Дисертації з теми "Harmonic analysis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Harmonic analysis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Wright, P. S. "The accurate analysis of smoothly fluctuating harmonics applied to the calibration of harmonic analysers." Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/843265/.
Повний текст джерелаScurry, James. "One and two weight theory in harmonic analysis." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47565.
Повний текст джерелаLak, Rashad Rashid Haji. "Harmonic analysis using methods of nonstandard analysis." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5754/.
Повний текст джерелаVan, der Merwe Marius. "Harmonic mixer analysis and design." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52872.
Повний текст джерелаSome digitised pages may appear illegible due to the condition of the original hard copy.
ENGLISH ABSTRACT: Harmonic mixers are capable of extended frequency operation by mixing with a harmonic of the LO (local oscillator) signal, eliminating the need for a high frequency, high power LO. Their output spectra also have certain characteristics that make them ideal for a variety of applications. The operation of the harmonic mixer is investigated, and the mixer is analyzed using an extension of the classic mixer theory. The synthesis of harmonic mixers is also investigated, and a design procedure is proposed for the design and realization of a variety of harmonic mixers. This design procedure is evaluated with the design and realization of two harmonic mixers, one in X-band and the other in S-band. Measurements suggest that the procedure is successful for the specific applications.
AFRIKAANSE OPSOMMING: Harmoniese mengers kan by hoer frekwensies gebruik word as gewone mengers deurdat hulle gebruik maak van ‘n harmoniek van die LO. ‘n Hoe-frekwensie, hoe-drywing LO word dus nie benodig nie. Die mengers se uittreespektra het ook ‘n aantal karakteristieke wat hulle goeie kandidate maak vir ‘n verskeidenheid van toepassings. Die werking van die harmoniese menger word ondersoek deur uit te brei op die klassieke menger-teorie. Die ontwerp van die harmoniese menger word vervolgens ondersoek, waama ‘n ontwerpsprosedure voorgestel word vir die ontwerp van ‘n verskeidenheid van harmoniese mengers. Hierdie prosedure word getoets met die ontwerp en realisering van twee harmoniese mengers, een in X-band en die ander in S-band. Vanuit die metings is dit duidelik dat die ontwerpsprosedure geslaagd is vir die spesifieke geval.
Li, Jialun. "Harmonic analysis of stationary measures." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0311/document.
Повний текст джерелаLet μ be a Borel probability measure on SL m+1 (R), whose support generates a Zariski dense subgroup. Let V be a finite dimensional irreducible linear representation of SL m+1 (R). A theorem of Furstenberg says that there exists a unique μ-stationary probability measure on PV and we are interested in the Fourier decay of the stationary measure. The main result of the thesis is that the Fourier transform of the stationary measure has a power decay. From this result, we obtain a spectral gap of the transfer operator, whose properties allow us to establish an exponential error term for the renewal theorem in the context of products of random matrices. A key technical ingredient for the proof is a Fourier decay of multiplicative convolutions of measures on R n , which is a generalisation of Bourgain’s theorem on dimension 1. We establish this result by using a sum-product estimate due to He-de Saxcé. In the last part, we generalize a result of Lax-Phillips and a result of Hamenstädt on the finiteness of small eigenvalues of the Laplace operator on geometrically finite hyperbolic manifolds
Thunberg, Erik. "On the Benefit of Harmonic Measurements in Power Systems." Doctoral thesis, Stockholm, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3219.
Повний текст джерелаSmith, Zachary J. "The Bochner Identity in Harmonic Analysis." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/SmithZJ2007.pdf.
Повний текст джерелаChung, Kin Hoong School of Mathematics UNSW. "Compact Group Actions and Harmonic Analysis." Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17639.
Повний текст джерелаDigby, G. "Harmonic analysis of A.C. traction schemes." Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233938.
Повний текст джерелаXu, Zengfu. "Harmonic analysis on Chébli-Trimèche hypergroups." Thesis, Xu, Zengfu (1994) Harmonic analysis on Chébli-Trimèche hypergroups. PhD thesis, Murdoch University, 1994. https://researchrepository.murdoch.edu.au/id/eprint/51538/.
Повний текст джерелаLai, Tsz-ming Terence. "Harmonic simulation of traction system /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21929543.
Повний текст джерелаLidberg, Petter. "Barycentric and harmonic coordinates." Thesis, Uppsala universitet, Algebra och geometri, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179487.
Повний текст джерелаRenz, Adrian Daniel. "A Comparison Of Harmonic And Holomorphic Functions." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48865.
Повний текст джерелаHickman, Jonathan Edward. "Topics in affine and discrete harmonic analysis." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10559.
Повний текст джерелаSalahifar, Raydin. "Analysis of Pipeline Systems Under Harmonic Forces." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19820.
Повний текст джерелаBayan, Nima. "Harmonic flow analysis in power distribution networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0011/MQ52509.pdf.
Повний текст джерелаUppalapati, Sunitha. "Development of Application Program for Harmonic Analysis." MSSTATE, 2002. http://sun.library.msstate.edu/ETD-db/theses/available/etd-11072002-153105/.
Повний текст джерелаDatta, Somantika. "Wiener's generalized harmonic analysis and waveform design." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6701.
Повний текст джерелаThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Li, Qifan. "Two results in Harmonic analysis and PDEs." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-24801.
Повний текст джерелаStones, Brendan. "Aspects of harmonic analysis over finite fields." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/14492.
Повний текст джерелаBell, James Joseph. "Input harmonic and mixing behavioural model analysis." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/64151/.
Повний текст джерелаOliver, Douglas L. "Analysis of a Pseudo-Harmonic Tubular Bell." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo149980725594691.
Повний текст джерелаGidelew, Getnet Abebe. "Topics in Harmonic Analysis on Combinatorial Graphs." Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/262601.
Повний текст джерелаPh.D.
In recent years harmonic analysis on combinatorial graphs has attracted considerable attention. The interest is stimulated in part by multiple existing and potential applications of analysis on graphs to information theory, signal analysis, image processing, computer sciences, learning theory, and astronomy. My thesis is devoted to sampling, interpolation, approximation, and multi-resolution on graphs. The results in the existing literature concern mainly with these theories on unweighted graphs. My main objective is to extend existing theories and obtain new results about sampling, interpolation, approximation, and multi-resolution on general combinatorial graphs such as directed, undirected and weighted.
Temple University--Theses
Harris, Stephen Elliott Ian. "Restriction and isoperimetric inequalities in harmonic analysis." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14168.
Повний текст джерелаGautam, Sushrut Zubin Sulaksh. "Two geometric obstruction results in harmonic analysis." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1872162601&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаGoh, K. M. "Harmonic analysis of power systems containing multiple convertors." Thesis, Staffordshire University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382488.
Повний текст джерелаMattsson, Tobias. "Abstract Harmonic Analysis on Locally Compact Abelian Groups." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-354740.
Повний текст джерелаCavina, Michelangelo. "Bellman functions and their method in harmonic analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19214/.
Повний текст джерелаWang, Simeng. "Some problems in harmonic analysis on quantum groups." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2062/document.
Повний текст джерелаThis thesis studies some problems in the theory of harmonic analysis on compact quantum groups. It consists of three parts. The first part presents some elementary Lp theory of Fourier transforms, convolutions and multipliers on compact quantum groups, including the Hausdorff-Young theory and Young’s inequalities. In the second part, we characterize positive convolution operators on a finite quantum group G which are Lp-improving, and also give some constructions on infinite compact quantum groups. The methods for ondegeneratestates yield a general formula for computing idempotent states associated to Hopf images, which generalizes earlier work of Banica, Franz and Skalski. The third part is devoted to the study of Sidon sets, _(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, _(p)-sets and lacunarities for Lp-Fourier multipliers, generalizing a previous work by Blendek and Michali˘cek. We also prove the existence of _(p)-sets for orthogonal systems in noncommutative Lp-spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included. The thesis is principally based on two works by the author, entitled “Lp-improvingconvolution operators on finite quantum groups” and “Lacunary Fourier series for compact quantum groups”, which have been accepted for publication in Indiana University Mathematics Journal and Communications in Mathematical Physics respectively
Granroth-Wilding, Mark Thomas. "Harmonic analysis of music using combinatory categorial grammar." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8019.
Повний текст джерелаBärlund, Johnny. "Numerical Investigation on Spherical Harmonic Synthesis and Analysis." Thesis, KTH, Geodesi och satellitpositionering, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171779.
Повний текст джерелаZhou, Jun. "Harmonic Analysis of Linea Continuous-Time Periodic Systems." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/77905.
Повний текст джерелаRussell, Michael L. "The Phenomenology of Harmonic Progression." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703408/.
Повний текст джерелаSALOGNI, FRANCESCA. "Harmonic Bergman spaces, Hardy-type spaces and harmonic analysis of a symmetric diffusion semigroup on R^n." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41814.
Повний текст джерелаLai, Tsz-ming Terence, and 黎子明. "Harmonic simulation of traction system." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B3122281X.
Повний текст джерелаManna, Utpal. "Harmonic and stochastic analysis aspects of the fluid dynamics equations." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1414120661&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Повний текст джерелаAbat, Diren. "Harmonic Vibration Analysis Of Large Structures With Local Nonlinearity." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610475/index.pdf.
Повний текст джерелаs technology, reliability and performance requirements on components of various mechanical systems, which tend to be much lighter and work under much more severe working conditions, dramatically increased. In general, analysis techniques based on simplified model of structural components with linearity assumption may provide time saving for solutions with reasonable accuracy. However, since most engineering structures are often very complex and intrinsically nonlinear, in some cases they may behave in a different manner which cannot be fully described by linear mathematical models, or linear treatments may not be applicable at all. In fact, some studies revealed that deviations in the modal properties of dynamic structures gathered from measured data are due to nonlinearities in the structure. Hence, in problems where accuracy is the primary concern, taking the nonlinear effects into account becomes inevitable. In this thesis, it is aimed to analyze the harmonic response characteristics of multi degree of freedom nonlinear structures having different type of nonlinearities. The amplitude dependencies of nonlinearities are modelled by using describing function method. To increase the accuracy of the results, effect of the higher order harmonic terms will be considered by using multi harmonic describing function theory. Mathematical formulations are embedded in a computer program developed in MATLAB®
with graphical user interface. The program gets the system matricies from the file which is obtained by using substructuring analysis in ANSYS®
, and nonlinearities in the system can easily be defined through the graphical user interface of the MATLAB®
program.
Christoforidis, George P. "Harmonic analysis of power systems connected to converter substations." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/14994.
Повний текст джерелаWoodington, Simon Philip. "Behavioural model analysis of active harmonic load-pull measurements." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/13000/.
Повний текст джерелаGu, Xinyi. "Harmonic analysis in power network with renewable power generator." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=28655.
Повний текст джерелаTaylor, Brian John Sidney. "Aspects of anisotropic harmonic analysis beyond Calderón-Zygmund Theory." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7855/.
Повний текст джерелаHeyns, Gideon Christiaan. "Analysis of harmonic field effects in reluctance synchronous machines." Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/2201.
Повний текст джерелаThe reluctance synchronous machine (RSM) is a type of synchronous machine which has no windings in the rotor and can be referred to as a non-excited synchronous machine. The RSM can be classified as either single or double salient machine. The single salient machine refers to saliency in the rotor only and double saliency refers to saliency in the rotor and stator. The RSM is based on the principle of reluctance, were torque is produced due to different reluctance paths within the rotor of the machine. The term reluctance is referred to the resistance of a material towards the flow of magnetic field. Since the invention of vector controlled drives, RSMs regained the popularity of researchers and are becoming a field of interest. The RSM have numerous advantages, besides being cheap, robust, and reliable, the stator part is exactly the same as an induction machine. This will enable easy and cost efficient upgrades. Furthermore due to the non existing rotor currents heat dissipation will be low. However the RSM has an inherently high torque ripple due to its rotor geometry. The torque ripple is defined as the difference between maximum and minimum deviation of the torque referred to the average torque. The torque ripple creates uneven pull on the rotor which creates deformation of the rotor and consequently uneven run. As a result the torque ripple indicates that the speed of the RSM changes permanently. The machines designers ultimate goal would be to design a machine with the lowest torque ripple combined with a maximum average torque. The aim of this thesis is to provide a detailed analysis on the field quantities and its harmonics of a RSM and to examine the effects which these harmonics have on the torque production. This analysis would give designers a better understanding of the principles of RSMs and help to obtain certain performance results. The research design and methodology will include the harmonic content of the flux density components in the center of the air gap. The flux density components will be analysed in terms of its harmonics and the torque produced by these flux density harmonics will also be investigated.
Li, Kuo-tung. "Convergence problems arising from harmonic analysis and ergodic theory /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487853913100673.
Повний текст джерелаResende, Jose Wilson. "Interaction between controlled reactors and converters : a harmonic analysis." Thesis, University of Aberdeen, 1986. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU367868.
Повний текст джерелаMaitra, Arindam. "A generic approach to network modeling for harmonic analysis." Diss., Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-03272002-133910.
Повний текст джерелаGray, Philippe. "Harmonic Models of Common Converter Topologies for Accurate Harmonic Analysis of Distribution Systems." Thesis, 2013. http://hdl.handle.net/1807/42850.
Повний текст джерелаLI, RONG-GIAN, and 李榮乾. "Harmonic power flow analysis and the methods of suppressing harmonics." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/16562086664944752849.
Повний текст джерела林士煜. "Power system harmonic analysis." Thesis, 1991. http://ndltd.ncl.edu.tw/handle/80403314004726205987.
Повний текст джерелаShu-Kuang, Chang, and 張曙光. "Harmonic Analysis on Torus." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/80166029721337847613.
Повний текст джерела東吳大學
數學系研究所
86
The polar coordinate on the plane generalizes to spherical coordinate in 3-dimensional Euclidean space. However, it has many other generalizations other than the spherial. For instance, the cylindrical coordinate is the direct product of it with the z-axis. The name of such coordinate comes from its decomposition of the whole space into cylinders. Just like the spherical into spheres. It is known that the space can be also decomposed into tori of various sizes. So there is the toroidal coordinate corresponding to the tori. In this paper, we introduce the toroidal coordinate in space and attempt to find application in harmonic analysis on the torus. In spherical coordinate, the harmonic homogenous polynomials restrict to spherical harmonics. The same theory doesn't apply successfully in our case. Because the radial doesn't decouple with the angular factors. Still,we can apply such coordinate to estimate the first nonzero eigenvalue of the Laplace operator on the torus.
Ghandehari, Mahya. "Harmonic analysis of Rajchman algebras." Thesis, 2010. http://hdl.handle.net/10012/5436.
Повний текст джерела