references (p. 131-139). Also available online.
Best, Y. Brown Roberto. "An experimental study of heat driven absorption cooling systems." Thesis, University of Salford, 1990. http://usir.salford.ac.uk/14742/.
Повний текст джерелаNabati, Hamid. "Numerical Analysis of Heat Transfer and Fluid Flow in Heat Exchangers with Emphasis on Pin Fin Technology." Doctoral thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-14409.
Повний текст джерелаTerblanche, Johann Pierre. "Design and performance evaluation of a HYDROSOL space heating and cooling system." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97095.
Повний текст джерелаENGLISH ABSTRACT: Space heating and cooling, as required for chicken poultry farming, is an energy intensive operation. Due to the continuous rise in the prices of fossil fuel, water and electricity, there is a need to develop renewable and sustainable energy systems that minimise the use of fuel or electricity, for heating, and water, for cooling of air. The HYDROSOL (HYDro ROck SOLar) system, developed at Stellenbosch University, is such a renewable energy system that potentially provides a low cost solution. Instead of using conventional gas and electricity heaters for the heating of air during winter, the HYDROSOL system collects solar heat, stores it in a packed bed of rocks and dispatches the heat as required. During hot summer days, when cooling is needed, the rocks are cooled during the night when the ambient temperatures are low and/ or by evaporative cooling by spraying water onto them. During the day, hot air is then cooled when it passes through the colder rocks with minimal water consumption compared to current systems. In this thesis, a prototype of the HYDROSOL system is presented, designed and built for experimental testing. A transient 2-D thermo flow model is developed and presented for the analytical and experimental performance evaluation of this system for solar heating and night air cooling operation. This model is used to conduct a parametric study on HYDROSOL to gain a better understanding of the operation and control of the system. The HYDROSOL concept is intended to be used for heating and cooling of residential buildings, office suites, warehouses, shopping centres, food processing industries e.g. drying of foods, and various agricultural industries e.g. greenhouses. In this thesis, a HYDROSOL system is developed mainly for poultry broiler houses in South Africa focussing on convective dry cooling, charging the rock bed with night-time ambient air, and convective heating, harvesting solar heat during the day, with different modes of operation available.
AFRIKAANSE OPSOMMING: Ruimte verhitting en verkoeling, soos benodig vir hoender pluimvee boerdery, is ‘n energie intensiewe bedryf. As gevolg van die voortdurende styging in fossiel brandstof-, water- en elektrisiteitpryse, het ‘n behoefte ontstaan om hernubare en volhoubare energie-stelsels te ontwikkel wat minder brandstof of elektrisiteit, vir verhitting, en water, vir verkoeling van lug, gebruik. Die HYDROSOL (HYDro ROck SOLar) stelsel, wat ontwikkel is by die Universiteit van Stellenbosch, is ‘n hernubare energie-stelsel wat ‘n potensiële lae koste oplossing bied. In plaas daarvan om konvensionele gas en elektrisiteit verwarmers vir verhitting van lug gedurende die winter te gebruik, maak HYDROSOL gebruik van son warmte, stoor dit in `n gepakte bed van klip en onttrek die warmte soos benodig. Gedurende die warm somer dae wanneer verkoeling benodig word, word die klippe gedurende die nag, met kouer omgewings lug en/of met verdampingsverkoeling, deur water op die klippe te spuit, afgekoel. Gedurende die dag word warm lug afgekoel deur die lug oor die koue klippe te forseer met minimale waterverbruik in vergelyking met huidige stelsels. ‘n Prototipe van die HYDROSOL word voorgestel, ontwerp en gebou vir eksperimentele doeleindes. ‘n 2-D tyd afhanklike termo- vloei model word voorgestel vir die analitiese en eksperimentele verrigting evaluering vir son verhitting en nag lug verkoeling. Hierdie model word gebruik om ‘n parametriese studie te doen om die werking en beheer van HYDROSOL beter te verstaan. Die HYDROSOL stelsel is bedoel om die verwarming en verkoeling vereistes van residensiële geboue, kantoor areas, pakhuise, winkelsentrums, voedsel verwerking nywerhede, soos bv. die droging van voedsel, en verskeie landboubedrywe, soos bv. kweekhuise, te bevredig. In hierdie tesis word ‘n HYDROSOL stelsel, hoofsaaklik vir pluimvee kuikenhuise in Suid- Afrika, ondersoek en fokus op die droë verkoeling, deur die rotsbed te laai gedurende die nag, asook droë- verhitting, wat gebruik maak van son energie gedurende die dag en kan beheer word op verskillende maniere.
Wei, Hong-Chan. "Reactor cavity cooling system heat removal analysis for a high temperature gas cooled reactor." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024427.
Повний текст джерелаWong, Kin-chuen, and 黃健全. "Optimization of building cooling system based on genetic algorithms and thermal energy storage." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B45701416.
Повний текст джерелаGillespie, David R. H. "Intricate internal cooling systems for gas turbine blading." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365831.
Повний текст джерелаHasler, Fred L. "Trends in "Green" Design - making ground source heat pumps the system of choice." Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/739.
Повний текст джерелаAdegoke, C. O. "Evaluation of a refrigerant/absorbent combination for vapour absorption refrigeration systems utilising solar heat." Thesis, King's College London (University of London), 1987. https://kclpure.kcl.ac.uk/portal/en/theses/evaluation-of-a-refrigerantabsorbent-combination-for-vapour-absorption-refrigeration-systems-utilising-solar-heat(5c32f1a2-b5f9-41ba-b671-0bbb4fbcf578).html.
Повний текст джерелаLu, Qiuping. "Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for FHRs." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462544389.
Повний текст джерелаCharalambous, Constantinos. "An investigation of an adsorption cogeneration system for power and cooling using low grade heat." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2891.
Повний текст джерелаRussell, Griffith B. "Local-and system-level thermal management of a single level integrated module (SLIM) using synthetic jet actuators." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/18908.
Повний текст джерелаDello, Sbarba Hugo. "Heat Recovery Systems in Underground Mine Ventilation Systems and Novel Mine Cooling Systems." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28862/28862.pdf.
Повний текст джерелаUnderground mining in cold regions of the world requires heating of surface buildings and intake fresh air. Exhaust return air is usually discharged to the atmosphere at much higher temperatures than the ambient air. A computer software application has been developed in order to evaluate the feasibility of recovering heat from return exhaust air. The software approximates the amount of heat that can be recovered on surface from the exhaust ventilation shaft of an underground mine. It will then determine the annual energy cost savings and a capital cost of the system. This software considers a closed-loop glycol circuit with tube and fins heat exchangers located at the extremity of the exhaust and intake shaft surface installations. Different concepts of the heat recovery system are as well described. Most common heat sources that can be found on mine sites are listed. Several innovative designs that exploit cold winter weather as an asset to cool mine intake air are explained. Key words: heat sources, return air, heat recovery, feasibility, heating, cooling
Lee, Hoki. "Experimental and numerical study of evaporating flow heat transfer in micro-channel." Pullman, Wash. : Washington State University, 2008. http://www.dissertations.wsu.edu/Dissertations/Fall2008/h_lee_112408.pdf.
Повний текст джерелаTitle from PDF title page (viewed on July 10, 2009). "School of Mechanical and Materials Engineering." Includes bibliographical references (p. 176-187).
Ong, C.-L. "Computation of fluid flow and heat transfer in rotating disc-systems." Thesis, University of Sussex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233697.
Повний текст джерелаOrtiz, de Janon Xavier Alejandro. "A Comprehensive Analysis of Novel Dairy Cooling Systems, Their Cooling Efficiency and Impact on Lactating Dairy Cow Physiology and Performance." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/604863.
Повний текст джерелаTheunissen, Ruhan. "Investigation of a radiative cooling system with natural circulation for regulating a heat sink / Theunissen R." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7593.
Повний текст джерелаThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012.
Verwey, Aldo. "Modelling of a passive reactor cavity cooling system (RCCS) for a nuclear reactor core subject to environmental changes and the optimisation of the RCCS radiation heat shield heat shield." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4303.
Повний текст джерелаENGLISH ABSTRACT: A reactor cavity cooling system (RCCS) is used in the PBMR to protect the concrete citadel surrounding the reactor from direct nuclear radiation impingement and heat. The speci ed maximum operating temperature of the concrete structure is 65 ±C for normal operating conditions and 125 ±C for emergency shut-down conditions. A conceptual design of an entirely passive RCCS suitable for the PBMR was done by using closed loop thermosyphon heat pipes (CLTHPs) to remove heat from a radiation heat shield over a horizontal distance to an annular cooling dam placed around the PBMR. The radiation shield is placed in the air space between the Reactor Pressure Vessel (RPV) and the concrete citadel, 180 mm from the concrete citadel. A theoretical heat transfer model of the RCCS was created. The theoretical model was used to develop a computer program to simulate the transient RCCS response during normal reactor operation, when the RCCS must remove the excess generated heat from the reactor cavity and during emergency shut-down conditions, when the RCCS must remove the decay heat from the reactor cavity. The main purpose of the theoretical model is to predict the surface temperature of the concrete citadel for di erent heat generation modes in the reactor core and ambient conditions. The theoretical model assumes a 1D geometry of the RCCS. Heat transfer by both radiation and convection from the RPV to the radiation heat shield (HS) is calculated. The heat shield is modelled as a n. The n e ciency was determined with the experimental work. Conduction through the n is considered in the horizontal direction only. The concrete structure surface is heated by radiation from the outer surface of the heat shield as well as by convection heat transfer from the air between the heat shield and the concrete structure surface. The modelling of the natural convection closed loop thermosyphon heat pipes in the RCCS is done by using the Boussinesq approximation and the homogeneous ow model. An experiment was built to verify the theoretical model. The experiment is a full scale model of the PBMR in the horizontal, or main heat transfer, direction, but is only a 2 m high section. The experiments showed that the convection heat transfer between the RPV and the HS cannot be modelled with simple natural convection theory. A Nusselt number correlation developed especially for natural convection in enclosed rectangles found in literature was used to model the convection heat transfer. The Nusselt number was approximately 3 times higher than that which classic convection theory suggested. An optimisation procedure was developed where 121 di erent combinations of n sizes and heat pipe sizes could be used to construct a RCCS once a cooling dam size was chosen. The purpose of the optimisation was to nd the RCCS with the lowest total mass. A cooling dam with a diameter of 50 m was chosen. The optimal RCCS radiation heat shield that operates with the working uid only in single phase has 243 closed loop thermosyphon heat pipes constructed from 62.72 mm ID pipes and 25 mm wide atbar ns. The total mass of the single phase RCCS is 225 tons. The maximum concrete structure temperature is 62.5 ±C under normal operating conditions, 65.8 ±C during a PLOFC emergency shut-down condition and 80.9 ±C during a DLOFC emergency shut-down condition. In the case where one CLTHP fails and the adjacent two must compensate for the loss of cooling capacity, the maximum concrete structure temperature for a DLOFC emergency shut-down will be 87.4 ±C. This is 37.6 ±C below the speci ed maximum temperature of 125 ±C. The RCCS design is further improved when boiling of the working uid is induced in the CLTHP. The optimal RCCS radiation heat shield that operates with the working uid in a liquid-vapour mixture, or two phase ow, has 338 closed loop thermosyphon heat pipes constructed from 38.1 mm ID pipes and 20 mm wide atbar ns. The total mass of the two phase RCCS is 198 tons, 27 tons less than the single phase RCCS. The maximum concrete structure temperature is 60 ±C under normal operating conditions, 2.5 ±C below that of the single phase RCCS. During a PLOFC emergency shut-down condition, the maximum concrete structure temperature is 62.3 ±C, 3.5 ±C below that of the single phase RCCS and still below the normal operating temperature of the single phase RCCS. By inducing two phase ow in the CLTHP, the maximum temperature of the working uid is xed equal to the saturation temperature of the working uid at the vacuum pressure. This property of water is used to limit the concrete structure temperature. This e ect is seen in the transient response of the RCCS where the concrete structure temperature increases until boiling of the working uid starts and then the concrete structure temperature becomes constant irrespective of the heat load on the RCCS. An increased heat load increases the quality of the working uid liquid-vapour mixture. Working uid qualities approaching unity causes numerical instabilities in the theoretical model. The theoretical model cannot capture the heat transfer to a control volume with a density lower than approximately 20 kg/m3. This limits the extent to which the two phase RCCS can be optimised. Recommendations are made relating to future work on how to improve the theoretical model in particular the convection modelling in the reactor cavities as well as the two phase ow of the working uid. Further recommendations are made on how to improve the basic design of the heat shield as well as the cooling section of the CLTHPs.
AFRIKAANSE OPSOMMING: 'n Reaktor lug spasie verkoelingstelsel (RLSVS) word in die PBMR gebruik om die beton wat die reaktor omring te beskerm teen direkte stralingskade en hitte. Die gespesi seerde maksimum temperatuur van die beton is 65 ±C onder normale bedryfstoestande en 125 ±C gedurende die noodtoestand afskakeling van die reaktor. 'n Konseptuele ontwerp van 'n geheel en al passiewe RLSVS geskik vir die PBMR is gedoen deur gebruik te maak van geslote lus termo-sifon (GLTSe) om hitte van die stralingskerm te verwyder oor a horisontale afstand na 'n ringvormige verkoelingsdam wat rondom die reaktor geposisioneer is. Die stralingskerm word in die lug spasie tussen die reaktor drukvat (RDV) en die beton geplaas, 180 mm vanaf die beton. 'n Teoretiese hitteoordrag model van die RLSVS was geskep. Die teoretiese model was gebruik vir die ontwikkeling van 'n rekenaar program wat die transiënte gedrag van die RLSVS sal simuleer gedurende normale bedryfstoestande, waar die oorskot gegenereerde hitte verwyder moet word vanuit die reaktor lug spasie, asook gedurende noodtoestand afskakeling van die reaktor, waar die afnemingshitte verwyder moet word. Die primêre doel van die teoretiese model is om the oppervlak temperatuur van die beton te voorspel onder verskillende bedryfstoestande asook verskillende omgewingstoestande. Die teoretiese model aanvaar 'n 1D geometrie van die RLSVS. Hitte oordrag d.m.v. straling asook konveksie vanaf die RDV na die stralingskerm word bereken. The stralingskerm word gemodelleer as 'n vin. Die vin doeltre endheid was bepaal met die eksperimente wat gedoen was. Hitte geleiding in die vin was slegs bereken in die horisontale rigting. Die beton word verhit deur straling vanaf die agterkant van die stralingskerm asook deur konveksie vanaf die lug tussen die stralingskerm en die beton. The modellering van die natuurlike konveksie GLTS hitte pype word gedoen deur om gebruik te maak van die Boussinesq benadering en die homogene vloei model. 'n Eksperiment was vervaardig om the teoretiese model te veri eer. Die eksperiment is 'n volskaal model van die PBMR in die horisontale, of hoof hitteoordrag, rigting, maar is net 'n 2 m hoë snit. Die eksperimente het gewys dat die konveksie hitte oordrag tussen die RDV en die stralingskerm nie met gewone konveksie teorie gemodelleer kan word nie. 'n Nusselt getal uitdrukking wat spesi ek ontwikkel is vir natuurlike konveksie in geslote, reghoekige luggapings wat in die literatuur gevind was, was gebruik om die konveksie hitteoordrag te modelleer. Die Nusselt getal was ongeveer 3 maal groter as wat klassieke konveksie teorie voorspel het. 'n Optimeringsprosedure was ontwikkel waar 121 verskillende kombinasies van vin breedtes en pyp groottes wat gebruik kan word om 'n RLSVS te vervaardig nadat 'n toepaslike verkoelingsdam diameter gekies is. Die doel van die optimering was om die RLSVS te ontwerp wat die laagste totale massa het. 'n Verkoelingsdam diameter van 50 m was gekies. Die optimale RLSVS stralingskerm, waarvan die vloeier slegs in die vloeistof fase bly, bestaan uit 243 GLTSe wat van 62.72 mm binne diameter pype vervaardig is met 25 mm breë vinne. The totale massa van die enkel fase RLSVS is 225 ton. Die maksimum beton temperatuur is 62.5 ±C vir normale bedryfstoestande, 65.8 ±C vir 'n PLOFC noodtoestand afskakeling en is 80.9 ±C vir 'n DLOFC noodtoestand afskakeling. In die geval waar een GLTS faal gedurende 'n DLOFC noodtoestand afskakeling en die twee naasgeleë GLTSe moet kompenseer vir die vermindering in verkoelings kapasiteit, is die maksimum beton temperatuur 87.4 ±C. Dit is 37.6 ±C laer as die gespesi seerde maksimum temperatuur van 125 ±C. Die RLSVS ontwerp kan verder verbeter word wanneer die vloeier in die GLTSe kook. Die optimale RLSVS stralingskerm met die vloeier wat kook, of in twee fase vloei is, bestaan uit 338 GLTSe wat van 38.1 mm binne diameter pype vervaardig is met 20 mm breë vinne. The totale massa van die twee fase vloei RLSVS is 198 ton, 27 ton ligter as die enkel fase RLSVS. Die maksimum beton temperatuur is 60 ±C vir normale bedryfstoestande, 2.5 ±C laer as die enkel fase RLSVS. Gedurende 'n PLOFC noodtoestand afskakeling is die maksimum beton temperatuur 62.3 ±C, 3.5 ±C laer as die enkel fase RLSVS en nogtans onder die maksimum beton temperatuur van die enkel fase RLSVS vir normale bedryfstoestande. Deur om koking te veroorsaak in die GLTS word die maksimum temperatuur van die vloeier vasgepen gelyk aan die versadigings temperatuur van die vloeier by die vakuüm druk. Hierdie einskap van water word gebruik om 'n limiet te sit op die maksimum temperatuur van die beton. Hierdie e ek kan gesien word in die transiënte gedrag van die RLSVS waar die beton temperatuur styg tot en met koking plaasvind en dan konstant raak ongeag van die hitte belasting op die RLSVS. 'n Toename in die hitte belasting veroorsaak net 'n toename in die kwaliteit van die vloeistof-gas mengsel. Mengsel kwaliteite van 1 nader veroorsaak numeriese onstabiliteite in die teoretiese model. The teoretiese model kan nie die hitteoordrag beskryf na 'n kontrole volume wat 'n digtheid het laer as ongeveer 20 kg/m3. Hierdie plaas 'n limiet op die optimering van die twee fase RLSVS. Aanbevelings was gemaak met betrekking tot toekomstige werk aangaande die verbetering van die teoretiese model met spesi eke klem op die modellering van konveksie in die reaktor asook die modellering van twee fase vloei. Verdere aanbevelings was gemaak aangaande die verbetering van die stralingskerm ontwerp asook die ontwerp van die verkoeling van die GLTSe.
Ismail, Basel Ismail A. "The heat transfer and the soot deposition characteristics in diesel engine exhaust gas recirculation system cooling devices /." *McMaster only, 2004.
Знайти повний текст джерелаLomrén, Erik. "Utvärdering av en sjö- och borrhålsbaserad värmepumpsanläggning i Stockholm." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24548.
Повний текст джерелаRojano, Aguilar Fernando. "Computational Modeling to Reduce Impact of Heat Stress in Lactating Cows." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/272838.
Повний текст джерелаMuhonen, Juha. "Cooling and heat transport in low dimensional phonon systems, superconductors and silicon." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/50221/.
Повний текст джерелаElsayed, Ahmed Mohamed. "Heat transfer in helically coiled small diameter tubes for miniature cooling systems." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/2907/.
Повний текст джерелаJImenez, Lopez Carlos. "Performance analysis and validation of high-temperature cooling panels in passive geothermal system." Thesis, KTH, Hållbara byggnader, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247915.
Повний текст джерелаHarikumar, Warrier Pramod Kumar Warrier. "Design and evaluation of heat transfer fluids for direct immersion cooling of electronic systems." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44871.
Повний текст джерелаKakade, Vinod. "Fluid Dynamic and Heat Transfer Measurements in Gas Turbine Pre-Swirl Cooling Systems." Thesis, University of Bath, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503370.
Повний текст джерелаBjörk, Erik. "Energy Efficiency Improvements in Household Refrigeration Cooling Systems." Doctoral thesis, KTH, Tillämpad termodynamik och kylteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93061.
Повний текст джерелаQC 20120411
Saulich, Sven. "Generic design and investigation of solar cooling systems." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13627.
Повний текст джерелаAmeli, Masoud. "Theoretical and practical studies to develop a heat pipe based cooling system for a high power projector lamp." Thesis, University of Newcastle upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505836.
Повний текст джерелаBinMahfouz, Abdullah S. "Process integration techniques for optimizing seawater cooling sytems and biocide discharge." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4893.
Повний текст джерелаBrakmann, Robin G. [Verfasser]. "Increasing Heat Transfer in Convective Cooling Systems with Optimized Surface Structures / Robin G. Brakmann." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149580003/34.
Повний текст джерелаBrakmann, Robin [Verfasser]. "Increasing Heat Transfer in Convective Cooling Systems with Optimized Surface Structures / Robin G. Brakmann." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149580003/34.
Повний текст джерела