Добірка наукової літератури з теми "Hard Electron Energy Spectrum"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hard Electron Energy Spectrum".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hard Electron Energy Spectrum"

1

Rich, David, Diling Zhu, James Turner, Dehong Zhang, Bruce Hill, and Yiping Feng. "The LCLS variable-energy hard X-ray single-shot spectrometer." Journal of Synchrotron Radiation 23, no. 1 (January 1, 2016): 3–9. http://dx.doi.org/10.1107/s1600577515022559.

Повний текст джерела
Анотація:
The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10−5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Чариков, Ю. Е., та А. Н. Шабалин. "Моделирование коронального источника жесткого рентгеновского излучения в турбулентной плазме солнечных вспышек". Журнал технической физики 91, № 8 (2021): 1204. http://dx.doi.org/10.21883/jtf.2021.08.51092.20-21.

Повний текст джерела
Анотація:
The kinetics of electron beams accelerated in the collisional plasma of solar (stellar) flares is considered, taking into account the stationary ion-acoustic mode localized at the magnetic looptop and magnetic fluctuations. The astrophysical aspect of the propagation process is related to the interpretation of hard X-rays in the plasma of flare loops. It is shown that when the plasma density in the coronal part of the solar flare loops does not exceed 1010 cm-3, taking into account the additional scattering on the ion-acoustic mode with the ratio of the turbulence energy density to the thermal energy of the plasma ~5 * 10-5-10-3 and magnetic fluctuations with a level of 5·10-2 does not lead to the appearance of a bright hard X-ray source in the coronal part of the loop in the model with the isotropic pitch-angle distribution of accelerated electrons. In the anisotropic case with a hard electron energy spectrum, the coronal hard X-ray source, in the presence of ion-acoustic turbulence, can exist for a short time after the beginning of turbulence generation. And only in the case of a soft energy spectrum of accelerated electrons (power spectrum index >5) and a relatively high plasma density at the magnetic looptop >1010 cm-3, a bright coronal hard X-ray source is generated at energies of 25-50 keV, regardless of the pitch-angular distribution of accelerated electrons at the moment of injection. A significant effect of turbulence on the distribution of the linear degree of hard X-ray polarization along the loop is shown, leading to a decrease in the extreme values in the coronal part by 5-35%. The integral values of the hard X-ray polarization do not exceed 10%.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Babayev, Arif, Sukru Cakmaktepe, and Deniz Turkoz. "The Energy Spectrum of Carriers between Two Concentric Spheres of Kane-Type Semiconductors." Journal of Nanomaterials 2006 (2006): 1–3. http://dx.doi.org/10.1155/jnm/2006/57519.

Повний текст джерела
Анотація:
The electronic states of carriers between two concentric spheres of Kane-type semiconductor are theoretically investigated and compared with the results of the parabolic band approximation. Calculations are performed for a hard-wall confinement potential and the eigenstates and the eigenvalues of the Kane Hamiltonian are obtained. Taking into account the real band structure (strong spin-orbital interaction, narrow band gap), the size dependence of the energy of electrons, light holes, and spin-orbital splitting holes in InSb semiconductor concentric spheres are calculated. According to the obtained results both in parabolic and nonparabolic (Kane model) cases, the electron energy levels come close to each other with the increasing of the radius.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sahakyan, N. "Investigation of the γ-ray spectrum of CTA 102 during the exceptional flaring state in 2016–2017". Astronomy & Astrophysics 635 (березень 2020): A25. http://dx.doi.org/10.1051/0004-6361/201936715.

Повний текст джерела
Анотація:
The flat spectrum radio quasar CTA 102 entered an extended period of activity from 2016 to 2017 during which several strong γ-ray flares were observed. By using Fermi large area telescope data, a detailed investigation of γ-ray spectra of CTA 102 during the flaring period was performed. In several periods, the γ-ray spectrum is not consistent with a simple power-law, having a hard photon index with an index of ∼(1.8−2.0) that shows a spectral cut-off around an observed photon energy of ∼(9−16) GeV. The internal γ-ray absorption via photon-photon pair production on the broad-line-region-reflected photons cannot account for the observed cut-off and break even if the emitting region is very close to the central source. This cut-off and break are likely due to a similar intrinsic break in the energy distribution of emitting particles. The origin of the spectral break is investigated through the multiwavelength modeling of the spectral energy distribution in considering a different location for the emitting region. The observed X-ray and γ-ray data is modeled as inverse Compton scattering of synchrotron and/or external photons on the electron population that produces the radio-to-optical emission, which allowed to constrain the power-law index and cut-off energy in the electron energy distribution. The obtained results are discussed in the context of a diffusive acceleration of electrons in the CTA 102 jet.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Melrose, D. B. "The Nature of Flat Spectrum Sources." Symposium - International Astronomical Union 175 (1996): 423–26. http://dx.doi.org/10.1017/s0074180900081328.

Повний текст джерела
Анотація:
Nonthermal radio sources near the Galactic Center with flat or weakly inverted spectra (S((ω) ∝ ωα with α ≳ 0) are attributed to optically thin synchrotron emission from a hard electron energy spectrum, N(ε) ∝ ε–α with a = 1 – 2α ≲ 1, produced by Fermi acceleration or diffusive shock acceleration at multiple shocks combined with a synchrotron pile up. This basic mechanism is also plausible for flat-spectrum AGN.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Purohit, S., M. K. Gupta, M. B. Chowdhuri, I. Mansuri, M. Bhandarkar, B. K. Shukla, K. Shah, et al. "Initial results from time-resolved LaBr based hard x-ray spectrometer for ADITYA-U tokamak." Review of Scientific Instruments 93, no. 9 (September 1, 2022): 093512. http://dx.doi.org/10.1063/5.0101310.

Повний текст джерела
Анотація:
Runaway electrons (REs) are passively studied by hard x-ray (HX) emissions generated by REs. A LaBr3(Ce) detector-based HX spectroscopic diagnostic (operational within ∼75 keV to 3.5 MeV) has been set up on the ADITYA-U. The diagnostic acquisition software utility is upgraded to obtain the temporal evolution of the HX spectrum to understand the RE energy distribution in plasma during its various phases. The peak position moves to lower energy for Ohmically heated discharges (200–80 keV), indicating a relative increase in the thermal particle content in the plasma. The peak position of RE energy shows a decreasing tendency with increasing ne with Ne gas puffing and termination of the electron cyclotron resonance pulse.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Khangulyan, Dmitry, Andrew M. Taylor, and Felix Aharonian. "The Formation of Hard Very High Energy Spectra from Gamma-ray Burst Afterglows via Two-zone Synchrotron Self-Compton Emission." Astrophysical Journal 947, no. 2 (April 1, 2023): 87. http://dx.doi.org/10.3847/1538-4357/acc24e.

Повний текст джерела
Анотація:
Abstract Electron Compton scattering of target photons into the gamma-ray energy band (inverse Compton scattering; IC) is commonly expected to dominate the very high energy (VHE) spectra in gamma-ray bursts (GRBs) especially during the afterglow phase. For sufficiently large center-of-mass energies in these collisions, the effect of the electron recoil starts reducing the scattering cross-section (the Klein–Nishina regime). The IC spectra generated in the Klein–Nishina regime is softer and has a smaller flux level compared to the synchrotron spectra produced by the same electrons. The detection of afterglow emission from nearby GRB190829A in the VHE domain with H.E.S.S. has revealed an unexpected feature: the slope of the VHE spectrum matches well the slope of the X-ray spectra, despite expectations that, for the IC production process, the impact of the Klein–Nishina effect should be strong. The multi-wavelength spectral energy distribution appears to be inconsistent with predictions of one-zone synchrotron–self-Compton models. We study the possible impact of two-zone configuration on the properties of IC emission when the magnetic field strength differs considerably between the two zones. Synchrotron photons from the strong magnetic field zone provide the dominant target for cooling of the electrons in the weak magnetic field zone, which results in a formation of hard electron distribution and consequently of a hard IC emission. We show that the two-zone model can provide a good description of the Swift's X-ray Telescope and VHE H.E.S.S. data.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fiocchi, M., F. Onori, A. Bazzano, A. J. Bird, A. Bodaghee, P. A. Charles, V. A. Lepingwell, et al. "Evolution of MAXI J1631–479 during the January 2019 outburst observed by INTEGRAL/IBIS." Monthly Notices of the Royal Astronomical Society 492, no. 3 (January 11, 2020): 3657–61. http://dx.doi.org/10.1093/mnras/staa068.

Повний текст джерела
Анотація:
ABSTRACT We report on a recent bright outburst from the new X-ray binary transient MAXI J1631–479, observed in January 2019. In particular, we present the 30–200 keV analysis of spectral transitions observed with INTEGRAL/IBIS during its Galactic plane monitoring program. In the MAXI and BAT monitoring period, we observed two different spectral transitions between the high/soft and low/hard states. The INTEGRAL spectrum from data taken soon before the second transition is best described by a Comptonized thermal component with a temperature of kTe ∼ 30 keV and a high-luminosity value of $L_{2-200\, \mathrm{keV}}\sim 3\times 10^{38}$ erg−1 (assuming a distance of 8 kpc). During the second transition, the source shows a hard, power-law spectrum. The lack of high energy cut-off indicates that the hard X-ray spectrum from MAXI J1631–479 is due to a non-thermal emission. Inverse Compton scattering of soft X-ray photons from a non-thermal or hybrid thermal/non-thermal electron distribution can explain the observed X-ray spectrum although a contribution to the hard X-ray emission from a jet cannot be determined at this stage. The outburst evolution in the hardness-intensity diagram, the spectral characteristics, and the rise and decay times of the outburst are suggesting that this system is a black hole candidate.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wadiasingh, Zorawar, Matthew G. Baring, Peter L. Gonthier, and Alice K. Harding. "Hard Spectral Tails in Magnetars." Proceedings of the International Astronomical Union 13, S337 (September 2017): 108–11. http://dx.doi.org/10.1017/s1743921317009073.

Повний текст джерела
Анотація:
AbstractPulsed non-thermal quiescent emission between 10 keV and around 150 keV has been observed in ~10 magnetars. For inner magnetospheric models of such hard X-ray signals, resonant Compton upscattering of soft thermal photons from the neutron star surface is the most efficient radiative process. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulses phases. Our spectral computations use new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tibaldo, L., R. Zanin, G. Faggioli, J. Ballet, M. H. Grondin, J. A. Hinton, and M. Lemoine-Goumard. "Disentangling multiple high-energy emission components in the Vela X pulsar wind nebula with the Fermi Large Area Telescope." Astronomy & Astrophysics 617 (September 2018): A78. http://dx.doi.org/10.1051/0004-6361/201833356.

Повний текст джерела
Анотація:
Context. Vela X is a pulsar wind nebula in which two relativistic particle populations with distinct spatial and spectral distributions dominate the emission at different wavelengths. An extended 2° × 3° nebula is seen in radio and GeV gamma rays. An elongated cocoon prevails in X-rays and TeV gamma rays. Aims. We use ~9.5 yr of data from the Fermi Large Area Telescope (LAT) to disentangle gamma-ray emission from the two components in the energy range from 10 GeV to 2 TeV, bridging the gap between previous measurements at GeV and TeV energies. Methods. We determine the morphology of emission associated to Vela X separately at energies <100 and >100 GeV, and compare it to the morphology seen at other wavelengths. Then, we derive the spectral energy distribution of the two gamma-ray components over the full energy range. Results. The best overall fit to the LAT data is provided by the combination of the two components derived at energies <100 and >100 GeV. The first component has a soft spectrum, spectral index 2.19 ± 0.16−0.22+0.05, and extends over a region of radius 1.°36±0.°04, consistent with the size of the radio nebula. The second component has a harder spectrum, spectral index 0.9 ± 0.3−0.1+0.3, and is concentrated over an area of radius 0.°63±0.°03, coincident with the X-ray cocoon that had already been established as accounting for the bulk of the emission at TeV energies. Conclusions. The spectrum measured for the low-energy component corroborates previous evidence for a roll-over of the electron spectrum in the extended radio nebula at energies of a few tens of GeV possibly due to diffusive escape. The high-energy component has a very hard spectrum: if the emission is produced by electrons with a power-law spectrum, the electrons must be uncooled, and there is a hint that their spectrum may be harder than predictions by standard models of Fermi acceleration at relativistic shocks.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hard Electron Energy Spectrum"

1

Angadi, Veerendra C. "Quantitative electron energy-loss spectrum data processing for hyperspectral imaging in analytical transmission electron microscopy." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20007/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Taraldsen, Gunnar. "Spectral theory of random operators : The energy spectrum of the quantum electron in a disordered solid." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 1992. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

DI, FELICE VALERIA. "Low energy electron and positron measurements in space with the PAMELA experiment." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1245.

Повний текст джерела
Анотація:
Questa tesi descrive lo studio di elettroni e positroni nella radiazione cosmica. Nuove misure della frazione di positroni al top dell’atmosfera tra 200 MeV e 3.0 GeV, nonché lo spettro di elettroni fino a 20 GeV, sono presentati. La misura è stata effettuata con l’esperimento PAMELA da Luglio 2006 a Dicembre 2008, periodo di minima attività solare e polarità negativa. PAMELA fornisce le prime osservazioni a lungo termine della frazione di positroni di bassa energia durante questo particolare stato della eliosfera. La grande statistica collezionata permette di studiare la variazione del flusso di particelle a Terra in funzione dell’energia e del tempo, e di investigare effetti dipendenti dal segno della carica. Durante circa 860 giorni di raccolta dati circa 16000 positroni e 178000 elettroni sono stati identificati. Le maggiore fonte di fondo, costituite da protoni e pioni localmente prodotti, sono state studiate. Lo spettro di elettroni derivato mostra chiaramente l’effetto della modulazione solare sotto qualche GeV. La frazione di positroni è risultata in accordo con le predizioni di modelli teorici che descrivono il trasporto di particelle nell’eliosfera che tengono conto di effetti di drift.
This thesis describes the study of electrons and positrons in the cosmic radiation. New measurements of the positron fraction at the top of the atmosphere between 200 MeV and 3.0 GeV are presented, together with the electron spectrum up to 20 GeV. The measurement was conducted with the space borne PAMELA experiment from July 2006 to December 2008, that is a period of minimum solar activity and negative solar magnetic field polarity. PAMELA provides the first long term observation of the low energy positron abundance during this particular solar and heliospheric state. The great amount of collected statistics allows to study the variation of the particle intensity at Earth with energy and time, and to investigate effects depending on the particles sign of charge. During approximately 860 days of data collection about 16300 positrons and 178000 electrons were identified. The major sources of background, constituted by cosmic protons and locally produced pions, have been studied. The derived electron spectrum clearly shows the effect of the solar modulation below few GeV. The detected positron fraction has been found to be in accordance with predictions from theoretical models that describe the transport of particles in the heliosphere taking drift effects into account.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Velte, Clemens [Verfasser], and Loredana [Akademischer Betreuer] Gastaldo. "Measurement of a high energy resolution and high statistics 163Ho electron capture spectrum for the ECHo experiment / Clemens Velte ; Betreuer: Loredana Gastaldo." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/122101918X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mathumba, Penny. "Aluminium and gold functionalized graphene quantum dots as electron acceptors for inverted Schottky junction type rainbow solar cells." University of Western Cape, 2020. http://hdl.handle.net/11394/7232.

Повний текст джерела
Анотація:
Philosophiae Doctor - PhD
The main aim of this study was to prepare band gap-engineered graphene quantum dot (GQD) structures which match the different energies of the visible region in the solar spectrum. These band gap-engineered graphene quantum dot structures were used as donor materials in rainbow Schottky junction solar cells, targeting all the energies in the visible region of the solar spectrum for improved solar-to-electricity power conversion efficiency. Structural characterisation of the prepared nanomaterials under solid-state nuclear magnetic resonance spectroscopy (SS-NMR) showed appearance of bands at 40 ppm due to the presence of sp3 hybridised carbon atoms from the peripheral region of the GQD structures. Other bands were observed at 130 ppm due to the presence of polycyclic aromatic carbon atoms from the benzene rings of the GQD backbone, and around 180 ppm due to the presence of carboxylic acid carbons from oxidation due to moisture. Fourier-transform infrared resonance (FTIR) spectroscopy further confirmed the presence of aromatic carbon atoms and oxidised carbons due to the presence of C=O, C=C and -OH functional groups, concurrent with SS-NMR results.
2023-12-01
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lück, Thomas. "Determination of the CKM-matrix element |Vub| from the electron energy spectrum measured in inclusive B -> X u e[Ypsilon] decay with the BABAR detector." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16718.

Повний текст джерела
Анотація:
Dieses Dokument präsentiert eine Messung des CKM Matrixelementes Vub in inklusiven semileptonischen B nach Xu e nu Ereignissen, auf einem Datensatz von 471 Millionen BB Ereignissen, aufgezeichnet vom BABAR Detektor. Inklusive B nach Xu e nu Zerfälle wurden selektiert indem hochenergetische Elektronen (Positronen) rekonstruiert wurden. Untergrundunterdrückung wurde erreicht indem Ereignisse selektiert wurden mit Elektron- (Positron-) Energien in der Nähe des kinematischen Endpunktes von B nach Xu e nu Zerfällen. Ein Veto für B nach Dstern e nu wurde angewendet um den Untergrund weiter zu reduzieren. Dieses Veto benutzt Dstern Mesonen die mit einer Partiellen Rekonstruktionstechnik rekonstruiert wurden.
This document presents a measurement of the CKM matrix-element Vub in inclusive semileptonic B to Xu e nu events on a dataset of 471 million BB events recorded by the BABAR detector. Inclusive B to Xu e nu decays are selected by reconstructing a high energetic electron (positron). Background suppression is achieved by selecting events with electron (positron) energies near the kinematical allowed endpoint of B to Xu e nu decays. A B to Dstar e nu veto is applied to further suppress background. This veto uses Dstar mesons which have been reconstructed with a partial reconstruction technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Colson, Tobias A., and tobiascolson@gmail com. "Large Angle Plasmon Scattering in Metals and Ceramics." RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090212.143048.

Повний текст джерела
Анотація:
This investigation is primarily concerned with the low loss, or plasmon region of an electron energy loss spectrum. Specifically, why these spectra have the shape and form that they do; what the significance of the material is in determining the shape and form of these spectra; what can be done with plasmon excited electrons; and how all of this fits in with the current theory of plasmon excitation. In particular, the concept of plasmon scattering being an energy transfer process of a coupled wave in the material is explored. This gives rise to slightly different explanations of the plasmon scattering process to the status quo. Multiple scattering is typically pictured as a combination of separate and independent, elastic and inelastic scattering events interactively contributing to a final exit wave function. However, this investigation explores the idea of the elastic and inelastic components being a coupled event, and what the consequences of this idea are from a conceptual point of view. The energy transfer process itself, does not deviate from a virtual particle exchange description that is consistent with the standard model. However, the two significant points made throughout the chapters are one: that the elastic and inelastic scattering events are coupled rather than separate, and two: that each succussive higher order scattering event in multiple scattering scenarios, are dependant and connecte d rather than independent.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yedra, Cardona Lluís. "Towards a new dimension in analytical TEM: EELS, Tomography and the Spectrum Volume." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/145317.

Повний текст джерела
Анотація:
The main goal of this thesis is to combine electron tomography and electron energy loss spectroscopy (EELS) in the TEM, in order to obtain chemical and electronic information in 3D in the nanoscale. Tomography in the TEM has been discussed and the advantages and disadvantages of HAADF STEM tomography have been analyzed. - A Fe3O4 nanocube sample has been considered to illustrate the acquisition, alignment, tilt axis assessment, reconstruction and visualization processes. - HAADF STEM tomography has been used to reconstruct the shape of a series of Cu2O nanoparticles. For one of the samples, the facets of the Cu2O nanoparticles, octahedral in shape, have been found to correspond to {111} planes. The physics and the data analysis methods of core-loss EELS have been briefly summarized. Two relevant contributions have been made: - The effects of beam precession on EELS have been investigated. A signal enhancement due to electron beam precession in the TEM when in zone axis conditions has been discovered for the first time. - A homemade software, Oxide Wizard, for valence state determination of transition metals has been developed and applied to map the Mn oxidation state of a MnOx/FeOy nanoparticle. EELS spectrum imaging and electron tomography have been combined to recover chemical information in 3D for FexCo(3-x)O4@Co3O4 mesoporous nanoparticles. - The samples have been first characterized by HAADF STEM tomography and EELS. - EELS chemical information is, of course, limited to 2D maps, while only structural information is be recovered in 3D form HAADF tomography. . An EELS-SI tilt series has been acquired at 80 kV and low acquisition times, resulting in a very noisy dataset. - Principal component analysis (PCA) has been used to separate the noise from the signal. - Quantifications of the O, Fe and Co signals have been reconstructed, and the shape of the particle recovered. - From the noise clean dataset, components with physical meaning (iron oxide, cobalt oxide and thickness) have been extracted using independent component analysis (ICA), and reconstructed in 3D. - A new kind of signal with chemical and thickness information has been obtained by combining the thickness component with the quantification results. This signal is able to properly reconstruct the chemical structure of the sample in 3D, detecting a higher presence of iron in the surface, and an even distribution of Fe inside of the particle. . Another EELS-SI tilt series has been acquired at 80 kV and low acquisition times with enough spatial resolution to resolve the porous structure. - The noise has been reduced using PCA. - Four signals extracted from the spectrum have been reconstructed: the integrated edge intensities for oxygen, iron and cobalt, and the integrated background prior to the oxygen edge. EELS-SI tomography has been applied to reconstruct CoFe2O4 (CFO) nanocolumns embedded in a BiFeO3 (BFO) matrix grown on LaNiO3 buffered LaAlO3 substrate (BFO-CFO//LNO/LAO). - The nanocomposite sample has been prepared in a nanoneedle shape by means of focused ion beam (FIB). This preparation has the advantage of keeping the thickness of the sample constant throughout the tilting experiment. The nanoneedle contains an island of CFO in a matrix of BFO, as well as the LNO/LAO substrate. - The noise has been discarded using PCA. - The oxygen, iron and lanthanum edges intensities have been extracted and reconstructed. A new kind of data hypercube, the Spectrum Volume, has been proposed. Just as a Spectrum Image contains a spectrum per pixel, a Spectrum Volume is to contain a spectrum per voxel. EELS-SI tomography has been applied to successfully acquire a spectrum volume (SV) of the (BFO-CFO//LNO/LAO) system. - PCA has been used to discard the noise and Bayesian linear unmixing (BLU) has been used to extract independent components (eigenspectra). - Each eigenspectrum has a 2D weighting map for each tilt; weighting maps have been reconstructed into 3D weighting volumes. - Full single spectra for any point in the reconstructed space can now be recovered as a weighed sum of eigenspectra, using the 3D weighting distributions. This approach is used to extract single spectra, spectrum lines and spectrum images from the inside of the sample. In the context of this thesis, tomography and EELS-SI have been combined to successfully recover chemical information in 3D at the nanoscale, and a new kind of data hypercube, the Spectrum Volume, has been proposed and experimentally recovered.
En el microscopi electrònic de transmissió (TEM), es poden obtenir imatges d’una mostra des de diferents angles i posteriorment reconstruir aquestes imatges en tres dimensions (3D). Per altra banda, les interaccions dels electrons del feix amb els electrons de la mostra poden ser analitzades mitjançant l’espectroscòpia de pèrdues d’energia dels electrons (EELS), obtenint així informació química de la mostra. L’objectiu d’aquesta tesi és la combinació de l’espectroscòpia EELS amb la tomografia electrònica per obtenir informació química en 3 dimensions a la nanoescala. S’han explicat les bases de la tomografia electrònica i el procediment de la reconstrucció ha estat il•lustrat amb una mostra de nanocubs d’òxid de ferro. Posteriorment, s’ha aplicat a una sèrie de nanopartícules de Cu2O per tal de descriure’n la forma. També s’ha explicat la física en què es basa l’EELS, fent especial atenció als llindars d’altes pèrdues d’energia. A continuació, s’ha mostrat l’augment del senyal obtingut amb precessió electrònica al TEM quan la mostra es troba en condicions d’eix de zona. Seguint amb les aplicacions d’EELS, s’ha explotat la possibilitat de caracteritzar els estats d’oxidació dels metalls de transició mitjançant un programa propi, escrit per a Digital Micrograph i anomenat Oxide Wizard. Una vegada la tomografia electrònica i l’espectroscòpia de pèrdues d’energia dels electrons han estat explicades, s’ha procedit a reconstruir informació extreta d’EELS en 3D. S’han realitzat una sèrie d’experiments amb partícules mesoporoses que han demostrat la utilitat d’aplicar l’anàlisi multivariable per tal de reduir el soroll de les dades i extreure’n els components. Finalment, s’ha dissenyat un experiment en el qual ha estat possible recuperar l’espectre corresponent a cada unitat d’espai com la combinació d’espectres propis en una mostra preparada en forma de nanoagulla. Els espectres recuperats corresponen a la contribució de cada unitat de volum als espectres projectats. Aquest nou tipus de dades permet extreure espectres de l’interior d’una mostra. Finalment, doncs, s’ha pogut combinar amb èxit la tomografia electrònica i EELS per obtenir informació química en tres dimensions a la nanoescala.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lück, Thomas [Verfasser], Heiko [Akademischer Betreuer] Lacker, Alexander [Akademischer Betreuer] Kappes, and Jochen [Akademischer Betreuer] Dingfelder. "Determination of the CKM-matrix element |Vub| from the electron energy spectrum measured in inclusive B -> X u e[Ypsilon] decay with the BABAR detector / Thomas Lück. Gutachter: Heiko Lacker ; Alexander Kappes ; Jochen Dingfelder." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://d-nb.info/1033837229/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Feister, Scott. "Efficient Acceleration of Electrons by an Intense Laser and its Reflection." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461225902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Hard Electron Energy Spectrum"

1

Tsidilkovski, Isaak M. Electron Spectrum of Gapless Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

T͡Sidilʹkovskiĭ, I. M. Electron spectrum of gapless semiconductors. Berlin: Springer, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer Science+Business Media, LLC, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tsidilkovski, Isaak M. Electron Spectrum of Gapless Semiconductors. Brand: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Braun, Arthur, Jinghua Guo, Chongmin Wang, Niels de Jonge, and Rafal E. Dunin-Borkowski. In-Situ and Operando Probing of Energy Materials at Multiscale down to Single Atomic Column - The Power of X-Rays, Neutrons and Electron Microscopy. University of Cambridge ESOL Examinations, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Insitu And Operando Probing Of Energy Materials At Multiscale Down To Single Atomic Column The Power Of Xrays Neutrons And Electron Microscopy Symposium Held April 59 2010 San Francisco California. Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Glazov, M. M. Electron Spin Relaxation Beyond the Hyperfine Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0008.

Повний текст джерела
Анотація:
Here, some prospects for future studies in the field of electron and nuclear spin dynamics are outlined. In contrast to previous chapters where the electron interaction with multitude of nuclei was discussed, in Chapter 8 particular emphasis is put on a situation where hyperfine interaction is so strong that it leads to a qualitative rear rangement of the energy spectrum resulting in coherent excitation transfer between electron and nucleus. The strong coupling between the spin of the charge carrier and of the nucleus is realized; e.g., in the case of deep impurity centers in semiconductors or in isotopically purified systems. We also discuss the effect of the nuclear spin polaron; that is, the ordered state, where the carrier spin orientation results in alignment of spins of the nucleus interacting with the electron or hole. Such problems have been briefly discussed in the literature but, in our opinion, call for in-depth investigation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Groot, Frank de, and Akio Kotani. Core Level Spectroscopy of Solids. Taylor & Francis Group, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Core Level Spectroscopy of Solids (Advances in Condensed Matter Science). CRC, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Groot, Frank de, and Akio Kotani. Core Level Spectroscopy of Solids. Taylor & Francis Group, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hard Electron Energy Spectrum"

1

Yuan, J., N. Menon, G. A. J. Amaratunga, M. Chhowalla, and C. J. Keily. "Interpretation of Electron Energy Loss Spectra from Hard Elastic Carbon and Related Materials." In Electron Microscopy and Analysis 1997, 159–62. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Williams, David B., and C. Barry Carter. "The Energy-Loss Spectrum." In Transmission Electron Microscopy, 653–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Egerton, Ray F. "Quantitative Analysis of the Energy-Loss Spectrum." In Electron Energy-Loss Spectroscopy in the Electron Microscope, 229–89. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-6887-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Egerton, R. F. "Quantitative Analysis of the Energy-Loss Spectrum." In Electron Energy-Loss Spectroscopy in the Electron Microscope, 245–99. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-5099-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crance, Michèle. "Electron Energy Spectrum after Multiphoton Ionisation." In Atomic and Molecular Processes with Short Intense Laser Pulses, 219–25. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0967-3_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kontar, E. P., J. C. Brown, A. G. Emslie, W. Hajdas, G. D. Holman, G. J. Hurford, J. Kašparová, et al. "Deducing Electron Properties from Hard X-ray Observations." In High-Energy Aspects of Solar Flares, 301–55. New York, NY: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-3073-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ciborowski, Jacek, and Jakub Rembieliński. "An Explanation of Anomalies in Electron Energy Spectrum from Tritium Decay." In International Europhysics Conference on High Energy Physics, 813–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59982-8_147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nakagawa, Yujin E., Teruaki Enoto, Kazuo Makishima, Atsumasa Yoshida, Kazutaka Yamaoka, Takanori Sakamoto, Nanda Rea, and Kevin Hurley. "Suzaku Detection of Hard X-ray Emission in SGR 0501+4516 Short Burst Spectrum." In High-Energy Emission from Pulsars and their Systems, 323–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17251-9_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dapor, Maurizio. "Appendix H: From the Electron Energy Loss Spectrum to the Dielectric Function." In Transport of Energetic Electrons in Solids, 179–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47492-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bogolubov, N. N., A. V. Soldatov, and S. P. Kruchinin. "On the Energy Spectrum of Two-Electron Quantum Dot in External Magnetic Field." In Nanotechnology in the Security Systems, 55–67. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9005-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hard Electron Energy Spectrum"

1

Oparin, I. D., Yu E. Charikov, E. P. Ovchinnikova, and A. N. Shabalin. "INFLUENCE OF THE ELECTRON-ELECTRON BREMSSTRAHLUNG ON SOLAR FLARE HARD X-RAY FLUX AND ENERGY SPECTRUM." In All-Russia Conference on Solar and Solar-Terrestrial Physics. The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 2019. http://dx.doi.org/10.31725/0552-5829-2019-313-316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andreev, A. A., V. N. Novikov, K. Yu Platonov, and J. C. Gauthier. "Hard X-ray Emission from Femtosecond Laser Interaction in Overdense Plasmas." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thb3.

Повний текст джерела
Анотація:
The recent development of ultra-short pulse lasers has made possible the investigation of laser matter interaction at ultra-high intensities. For sub-picosecond pulses, a hot and overdense plasma is produced very rapidly during the rise of the pulse and further laser interaction occurs with this plasma. One of the results of the interaction is the generation of fast electrons and of intense hard x-ray emission. The x-ray pulse duration is determined by the mean free path of the fast electrons in the target material. It can be very short (< 1 ps) and its intensity sufficient to be registered by the usual methods. With high laser pulse repetition rates, it has been demonstrated [1] that one can obtain an instantaneous signature of fast-x-ray dense-matter interaction processes. The high energy of the x-ray photons (up to ≈ 1MeV) makes it possible to study small size objects and even to excite nuclear levels. Numerous papers [2-7] have been devoted to the study of femtosecond laser pulse interaction with plasmas. In this paper, we calculate the electron energy distribution function in the presence of the laser field, the absorption coefficient, and the parameters of the fast electron flux in the plasma. Our absorption results are in agreement with previously published [3-5] papers. A new feature of our calculations is the determination of the energy and spectrum characteristics of the hard x-ray pulse produced by the interaction of an intense laser with a solid-state target.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yuan, Chen, and Jun Wu. "A Real-Time Hard X-Ray Tomographic System Designed for HL-2A Fast Electron Bremsstrahlung Radiation." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16259.

Повний текст джерела
Анотація:
Abstract A real-time hard X-ray (HXR) tomographic system is designed for HL-2A tokamak, which is dedicated to the real-time tomography of fast electron bremsstrahlung radiation during the lower hybrid (LH) driven mode within the energy range of 20keV to 200keV. This system has realized the investigation of HXR energy from 12 different chords on the equatorial plane of the reaction region. The spatial and temporal resolutions of the system are 2cm and 10ms, separately. HXR detection is accomplished by a self-designed detector array, with a structure of 12 arc arranged cadmium telluride (CdTe) semiconductors and their corresponding collimators. The real-time HXR acquisition and processing is achieved by the main electronic system, which is comprised of a high speed analog-to-digital module and a high performance signal processing unit. Due to high HXR flux and the real-time demand in measurement, the HXR tomography is accomplished by several customized digital processing algorithms based on FPGA logic resources, such as the digital real-time spectrum measurement, the trapezoidal shaper, the pile up filter, and the baseline restorer, etc. This system has been proved to be qualified as a dependable platform of fast electron bremsstrahlung radiation research during LH mode on HL-2A, which provides indispensable parameters for plasma state during fusion reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nenner, Irène. "Synchrotron Radiation and Applications." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thd1.

Повний текст джерела
Анотація:
The use of synchrotron radiation has reached a quite mature stage all over the world with dedicated electron storage rings equipped with a large number of beam lines to accommodate an even larger number of simultaneous experiments. The spectrum of the light which depends upon the energy of the accelerated particles covers continuously the electromagnetic spectrum from the infra-red to the ultra-violet up to the soft X-ray and hard X-ray range. The main characteristics are the high flux or mean power, the high brillance, the small divergence, an access to linear and circular polarization, the high spatial and temporal stability and a usable time structure. The interest and the complementarity of these sources with respect to conventional laboratory sources (X-ray tubes, discharge lamps and lasers) is now recognized and explains the growing demand in fundamental and finalized research.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hébert, P., G. Baldacchino, T. Gustavsson, V. Kabelka, P. Baldeck, and J. C. Mialocq. "Subpicosecond Study of the Dynamic Processes in Push-Pull Styrenes and the Role of Solvation." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.fc10.

Повний текст джерела
Анотація:
A great deal of attention has recently been devoted to the role of solvation in chemical reactions involving intramolecular charge transfer, LE (locally excited)-TICT (twisted intramolecular charge transfer) singlet excited state relaxation and trans-cis photoisomerization. In this paper we present a subpicosecond study of the solvation dynamics of the styryl 8 laser dye (2-(4-(4-dimethylaminophenyl)-1,3-butadienyl)-3-ethylbenzothiazolium perchlorate) in various solvents. Our results are discussed in the light of recent studies of styryl 7 [1,2] and of our previous studies of the solvatochromism of DCM (4-(dicyanomethylene)-2-methyl-6-[p-(dimethylaminostyryl)-4H-pyran]) [3,4]. Both styryls are remarkable as regards the weak overlap between their absorption and emission spectra. The large Stokes shift observed in DCM is related to a strong intramolecular charge transfer between the electron donor dimethylamino group and the electron acceptor dicyanomethylene group. However, the behavior of the two styryls with respect to solvent polarity is quite different. On the one hand, the neutral DCM presents a red shift of its absorption transition energy with increasing solvent polarity which is due to the feeble solvation of the electronic ground state and the strong response of the electronic polarization of the solvent molecules to the solute Franck-Condon electronic excitation. Its fluorescence spectrum shows a large dependency with respect to the solvent polarity indicating a strong increase of the dipole moment upon electronic excitation [3,4]. On the other hand, in the cationic styryl 8 molecule, an unsymmetrical polymethine-cyanine, the large blue shift of the absorption maxima in solvents of increasing polarity indicates the enormous stabilization of the electronic ground state with respect to the Franck-Condon excited singlet state. The subsequent relaxation of the fluorescent excited state is only minor as shown by the small variation of the wavelengths of the styryl 8 fluorescence maxima with solvent polarity. We thus infer that the dipole moment of the fluorescent state and its solvent cage are weakly affected upon electronic excitation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reiss, H. R. "Theory and Experiment for Photoelectron Spectra in Short-Pulse High-Intensity Ionization." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.wc8.

Повний текст джерела
Анотація:
Recent experiments[1] designed to give high-resolution spectra for photoelectrons ionized from helium by a short-pulse laser at very high intensity, have been matched by theory[2] to within the experimental error bounds for all but the lowest part of the energy spectrum. This is notable for several reasons. First, no other comparison of high intensity theory and experiment has previously been shown to be in such close and detailed correspondence. Second, the experimentalists, in their attempts to match theory and experiment had come to the conclusion that no existing theory could duplicate the energetic, or “hot” end of the electron spectra. This is now shown not to be at all a source of difficulty. Finally, the theory employed [3,4] is one which has long been asserted to be valid for atomic ionization as long as certain minimum intensity criteria are met. Previous published “tests” of the theory have failed by large factors to satisfy the required applicability criteria, but the present experiments do satisfy them, and confirm the validity of the theory for very strong fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Weber, Marvin J., J. Wong, R. B. Greegor, F. W. Lytle, and D. R. Sandstrom. "Optically detected x-ray absorption spectroscopy of luminescent materials." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mgg2.

Повний текст джерела
Анотація:
X-ray absorption near edge and extended fine structure (EXAFS/XANES) has been observed from luminescence excitation spectra of crystals and glasses using synchrotron radiation. The luminescence may either be intrinsic (recombination radiation from alkaki halides, alkaline earth fluorides, oxides) or from activator ions (rare earths, transition metals, organic dyes) excited directly or indirectly. Core electron excitations of cations and anions in luminescent materials have been investigated in the energy range from the VUV to hard x-rays. Absorption features may appear as an increase or decrease in the luminescence intensity depending on the sample thickness with respect to the x-ray absorption length, observation geometry, and intermediate relaxation processes. For materials with multiple sites, conventional x-ray absorption spectroscopy measures some average of different site populations. Since luminescence spectra vary with the local environment, using optical detection measurements can be both atom specific via the characteristic x-ray absorption edge energy and site and valence specific via the optical wavelength.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Arlen, Timothy C., and Vladimir V. Vassiliev. "Hard spectrum TeV blazars and intergalactic magnetic fields." In HIGH ENERGY GAMMA-RAY ASTRONOMY: 5th International Meeting on High Energy Gamma-Ray Astronomy. AIP, 2012. http://dx.doi.org/10.1063/1.4772333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lin, R. P., and C. M. Johns-Krull. "Inferring the accelerated electron spectrum in solar flares." In High energy solar physics. AIP, 1996. http://dx.doi.org/10.1063/1.50967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pacini, Lorenzo. "The cosmic-ray electron spectrum measured with the CALorimetric Electron Telescope." In The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hard Electron Energy Spectrum"

1

Wang, L. Energy Spectrum of an Electron Cloud with Short Bunch. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ulmen, Benjamin, Timothy Webb, Andrew McCourt, and Sean Coffey. Measuring Saturn's Electron Beam Energy Spectrum using Webb's Wedges. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1866153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brandt, T. Measurement of the Electron Energy Spectrum and its Moments in Inclusive B --> X e nu Decays. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/826846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Grasso, D., S. Profumo, A. W. Strong, L. Baldini, R. Bellazzini, E. D. Bloom, J. Bregeon, et al. On Possible Interpretations of the High Energy Electron-Positron Spectrum Measured by the Fermi Large Area Telescope. Office of Scientific and Technical Information (OSTI), May 2009. http://dx.doi.org/10.2172/952979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ivaldi, Gilles. The impact of the Russia-Ukraine War on radical right-wing populism in France. European Center for Populism Studies (ECPS), March 2023. http://dx.doi.org/10.55271/rp0019.

Повний текст джерела
Анотація:
This article examines the impact of the Russian invasion of Ukraine on the main actors of the populist radical right in France (i.e., Marine Le Pen’s Rassemblement National and Éric Zemmour’s Reconquête) as well as Jean-Luc Mélenchon’s La France insoumise on the populist radical left. It looks, in particular, at the effects of the Ukraine crisis on the French presidential election in April 2022. After the outbreak of the war, French populists (of the left and the right) came under fire for their pro-Russia positions and previous sympathy for Vladimir Putin. However, these parties revealed quite different responses in interpreting the Ukraine crisis. The analysis suggests that Marine Le Pen successfully evaded accusations of sympathy for Putin by toning down her nativism and emphasizing instead her social-populist agenda, which foregrounds egalitarian social protection and economic nationalism. This move allowed her to exploit war-related issues of energy and rising prices. Public opinion data suggest that such issues were paramount to voters in the 2022 election. Zemmour, on the other hand, largely ignored growing socioeconomic concerns while perpetuating a more ambiguous stance vis-à-vis Putin, which may have contributed to his failure to challenge Le Pen on the radical right. Overall, the article concludes that the impact of the Ukraine war in France has been heavily mediated by socioeconomic anxieties, fuelling support for populism at both ends of the political spectrum.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thompson, Kathleen A. Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the Deep Quantum Regime. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/9899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Melnikov, Kirill. Alpha{sup 2} in (m{sub mu}{sup 2}/m{sub e}{sup 2}) Corrections to Electron Energy Spectrum in Muon. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії