Добірка наукової літератури з теми "GTPasi"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "GTPasi".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "GTPasi"
Irving, Helen R. "Abscisic acid induction of GTP hydrolysis in maize coleoptile plasma membranes." Functional Plant Biology 25, no. 5 (1998): 539. http://dx.doi.org/10.1071/pp98009.
Повний текст джерелаEstevez, Ana Y., Tamara Bond, and Kevin Strange. "Regulation of I Cl,swell in neuroblastoma cells by G protein signaling pathways." American Journal of Physiology-Cell Physiology 281, no. 1 (July 1, 2001): C89—C98. http://dx.doi.org/10.1152/ajpcell.2001.281.1.c89.
Повний текст джерелаUno, Tomohide, Tsubasa Moriwaki, Yuri Isoyama, Yuichi Uno, Kengo Kanamaru, Hiroshi Yamagata, Masahiko Nakamura, and Michihiro Takagi. "Rab14 from Bombyx mori (Lepidoptera: Bombycidae) shows ATPase activity." Biology Letters 6, no. 3 (January 13, 2010): 379–81. http://dx.doi.org/10.1098/rsbl.2009.0878.
Повний текст джерелаHerrmann, Andrea, Britta A. M. Tillmann, Janine Schürmann, Michael Bölker, and Paul Tudzynski. "Small-GTPase-Associated Signaling by the Guanine Nucleotide Exchange Factors CpDock180 and CpCdc24, the GTPase Effector CpSte20, and the Scaffold Protein CpBem1 in Claviceps purpurea." Eukaryotic Cell 13, no. 4 (January 31, 2014): 470–82. http://dx.doi.org/10.1128/ec.00332-13.
Повний текст джерелаShan, Shu-ou, Sowmya Chandrasekar, and Peter Walter. "Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation." Journal of Cell Biology 178, no. 4 (August 6, 2007): 611–20. http://dx.doi.org/10.1083/jcb.200702018.
Повний текст джерелаNur-E-Kamal, M. S., and H. Maruta. "The role of Gln61 and Glu63 of Ras GTPases in their activation by NF1 and Ras GAP." Molecular Biology of the Cell 3, no. 12 (December 1992): 1437–42. http://dx.doi.org/10.1091/mbc.3.12.1437.
Повний текст джерелаKötting, Carsten, and Klaus Gerwert. "What vibrations tell us about GTPases." Biological Chemistry 396, no. 2 (February 1, 2015): 131–44. http://dx.doi.org/10.1515/hsz-2014-0219.
Повний текст джерелаKilloran, Ryan C., and Matthew J. Smith. "Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel." Journal of Biological Chemistry 294, no. 25 (May 14, 2019): 9937–48. http://dx.doi.org/10.1074/jbc.ra119.008653.
Повний текст джерелаKesseler, Christoph, Julian Kahr, Natalie Waldt, Nele Stroscher, Josephine Liebig, Frank Angenstein, Elmar Kirches, and Christian Mawrin. "EXTH-64. SMALL GTPASES IN MENINGIOMAS: PROLIFERATION, MIGRATION, SURVIVAL, POTENTIAL TREATMENT AND INTERACTIONS." Neuro-Oncology 22, Supplement_2 (November 2020): ii101. http://dx.doi.org/10.1093/neuonc/noaa215.418.
Повний текст джерелаHumphries, Brock A., Zhishan Wang, and Chengfeng Yang. "MicroRNA Regulation of the Small Rho GTPase Regulators—Complexities and Opportunities in Targeting Cancer Metastasis." Cancers 12, no. 5 (April 28, 2020): 1092. http://dx.doi.org/10.3390/cancers12051092.
Повний текст джерелаДисертації з теми "GTPasi"
ZAMBERLAN, MARGHERITA. "La piccola GTPasi Rap1 interposta tra la proteina mitocondriale Opa1 e l'inibizione dell'angiogenesi." Doctoral thesis, Università degli studi di Padova, 2022. https://hdl.handle.net/11577/3460979.
Повний текст джерелаOPA1 is a protein with pleiotropic functions ranging from the orchestration of mitochondrial fusion and cristae remodeling to transcriptional reprogramming 1, 2. Here we present two different mechanisms by which OPA1 exerts a transcriptional regulation activity in endothelial and breast cancer cells. Mitochondria are dynamic organelles that are now recognized as regulators of signal transduction able to impact on cellular genetic programs 3, 4. Increasing evidence support a fundamental role for mitochondrial shape in the orchestration of cellular transcriptional programs, but how cells sense and respond to changes in mitochondrial shape is unclear 5. We recently discovered that angiogenesis is transcriptionally modulated by the key mitochondrial fusion gene OPA1 through NFκB activation1. In particular, ablation of OPA1 in vivo and in vitro leads to developmental and tumor angiogenesis inhibition 1. A deep RNA sequencing analysis identified a signature for the Ras-proximate-1 RAP1, and its cyclic AMP (cAMP)-activated nucleotide exchange factor EPAC1 upon OPA1 deletion in Human Umbilical Vein Endothelial Cells (HUVECs). Previously, several studies had reported the essential role of Rap1 in developmental angiogenesis and vessel stabilization 6, 7. After birth, Rap1 is not essential, but it participates in the maintenance of vasculature and nitric oxide (NO) homeostasis 6, 8. Albeit EPAC1 is highly abundant and cover numerous functions in endothelial cells, its role in angiogenesis remained to be clarified 9. Likewise, EPAC1 was shown to be important for endothelial cells biology 10, 11. A handful of studies retrieved EPAC1 in mitochondria, and RAP1 in mitochondria associated membranes (MAMs) by proteomics, suggesting that they might be linked to mitochondria 12, 13. Whether the EPAC1/RAP1 axis could sense changes in mitochondria driven by OPA1 deletion was unknown. Our results show that EPAC1 and RAP1 localize in proximity to mitochondria and in MAMs, that are emerging as hubs for mitochondria-derived signals. Moreover, EPAC1 accumulates on mitochondria upon pharmacological activation and following OPA1 silencing. OPA1 silencing results in an increase in Ca2+ and in localized cAMP increase in proximity of mitochondria that in turn activated EPAC1 and therefore RAP1. Notably, Ca2+ chelation by BAPTA-AM treatment suppress the EPAC1/RAP1 activation elicited by OPA1 downregulation. Furthermore, the analysis of angiogenic parameters like migration and tubulogenesis revealed that the blockage of EPAC1 and RAP1 signaling could correct the defects caused by OPA1 downregulation. Thus, our work places EPAC1/RAP1 in the retrograde signaling pathway connecting mitochondria to angiogenesis and highlights the intricate network of signals and second messengers that can execute transcriptional changes when mitochondria are perturbed.
Normandin, Caroline. "Identification et caractérisation de GTPases Activating Proteins spécifiques à la petite GTPase RAB21." Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11544.
Повний текст джерелаAbstract : Autophagy is defined as the lysosomal degradation and recycling of cellular constituents. At basal levels, autophagy eliminates protein aggregates or damaged organelles. In condition of stress, such as in condition of nutritional deficiency, hypoxia or cancer treatments, autophagy allow cells to adapt and survive. Therefore, autophagy is an essential system required for survival and maintenance of cellular homeostasis. It is thus essential to identify the cellular entities and mechanisms regulating this process. RAB GTPases were identified as master regulators of autophagy. These particular proteins act as molecular switches for the rapid execution of cellular responses. RABs are activated by Guanine Nucleotide Exchange Factors (GEF) whereas GTPase Activating Proteins (GAP) accelerates RAB deactivation. RAB21 is essential in the late stages of autophagy. Indeed, RAB21 is activated by nutritional deficiency, via its GEF MTMTR13, to allow trafficking of a SNARE required for autophagic flux. During starvation, RAB21 is deactivated which suggest that a GAP could negatively regulate RAB21 activity. However, to date no GAP for RAB21 has been identified. An eye modifier genetic screen in Drosophila was performed to identify potential RAB21 GAPs and some candidates were identified. As a result of this screen, the GAP TBC1D25 was identified as interacting with RAB21. Moreover, this interaction was increased by starvation. Proximity ligation assays revealed that the RAB21-TBC1D25 interaction partially localized at early endosomes. Moreover, prolonged activation of RAB5, located at early endosomes, inhibited RAB21-TBC1D25 interaction. Further experiments will be carried out to explain these results. With respect to the roles of autophagy in cancer, RAB21 was shown to be overexpressed in cells with high autophagic flux as well as in some colon cancer tumors. Importantly, the expression of Tbc1d25 in these same tumors does not appear to be increased, indicating that TBC1D25 could be an autophagic inhibitor specific to cells with a high autophagic flow. My work suggests that TBC1D25 could function as a GAP to negatively regulate RAB21 activity in condition of prolonged starvation.
Chan, King-chung Fred, and 陳敬忠. "Functional characterization of StAR-related lipid transfer domain containing 13 (DLC 2) RhoGAP in the nervous system." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278449.
Повний текст джерелаChan, King-chung Fred. "Functional characterization of StAR-related lipid transfer domain containing 13 (DLC 2) RhoGAP in the nervous system." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278449.
Повний текст джерелаPaul, Florian [Verfasser]. "Developing quantitative GTPase affinity purification (qGAP) to identify interaction partners of Rho GTPases / Florian Paul." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1069532711/34.
Повний текст джерелаPaul, Florian Ernst Rudolf Benjamin [Verfasser]. "Developing quantitative GTPase affinity purification (qGAP) to identify interaction partners of Rho GTPases / Florian Paul." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1069532711/34.
Повний текст джерелаBery, Nicolas. "Nouvelle stratégie de ciblage de la GTPase RhoB : développement d'intracorps conformationnels sélectifs et leur fonctionnalisation en tant qu'inhibiteurs intracellulaires de l'activité de RhoB." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2734/.
Повний текст джерелаRhoB GTPase shares more than 85% of homology with RhoA and RhoC. These proteins switch between an active conformation bound to GTP and an inactive one bound to GDP. Deregulations of their expression and/or their activity are often found in many cancers. To date, no selective inhibitor of these GTPases has been developed in order to block selectively Rho's activity. This project showed an original approach targeting RhoB's activity. After a new single domain antibody library characterization, its validation using the phage display technology against various antigens gave many highly functional antibodies in many applications. Set up of a new direct screening strategy of intracellular antibody (intrabody) raised against RhoB allowed us to identify several conformational intrabodies of RhoB active form, one of them discriminating RhoB from its homologs RhoA and RhoC. Intrabody functionalization with an Fbox domain driving target to degradation led to the identification of the first efficient selective RhoB activity inhibitory strategy. These work demonstrated that RhoB activity knockdown with functionalized intrabodies increased migration and invasion of pulmonary cells. In conclusion this tool will allow to determine if RhoB activity could be a new therapeutic target and open new perspectives to study GTPases activity
Ghiaur, Gabriel. "The role of Rho GTPases in hematopoietic stem cell biology RhoA GTPase regulates adult HSC engraftment and Rac1 GTPases is important for embryonic HSC /." Cincinnati, Ohio : University of Cincinnati, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204374567.
Повний текст джерелаPeurois, François. "Activation des petites GTPases à la périphérie des membranes." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN037.
Повний текст джерелаSmall GTPases are major regulators of many cellular processes. Nucleotide exchange factors (GEF) activate small GTPases. Deregulation of the activation of small GTPases is at the origin of several diseases, such as certain diabetes and cancers. GTPases and GEFs interact together at the periphery of cell membranes. Beyond a simple place of co-localization, biological membranes have physicochemical properties directly impacting the activation of small GTPases by GEFs. This thesis project is based on three axes, 1) to propose an experimental strategy to quantitatively measure the effects of membranes in this activation 2) to establish a model of the activation at the periphery of membranes of the GEF EPAC1, a therapeutic target in heart diseases, 3) to characterize known ArfGEF inhibitory small molecules in a membrane context. The results showed that membranes modified GEF catalytic efficiency, and questioned their specificity towards small GTPases. The membranes also appear as partners for the activation of EPAC1 in cooperation with cAMP. These effects could be explained by a co-localization between GEF and GTPases on the membranes surfaces, a conformational rearrangement of the GEF induced by membranes, a modification of lateral diffusion of the GEF, or a catalytically advantageous geometry of the GEF-GTPase-membrane complex. Finally, understanding the involvement of membranes in this activation leads us to imagine new therapeutic inhibition strategies
Keller, Laura. "Conception de nano-anticorps conformationnels comme nouveaux outils d'étude de l'activité des GTPases de la sous-famille RHOA." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30005/document.
Повний текст джерелаRHOA small GTPase belongs to a subfamily acting as a molecular switch activating major signaling pathways that regulate cytoskeletal dynamics and a variety of cellular responses such as cell cycle progression, cytokinesis, migration and polarity. RHOA activity resides in a few percent of GTP loaded protein, which is finely tuned by a crosstalk between regulators of the GTPase cycle. Manipulating a single RHO at the expression level often induces imbalance in the activity of other RHO GTPases, suggesting that more specific tools targeting these active pools are needed to decipher RHOA functions in time and space. We decided to use single domain antibodies, also known as VHH or nanobodies, as a new tool for studying RHOA activation. We produced and screened a novel fully synthetic phage display library of humanized nanobodies (NaLi-H1) to develop conformational sensors of the GTP loaded active conformation of RHO subfamily. We obtained several high affinity nanobodies against RHOA's active form which we characterized as RHO active antibodies in vitro and RHO signaling blocking intrabodies in cellulo. These new tools will facilitate and improve our current knowledge of this peculiar protein subfamily and will be a paradigm for the study of other RHO related small GTPases
Книги з теми "GTPasi"
Manser, Ed, and Thomas Leung. GTPase Protocols. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592592813.
Повний текст джерелаJoan, Marsh, and Goode Jamie, eds. The GTPase superfamily. Chichester: Wiley, 1993.
Знайти повний текст джерелаRush, Mark, and Peter D’Eustachio, eds. The Small GTPase Ran. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1501-2.
Повний текст джерелаCorda, D., H. Hamm, and A. Luini. GTPase-controlled molecular machines. Rome: Ares-Serono Symposia Publications, 1994.
Знайти повний текст джерелаPandey, Girdhar K., Manisha Sharma, Amita Pandey, and Thiruvenkadam Shanmugam. GTPases. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11611-2.
Повний текст джерелаEd, Manser, and Leung Thomas, eds. GTPase protocols: The Ras superfamily. Totowa, N.J: Humana Press, 2002.
Знайти повний текст джерелаHolmes, L. P. Gtpase protocols: The ras superfamily. [Place of publication not identified]: Humana, 2010.
Знайти повний текст джерелаLi, Guangpu, and Nava Segev, eds. Rab GTPases. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1346-7.
Повний текст джерелаLi, Guangpu, ed. Rab GTPases. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2569-8.
Повний текст джерелаRivero, Francisco, ed. Rho GTPases. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-61779-442-1.
Повний текст джерелаЧастини книг з теми "GTPasi"
Edelstein-Keshet, Leah. "Pattern Formation Inside Living Cells." In SEMA SIMAI Springer Series, 79–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86236-7_5.
Повний текст джерелаDel Pulgar, Teresa Gómez, and Juan Carlos Lacal. "GTPase." In Encyclopedia of Cancer, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_2533-2.
Повний текст джерелаDel Pulgar, Teresa Gómez, and Juan Carlos Lacal. "GTPase." In Encyclopedia of Cancer, 1968–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_2533.
Повний текст джерелаPulgar, Teresa Gómez Del, and Juan Carlos Lacal. "GTPase." In Encyclopedia of Cancer, 1609–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_2533.
Повний текст джерелаKonstantinidis, Diamantis G., and Theodosia A. Kalfa. "Rac GTPase." In Encyclopedia of Signaling Molecules, 4408–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_597.
Повний текст джерелаKonstantinidis, Diamantis G., and Theodosia A. Kalfa. "Rac GTPase." In Encyclopedia of Signaling Molecules, 1–7. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4614-6438-9_597-1.
Повний текст джерелаDempsey, Brian R., Anne C. Rintala-Dempsey, Gary S. Shaw, Yuan Xiao Zhu, A. Keith Stewart, Jaime O. Claudio, Constance E. Runyan, et al. "Small GTPase." In Encyclopedia of Signaling Molecules, 1752. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101254.
Повний текст джерелаMcCormick, F. "GTPase Activating Proteins." In GTPases in Biology I, 345–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78267-1_23.
Повний текст джерелаStefanini, Lucia, Robert H. Lee, and Wolfgang Bergmeier. "GTPases." In Platelets in Thrombotic and Non-Thrombotic Disorders, 263–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47462-5_20.
Повний текст джерелаPandey, Girdhar K., Manisha Sharma, Amita Pandey, and Thiruvenkadam Shanmugam. "Overview of G Proteins (GTP-Binding Proteins) in Eukaryotes." In GTPases, 1–7. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11611-2_1.
Повний текст джерелаТези доповідей конференцій з теми "GTPasi"
Na, Sungsoo. "Engineering Tools for Studying Coordination Between Biochemical and Biomechanical Activities in Cell Migration." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53709.
Повний текст джерелаMondal, Subhanjan, Said Goueli, and Kevin Hsiao. "Abstract C204: GTPase/GAP/GEF-Glo™: A bioluminescent system to measure GTPase, GAP, and GEF activities." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-c204.
Повний текст джерелаMondal, Subhanjan, and Said A. Goueli. "Abstract B44: GTPase/GAP/GEF-Glo™: A bioluminescent system to measure GTPase, GAP, and GEF activities." In Abstracts: AACR Special Conference on RAS Oncogenes: From Biology to Therapy; February 24-27, 2014; Lake Buena Vista, FL. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1557-3125.rasonc14-b44.
Повний текст джерелаSchulze, J., L. Heinkele, M. Steffens, A. Warnecke, T. Lenarz, I. Just, and A. Rohrbeck. "Rho-GTPase und p38 vermittelte Neuroprotektion in Spiralganglienzellen." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641056.
Повний текст джерелаAuthi, K. S., B. J. Evenden та N. Crawford. "ACTION OF GTPγS [GUANOSINE 5∲-0-(3-THIOPHOSPHATE)] ON SAPONIN-PERMEABILISED PLATELETS: INVOLVEMENT OF 'G' PROTEINS IN PLATELET ACTIVATION". У XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644514.
Повний текст джерелаWeber, Igor. "Oscillatory dynamics of small GTPase Rac1 in motile cells." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1187.
Повний текст джерелаJakobs, K. H., P. Gierschik, and R. Grandt. "THE ROLE OF GTP-BINDING PROTEINS EXHIBITING GTPase ACTIVITY IN PLATELET ACTIVATION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644773.
Повний текст джерелаAcosta, Lehi, Aaron Rogers, Jingfu Peng, Alan Mueller, Zongzhong Tong, Donghan Shin, Jae Hyuk Yoo, et al. "Abstract 4367: The small GTPase ARF6 is necessary for melanomagenesis." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4367.
Повний текст джерелаSchulze, J., L. Heinkele, M. Steffens, A. Warnecke, T. Lenarz, I. Just, and A. Rohrbeck. "Rho-GTPase and p38 mediated neuroprotection in spiral ganglion cells." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641057.
Повний текст джерелаPusapati, Ganesh Varma, An Rykx, Sandy Vandoninck, Johan van Lint, Guido Adler, and Thomas Seufferlein. "Abstract 296: Protein kinase D regulates Rho GTPase activity through rhotekin." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-296.
Повний текст джерелаЗвіти організацій з теми "GTPasi"
Simpson, Kaylene J. Rho GTPase Involvement in Breast Cancer Migration and Invasion. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada435395.
Повний текст джерелаSimpson, Kaylene J. Rho GTPase Involvement in Breast Cancer Migration and Invasion. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada469757.
Повний текст джерелаYang, Zhenbiao. ROP GTPase Signaling in The Hormonal Regulation of Plant Growth. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1080178.
Повний текст джерелаKandpal, Rajendra P., and G. M. Nagaraja. Involvement of a Novel Rho GTPase Activating Protein in Breast Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada404607.
Повний текст джерелаBand, Vimia. Human Mammary Epithelial Cell Transformation by Rho GTPase through a Novel Mechanism. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada500910.
Повний текст джерелаKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada442688.
Повний текст джерелаKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada456604.
Повний текст джерелаKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada426448.
Повний текст джерелаKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada422281.
Повний текст джерелаKleer, Celina G. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada473395.
Повний текст джерела