Статті в журналах з теми "Hanbury Brown-Twiss effect"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Hanbury Brown-Twiss effect.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Hanbury Brown-Twiss effect".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Magaña-Loaiza, Omar S., Mohammad Mirhosseini, Robert M. Cross, Seyed Mohammad Hashemi Rafsanjani, and Robert W. Boyd. "Hanbury Brown and Twiss interferometry with twisted light." Science Advances 2, no. 4 (April 2016): e1501143. http://dx.doi.org/10.1126/sciadv.1501143.

Повний текст джерела
Анотація:
The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities imprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of intensity give rise to the formation of correlations in the orbital angular momentum components and angular positions of pseudothermal light. The presence of these correlations is manifested through distinct interference structures in the orbital angular momentum–mode distribution of random light. These novel forms of interference correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of effects can be of fundamental importance in applications where entanglement is not required and where correlations in angular position and orbital angular momentum suffice. We also suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration of novel phenomena in other branches of physics and astrophysics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hassinen, T., J. Tervo, T. Setälä, and A. T. Friberg. "Hanbury Brown–Twiss effect with electromagnetic waves." Optics Express 19, no. 16 (July 22, 2011): 15188. http://dx.doi.org/10.1364/oe.19.015188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Qureshi, Tabish, and Ushba Rizwan. "Hanbury Brown–Twiss Effect with Wave Packets." Quanta 6, no. 1 (November 29, 2017): 61. http://dx.doi.org/10.12743/quanta.v6i1.66.

Повний текст джерела
Анотація:
The Hanbury Brown–Twiss (HBT) effect, at the quantum level, is essentially an interference of one particle with another, as opposed to interference of a particle with itself. Conventional treatments of identical particles encounter difficulties while dealing with entanglement. A recently introduced label-free approach to indistinguishable particles is described, and is used to analyze the HBT effect. Quantum wave-packets have been used to provide a better understanding of the quantum interpretation of the HBT effect. The effect is demonstrated for two independent particles governed by Bose–Einstein or Fermi–Dirac statistics. The HBT effect is also analyzed for pairs of entangled particles. Surprisingly, entanglement has almost no effect on the interference seen in the HBT effect. In the light of the results, an old quantum optics experiment is reanalyzed, and it is argued that the interference seen in that experiment is not a consequence of non-local correlations between the photons, as is commonly believed.Quanta 2017; 6: 61–69.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schellekens, M. "Hanbury Brown Twiss Effect for Ultracold Quantum Gases." Science 310, no. 5748 (October 28, 2005): 648–51. http://dx.doi.org/10.1126/science.1118024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abbas, Adeel, and Li-Gang Wang. "Hanbury Brown and Twiss effect in spatiotemporal domain." Optics Express 28, no. 21 (October 8, 2020): 32077. http://dx.doi.org/10.1364/oe.405726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuebel, David, and Taco D. Visser. "Generalized Hanbury Brown-Twiss effect for Stokes parameters." Journal of the Optical Society of America A 36, no. 3 (February 13, 2019): 362. http://dx.doi.org/10.1364/josaa.36.000362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Korotkova, Olga, and Yalçın Ata. "Electromagnetic Hanbury Brown and Twiss Effect in Atmospheric Turbulence." Photonics 8, no. 6 (May 25, 2021): 186. http://dx.doi.org/10.3390/photonics8060186.

Повний текст джерела
Анотація:
The evolution of the 4 × 4 matrix with elements being the scintillation indices of the single-point Stokes parameters of a stationary electromagnetic beam-like optical field in classic, weak atmospheric turbulence is revealed. It is shown that depending on the choice of the source parameters, the source-induced changes in the matrix elements of the propagating beam and those produced by turbulence can be either range-separated or conjoined. For theoretical analysis, the unified theory of coherence and polarization is used together with the extended Huygens-Fresnel integral approach. The results can be of interest for building robust communication and sensing systems operating in the presence of atmospheric fluctuations.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Gaofeng, and Taco D. Visser. "Hanbury Brown–Twiss effect with partially coherent electromagnetic beams." Optics Letters 39, no. 9 (April 17, 2014): 2561. http://dx.doi.org/10.1364/ol.39.002561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Xianlong, Gaofeng Wu, Xiaoyan Pang, David Kuebel, and Taco D. Visser. "Polarization and coherence in the Hanbury Brown–Twiss effect." Journal of Modern Optics 65, no. 12 (March 2018): 1437–41. http://dx.doi.org/10.1080/09500340.2018.1443223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Camacho, Abel. "Deformed dispersion relations and the Hanbury–Brown–Twiss Effect." General Relativity and Gravitation 37, no. 8 (August 2005): 1405–10. http://dx.doi.org/10.1007/s10714-005-0124-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Manning, A. G., S. S. Hodgman, R. G. Dall, M. T. Johnsson, and A. G. Truscott. "The Hanbury Brown-Twiss effect in a pulsed atom laser." Optics Express 18, no. 18 (August 18, 2010): 18712. http://dx.doi.org/10.1364/oe.18.018712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Jeltes, T., J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, et al. "Comparison of the Hanbury Brown–Twiss effect for bosons and fermions." Nature 445, no. 7126 (January 2007): 402–5. http://dx.doi.org/10.1038/nature05513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Ragy, Sammy, and Gerardo Adesso. "Unveiling the Hanbury Brown and Twiss effect through Rényi entropy correlations." Physica Scripta T153 (March 1, 2013): 014052. http://dx.doi.org/10.1088/0031-8949/2013/t153/014052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Silva, E. F., A. L. R. Barbosa, and J. G. G. S. Ramos. "Parity and time-reversal symmetry in the Hanbury Brown-Twiss effect." EPL (Europhysics Letters) 117, no. 1 (January 1, 2017): 14001. http://dx.doi.org/10.1209/0295-5075/117/14001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Guyon, Rodolphe, Thierry Martin, Inès Safi, and Pierre Devillard. "Fractional statistics, Hanbury-Brown and Twiss correlations and the quantum Hall effect." Comptes Rendus Physique 3, no. 6 (January 2002): 697–707. http://dx.doi.org/10.1016/s1631-0705(02)01354-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

SHIH, YANHUA, GIULIANO SCARCELLI, and VINCENZO BERARDI. "TWO-PHOTON CORRELATION OF CHAOTIC LIGHT: A QUANTUM INTERFERENCE PHENOMENON." International Journal of Quantum Information 05, no. 01n02 (February 2007): 131–41. http://dx.doi.org/10.1142/s0219749907002591.

Повний текст джерела
Анотація:
Two-photon correlation phenomena of chaotic light, including the historical Hanbury Brown and Twiss effect, are essentially the quantum effect of two-photon interference, instead of the classical statistical correlation between intensity fluctuations. To support our view, we analyze a "ghost" imaging experiment with chaotic light for which the classical understanding does not give a satisfactory interpretation. We also provide a two-photon optical picture of ghost imaging with chaotic light in terms of a two-photon phase-conjugate mirror, which suggests lensless imaging applications for radiations for which no effective lens is available.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kuebel, David, Taco D. Visser, and Emil Wolf. "Application of the Hanbury Brown–Twiss effect to scattering from quasi-homogeneous media." Optics Communications 294 (May 2013): 43–48. http://dx.doi.org/10.1016/j.optcom.2012.12.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Bao, Nguyen Thi Thanh, Dinh Van Trung, and Dang Tuyet Phuong. "Measuring anti-bunching Effect from Single Dye Molecules and Single Quantum Dots." Communications in Physics 26, no. 1 (July 19, 2016): 67. http://dx.doi.org/10.15625/0868-3166/26/1/7806.

Повний текст джерела
Анотація:
Antibunching is a quantum effect demonstrating clearly the quantum nature of the radiation field. Its detection through measurements of the second order correlation function is a direct proof of the presence of single molecule or single nano particle. In this paper we present the experimental setup of the Hanbury Brown - Twiss interferometer and the measurement results of the antibunching effect from single Rhodamine B dye molecules and single CdTe quantum dots in dilute solution. By fitting the second order correlation data, we derive a fluorescence lifetime of approximately 2 ns for Rhodamine B and 45 ns for CdTe quantum dots. Our results demonstrate an alternative way for determining the fluorescence lifetime using the antibunching effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Abbas, Adeel, and Li-Gang Wang. "Hanbury Brown and Twiss effect in the spatiotemporal domain II: the effect of spatiotemporal coupling." OSA Continuum 4, no. 8 (July 27, 2021): 2221. http://dx.doi.org/10.1364/osac.434377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhang, Yong, Hong-Jie Yin, and Weihua Wu. "Finite size of hadrons and HBT interferometry for hydrodynamic sources." International Journal of Modern Physics E 28, no. 12 (December 2019): 1950104. http://dx.doi.org/10.1142/s0218301319501040.

Повний текст джерела
Анотація:
Hadrons formed in heavy-ion collisions are not point-like objects, they cannot occupy too close space-time points. When the two bosons are too close to each other, their constituents start to mix and they cannot be considered as bosons subjected to Bose–Einstein statistics, this effect is called the excluded volume effect. We study the excluded volume effect on Hanbury Brown–Twiss (HBT) for the sources with various sizes. The effect on HBT was shown in out, side and long directions, and it is more obvious for the source with a narrow space-time distribution. The correlation functions for high transverse momenta are more suppressed by the excluded volume effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Al-Qasimi, Asma, Mayukh Lahiri, David Kuebel, Daniel F. V. James, and Emil Wolf. "The influence of the degree of cross-polarization on the Hanbury Brown-Twiss effect." Optics Express 18, no. 16 (July 28, 2010): 17124. http://dx.doi.org/10.1364/oe.18.017124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Zhang, Yuanyuan, and Daomu Zhao. "Hanbury Brown-Twiss effect with partially coherent electromagnetic beams scattered by a random medium." Optics Communications 350 (September 2015): 1–5. http://dx.doi.org/10.1016/j.optcom.2015.03.075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

LIU, JIE, PENG RU, WEI-NING ZHANG та CHEUK-YIN WONG. "CHAOTIC PARAMETER λ IN HANBURY-BROWN–TWISS INTERFEROMETRY IN AN ANISOTROPIC BOSON GAS MODEL". International Journal of Modern Physics E 22, № 11 (листопад 2013): 1350083. http://dx.doi.org/10.1142/s0218301313500833.

Повний текст джерела
Анотація:
Using one- and two-body density matrices, we calculate the spatial and momentum distributions, two-particle Hanbury-Brown–Twiss (HBT) correlation functions, and the chaotic parameter λ in HBT interferometry for the systems of boson gas within the harmonic oscillator potentials with anisotropic frequencies in transverse and longitudinal directions. The HBT chaotic parameter, which can be obtained by measuring the correlation functions at zero relative momentum of the particle pair, is related to the degree of Bose–Einstein condensation and thus the system environment. We investigate the effects of system temperature, particle number and the average momentum of the particle pair on the chaotic parameter. The value of λ decreases with the condensed fraction, f0. It is one for f0 = 0 and zero for f0 = 1. For a certain f0 between 0 and 1, we find that λ increases with the average momentum of the particle pair and decreases with the particle number of system. The results of λ are sensitive to the ratio, ν = ωz/ωρ, of the frequencies in longitudinal and transverse directions. They are smaller for larger ν when ωρ is fixed. In the heavy-ion collisions at the Large Hadron Collider (LHC) energy the large identical pion multiplicity may possibly lead to a considerable Bose–Einstein condensation. Its effect on the chaotic parameter in two-pion interferometry is worth considering in earnest.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Guo, Xiaomin, Chen Cheng, Tong Liu, Xin Fang, and Yanqiang Guo. "Precise Photon Correlation Measurement of a Chaotic Laser." Applied Sciences 9, no. 22 (November 15, 2019): 4907. http://dx.doi.org/10.3390/app9224907.

Повний текст джерела
Анотація:
The second order photon correlation g(2)(τ) of a chaotic optical-feedback semiconductor laser is precisely measured using a Hanbury Brown–Twiss interferometer. The accurate g(2)(τ) with non-zero delay time is obtained experimentally from the photon pair time interval distribution through a ninth-order self-convolution correction. The experimental results agree well with the theoretical analysis. The relative error of g(2)(τ) is no more than 5‰ within 50 ns delay time. The bunching effect and coherence time of the chaotic laser are measured via the precise photon correlation technique. This technique provides a new tool to improve the accuracy of g(2)(τ) measurement and boost applications of quantum statistics and correlation.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Vistnes, Arnt Inge, and Joakim Bergli. "Hanbury Brown and Twiss effect demonstrated for sound waves from a waterfall: An experimental, numerical, and analytical study." American Journal of Physics 90, no. 1 (January 2022): 20–30. http://dx.doi.org/10.1119/10.0006613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Tang, Zhiguo, Bin Bai, Yu Zhou, Huaibin Zheng, Hui Chen, Jianbin Liu, Fuli Li, and Zhuo Xu. "Measuring Hanbury Brown and Twiss Effect of Multi-Spatial-Mode Thermal Light at Ultrashort Timescale by Two-Photon Absorption." IEEE Photonics Journal 10, no. 6 (December 2018): 1–16. http://dx.doi.org/10.1109/jphot.2018.2879973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Lewis, Geraint F., and Peter Tuthill. "Microlensing and photon bunching: the impact of decoherence." Monthly Notices of the Royal Astronomical Society 491, no. 4 (December 9, 2019): 5789–92. http://dx.doi.org/10.1093/mnras/stz3443.

Повний текст джерела
Анотація:
ABSTRACT Gravitational microlensing within the Galaxy offers the prospect of probing the details of distant stellar sources, as well as revealing the distribution of compact (and potentially non-luminous) masses along the line of sight. Recently, it has been suggested that additional constraints on the lensing properties can be determined through the measurement of the time delay between images through the correlation of the bunching of photon arrival times; an application of the Hanbury–Brown Twiss effect. In this paper, we revisit this analysis, examining the impact of decoherence of the radiation from a spatially extended source along the multiple paths to an observer. The result is that, for physically reasonable situations, such decoherence completely erases any correlation that could otherwise be used to measure the gravitational lensing time delay. Indeed, the divergent light paths traverse extremely long effective baselines at the lens plane, corresponding to extremes of angular resolving power well beyond those attainable with any terrestrial technologies; the drawback being that few conceivable celestial objects would be sufficiently compact with high enough surface brightness to yield usable signals.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Cindro, N., M. Korolija, and D. Shapira. "Two-proton correlations from heavy-ion collisions: Determining the reaction zone of Ni + Ni by the Hanbury-Brown-Twiss effect." Progress in Particle and Nuclear Physics 30 (January 1993): 65–73. http://dx.doi.org/10.1016/0146-6410(93)90006-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Lib, Ohad, and Yaron Bromberg. "Thermal biphotons." APL Photonics 7, no. 3 (March 1, 2022): 031301. http://dx.doi.org/10.1063/5.0085342.

Повний текст джерела
Анотація:
The observation of the Hanbury Brown and Twiss (HBT) effect with thermal light marked the birth of quantum optics. All the thermal sources considered to date did not feature quantum signatures of light, as they consisted of independent emitters that emit uncorrelated photons. Here, we propose and demonstrate an incoherent light source based on phase-randomized spatially entangled photons, which we coin thermal biphotons. We show that in contrast to thermal light, the width of the HBT peak for thermal biphotons is determined by their correlations, leading to violation of the Siegert relation and breakdown of the speckle-fluctuations interpretation. We further provide an alternative interpretation of the results by drawing a connection between the HBT effect and coherent backscattering of light. Finally, we discuss the role of spatial entanglement in the observed results, deriving a relation between the Schmidt number and the degree of violation of the Siegert relation under the double-Gaussian approximation of spontaneous parametric down conversion. Our work reflects new insights on the coherence properties of thermal light in the presence of entanglement, paving the way for entanglement certification using disorder averaged measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Büttiker, M., P. Samuelsson, and E. V. Sukhorukov. "Entangled Hanbury Brown Twiss effects with edge states." Physica E: Low-dimensional Systems and Nanostructures 20, no. 1-2 (December 2003): 33–42. http://dx.doi.org/10.1016/j.physe.2003.09.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

LI, JIAN-WEI, YU-GANG MA, and GUO-LIANG MA. "EFFECTS OF BULK VISCOSITY ON THE EVOLUTION OF RELATIVISTIC CAUSAL VISCOUS HYDRODYNAMICS." International Journal of Modern Physics E 19, no. 08n09 (September 2010): 1873–80. http://dx.doi.org/10.1142/s0218301310016326.

Повний текст джерела
Анотація:
The Hanbury-Brown Twiss (HBT) radii of Au + Au collisions at RHIC energy are investigated by a hydrodynamical expanding source with both shear (η) and bulk viscosities (ζ). With different height of the ratio of ζ to entropy density s, the ratio Rout/Rside of HBT radii can not describe the experimental data. But with large enough peak of ζ/s, the instability suggests that the source may clusterize which gives a hint to resolve the HBT puzzle.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Büttiker, M., and P. Samuelsson. "Hanbury Brown Twiss effects in channel mixing normal-superconducting systems." Physica E: Low-dimensional Systems and Nanostructures 18, no. 1-3 (May 2003): 60–63. http://dx.doi.org/10.1016/s1386-9477(02)00961-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Liu, Mengran, Qiang Zeng, Zeming Jian, Lei Nie, and Jun Tu. "Underwater target passive acoustic localization method based on Hanbury Brown–Twiss interference." Sensor Review 42, no. 6 (November 16, 2022): 725–32. http://dx.doi.org/10.1108/sr-03-2022-0161.

Повний текст джерела
Анотація:
Purpose Acoustic signals of the underwater targets are susceptible to noise, reverberation, submarine topography and biology, therefore it is difficult to precisely locate underwater targets. This paper proposes a new underwater Hanbury Brown-Twiss (HBT) interference passive localization method. This study aims to achieve precise location of the underwater acoustic targets. Design/methodology/approach The principle of HBT interference with ultrasensitive detection characteristics in optical measurements was introduced in the field of hydroacoustics. The coherence of the underwater target signal was analyzed using the HBT interference measurement principle, and the corresponding relationship between the signal coherence and target position was obtained. Consequently, an HBT interference localization model was established, and its validity was verified through simulations and experiments. Findings The effects of different array structures on the localization performance were obtained by simulation analysis, and the simulations confirmed that the HBT method exhibited a higher positioning accuracy than conventional beamforming. In addition, the experimental analysis demonstrated the excellent positioning performance of the HBT method, which verified the feasibility of the proposed method. Originality/value This study provides a new method for the passive localization of underwater targets, which may be widely used in the field of oceanic explorations.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

YANG, ZHENWEI, JIANPING CHENG, and XIANGMING SUN. "SPIN INTERACTION EFFECTS ON MOMENTUM CORRELATIONS FOR IDENTICAL FERMIONS EMITTED IN RELATIVISTIC HEAVY-ION COLLISIONS." Modern Physics Letters A 22, no. 02 (January 20, 2007): 131–39. http://dx.doi.org/10.1142/s0217732307020920.

Повний текст джерела
Анотація:
The Hanbury-Brown and Twiss (HBT) effects predict a Bose–Einstein enhancement of the two-particle momentum correlations of identical bosons at small relative momentum. However, the parallel momentum correlations between identical fermions are less argued. The momentum correlations can be altered by many factors, among which the spin interaction effects are discussed in this paper. It is found that the spin interaction plays an important role on the momentum correlations of identical fermions. For spin triplet state, a full Fermi–Dirac suppression represents as expected. On the contrary, a fake Bose–Einstein enhancement shows up for spin singlet state. The measured momentum correlations of fermions could hence provide some hints of spin interactions between them if all other factors such as Coulomb interactions were removed. Spin interactions make it more complicated to extract physical information from momentum correlations between fermions.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Jian-Wei, Li, Ma Yu-Gang, and Ma Guo-Liang. "Effects of bulk viscosity on hadron spectra and the Hanbury–Brown Twiss radius by causal viscous hydrodynamics." Chinese Physics B 18, no. 11 (November 2009): 4786–90. http://dx.doi.org/10.1088/1674-1056/18/11/030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

"Hanbury brown-Twiss effect in a two-photon interference experiment." Korean Journal of Optics and Photonics 14, no. 2 (April 1, 2003): 130–34. http://dx.doi.org/10.3807/kjop.2003.14.2.130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Silva, B., C. Sánchez Muñoz, D. Ballarini, A. González-Tudela, M. de Giorgi, G. Gigli, K. West, et al. "The colored Hanbury Brown–Twiss effect." Scientific Reports 6, no. 1 (December 2016). http://dx.doi.org/10.1038/srep37980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Rosenberg, Jason S., Lysander Christakis, Elmer Guardado-Sanchez, Zoe Z. Yan, and Waseem S. Bakr. "Observation of the Hanbury Brown–Twiss effect with ultracold molecules." Nature Physics, August 11, 2022. http://dx.doi.org/10.1038/s41567-022-01695-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Wu, Gaofeng, David Kuebel, and Taco D. Visser. "Generalized Hanbury Brown–Twiss effect in partially coherent electromagnetic beams." Physical Review A 99, no. 3 (March 25, 2019). http://dx.doi.org/10.1103/physreva.99.033846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Samuelsson, P., and M. Büttiker. "Chaotic Dot-Superconductor Analog of the Hanbury Brown–Twiss Effect." Physical Review Letters 89, no. 4 (July 2, 2002). http://dx.doi.org/10.1103/physrevlett.89.046601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wang, Li-Gang, Sajid Qamar, Shi-Yao Zhu, and M. Suhail Zubairy. "Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach." Physical Review A 79, no. 3 (March 24, 2009). http://dx.doi.org/10.1103/physreva.79.033835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Bai, Bin, Yu Zhou, Ruifeng Liu, Huaibin Zheng, Yunlong Wang, Fuli Li, and Zhuo Xu. "Hanbury Brown-Twiss effect without two-photon interference in photon counting regime." Scientific Reports 7, no. 1 (May 19, 2017). http://dx.doi.org/10.1038/s41598-017-02408-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lassègues, Pierre, Mateus Antônio Fernandes Biscassi, Martial Morisse, André Cidrim, Nolan Matthews, Guillaume Labeyrie, Jean-Pierre Rivet, et al. "Field and intensity correlations: the Siegert relation from stars to quantum emitters." European Physical Journal D 76, no. 12 (December 2022). http://dx.doi.org/10.1140/epjd/s10053-022-00558-5.

Повний текст джерела
Анотація:
AbstractThe Siegert relation relates field and intensity temporal correlations. After a historical review of the Siegert relation and the Hanbury Brown and Twiss effect, we discuss the validity of this relation in two different domains. We first show that this relation can be used in astrophysics to determine the fundamental parameters of stars, and that it is especially important for the observation with stellar emission lines. Second, we check the validity of this relation for moving quantum scatterers illuminated by a strong driving field.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Teaney, Derek. "Effect of shear viscosity on spectra, elliptic flow, and Hanbury Brown–Twiss radii." Physical Review C 68, no. 3 (September 29, 2003). http://dx.doi.org/10.1103/physrevc.68.034913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Samuelsson, P., E. V. Sukhorukov, and M. Büttiker. "Two-Particle Aharonov-Bohm Effect and Entanglement in the Electronic Hanbury Brown–Twiss Setup." Physical Review Letters 92, no. 2 (January 15, 2004). http://dx.doi.org/10.1103/physrevlett.92.026805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Wang, Yangyundou, Shenggang Yan, David Kuebel, and Taco D. Visser. "Generalized Hanbury Brown–Twiss effect and Stokes scintillations in the focal plane of a lens." Physical Review A 100, no. 2 (August 14, 2019). http://dx.doi.org/10.1103/physreva.100.023821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wang, Shi-Yao, and Wei-Ning Zhang. "Investigating Effect of Coherent Emission Length on Pion Interferometry in High-Energy Collisions Using a Multiphase Transport Model." Frontiers in Physics 10 (May 10, 2022). http://dx.doi.org/10.3389/fphy.2022.835592.

Повний текст джерела
Анотація:
We study the two-pion Hanbury Brown–Twiss correlation functions for a partially coherent source constructed with the emission points and momenta of the identical pions generated by a multiphase transport model. A coherent emission length is introduced, the effects of which on the two-pion interferometry results in central Au-Au collisions at sNN=200 GeV, central Pb-Pb collisions at sNN=2.76 TeV, and p-p collisions at s=13 TeV are investigated. It is found that the effect of coherent emission length reduces the two-pion correlation functions in the nucleus–nucleus collisions, leading to an average decrease of chaoticity parameter by approximately 15% in the high transverse momentum range. However, the influence of coherent emission length on the two-pion correlation functions in the p-p collisions is small, while the effect of coherent emission length on the chaoticity parameter is almost independent of the transverse momentum of pion pair in the p-p collisions.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Taktak, I., M. Kapfer, J. Nath, P. Roulleau, M. Acciai, J. Splettstoesser, I. Farrer, D. A. Ritchie, and D. C. Glattli. "Two-particle time-domain interferometry in the fractional quantum Hall effect regime." Nature Communications 13, no. 1 (October 4, 2022). http://dx.doi.org/10.1038/s41467-022-33603-3.

Повний текст джерела
Анотація:
AbstractQuasi-particles are elementary excitations of condensed matter quantum phases. Demonstrating that they keep quantum coherence while propagating is a fundamental issue for their manipulation for quantum information tasks. Here, we consider anyons, the fractionally charged quasi-particles of the Fractional Quantum Hall Effect occurring in two-dimensional electronic conductors in high magnetic fields. They obey anyonic statistics, intermediate between fermionic and bosonic. Surprisingly, anyons show large quantum coherence when transmitted through the localized states of electronic Fabry-Pérot interferometers, but almost no quantum interference when transmitted via the propagating states of Mach-Zehnder interferometers. Here, using a novel interferometric approach, we demonstrate that anyons do keep quantum coherence while propagating. Performing two-particle time-domain interference measurements sensitive to the two-particle Hanbury Brown Twiss phase, we find 53 and 60% visibilities for anyons with charges e/5 and e/3. Our results give a positive message for the challenge of performing controlled quantum coherent braiding of anyons.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Li, Liming, Peilong Hong, and Guoquan Zhang. "Transverse revival and fractional revival of the Hanbury Brown and Twiss bunching effect with discrete chaotic light." Physical Review A 99, no. 2 (February 25, 2019). http://dx.doi.org/10.1103/physreva.99.023848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhang, Yao, Jingbo Zhang, Jianli Liu, and Lei Huo. "Effect of the shear viscosity to entropy density ratio on Hanbury-Brown–Twiss radii in a multiphase transport model." Physical Review C 92, no. 1 (July 27, 2015). http://dx.doi.org/10.1103/physrevc.92.014909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії