Добірка наукової літератури з теми "Grinding additive"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Grinding additive".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Grinding additive"
Paramasivam, R., and R. Vedaraman. "Studies in additive grinding of minerals." Advanced Powder Technology 3, no. 1 (1992): 31–37. http://dx.doi.org/10.1016/s0921-8831(08)60686-x.
Повний текст джерелаDenkena, Berend, Alexander Krödel, Jan Harmes, Fabian Kempf, Tjorben Griemsmann, Christian Hoff, Jörg Hermsdorf, and Stefan Kaierle. "Additive manufacturing of metal-bonded grinding tools." International Journal of Advanced Manufacturing Technology 107, no. 5-6 (March 2020): 2387–95. http://dx.doi.org/10.1007/s00170-020-05199-9.
Повний текст джерелаTakahashi, H., Y. B. Tian, Y. Mikami, J. Shimizu, Li Bo Zhou, Y. Tashiro, H. Iwase, and S. Kamiya. "Effect of Wheel Additive On Chemo-Mechanical Grinding (CMG) of Single Crystal Si Wafer." Key Engineering Materials 447-448 (September 2010): 106–10. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.106.
Повний текст джерелаWang, Jian Feng, Dong Min Wang, Duan Le Li, Guan Bao Tang, and Cheng Du. "The Theoretical Research on Development Direction of Cement Grinding Aids." Advanced Materials Research 668 (March 2013): 269–73. http://dx.doi.org/10.4028/www.scientific.net/amr.668.269.
Повний текст джерелаBalan, Arunachalam S. S., Kannan Chidambaram, Arun V. Kumar, Hariharan Krishnaswamy, Danil Yurievich Pimenov, Khaled Giasin, and Krzysztof Nadolny. "Effect of Cryogenic Grinding on Fatigue Life of Additively Manufactured Maraging Steel." Materials 14, no. 5 (March 5, 2021): 1245. http://dx.doi.org/10.3390/ma14051245.
Повний текст джерелаZhang, Hao Qiang, Xiao Ming Jia, and Fei Wang. "Study of Inhibition Function of Grinding Fluid Additive to Leaching Cobalt from Cemented Carbide." Key Engineering Materials 416 (September 2009): 381–85. http://dx.doi.org/10.4028/www.scientific.net/kem.416.381.
Повний текст джерелаZhou, Zhao Zhong, Kai Ping Feng, Bing Hai Lv, Hong Wei Fan, and Ju Long Yuan. "Analysis on Wear of Self-Sharpening Fine Super-Hard Abrasive Tool." Advanced Materials Research 797 (September 2013): 528–33. http://dx.doi.org/10.4028/www.scientific.net/amr.797.528.
Повний текст джерелаENÜSTÜN, B. V., D. C. LIU, K. L. LIN, and R. MARKUSZEWSKI. "Use of a Surfactant as a Coal Grinding Additive." Coal Preparation 4, no. 3-4 (June 1987): 193–207. http://dx.doi.org/10.1080/07349348708945532.
Повний текст джерелаTian, Chenchen, Yi Wan, Xuekun Li, and Yiming Rong. "Pore morphology design and grinding performance evaluation of porous grinding wheel made by additive manufacturing." Journal of Manufacturing Processes 79 (July 2022): 1–10. http://dx.doi.org/10.1016/j.jmapro.2022.04.024.
Повний текст джерелаSONG, Myoung Youp, and Eunho CHOI. "Effects of Milling in Hydrogen on Magnesium Hydride with a Hydride-Forming Titanium Additive." Materials Science 27, no. 2 (May 5, 2021): 184–91. http://dx.doi.org/10.5755/j02.ms.25056.
Повний текст джерелаДисертації з теми "Grinding additive"
Skrzypczak, Mathieu. "Compréhension des mécanismes physico-chimiques intervenant lors du broyage à sec du carbonate de calcium en présence d'agents de broyage." Ecully, Ecole centrale de Lyon, 2009. http://www.theses.fr/2009ECDL0021.
Повний текст джерелаThis work aims at understanding the physicochemical mechanisms that occur while processing the dry grinding of calcium carbonate (CaC03). The particles size reduction is helped by grinding aid addition that permits to significantly reduce power consumption. We try to define the different effects of additives on grinding and to quantify their relative importance on the final result. In a first attempt, surface forces were considered and it was shown that low surface tension additive was generally related to high grinding efficiency. On the other side, the surface energy of the powder, determined using the Washburn method, does not seem to influence the final process efficiency. In a second time, we considered the CaCO3 mechanical behavior and showed the existence of a critical size of ductile-brittle transition comprised between 1 and 2 µm. This dimension corresponds to the grinding limit observed experimentally in CaCO3 dry grinding. The material seems to be very sensitive to the fatigue process and it appears fracture can occur after a repetition of low applied stress. Finalyy, we emphasized the additive effect on the CaCO3 surface hardness. This hardening may increase the material brittleness and therefore eases grinding. Small scale grinding experiments highlight the fact that the grinding aid efficiency results both from a low liquid surface tension that reduces surface forces between particles and from a material hardening due to additive presence
Carmo, Carolina de Almeida. "Grau de moagem do milho, inclusão de subprodutos agroindustriais e aditivo microbiológico em rações para vacas leiteiras." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/11/11139/tde-09082005-125013/.
Повний текст джерелаThree experiments were conducted to assess the effects of corn grain grinding, byproducts and yeast culture supplementation in dairy cow rations containing corn silage as forage. Experiment 1: Thirty six lactating Holstein cows (330 days in milk - DIM) were used to study the supplementation of yeast culture (Levucell SC20 Lallemand Animal Nutrition) in dairy rations with partial (50%) replacement of finely ground corn by dried citrus pulp. A repeated 4x4 Latin Square design was used. Dry matter intake, milk yield and composition and plasma glucose were not affected (P>0,05) by treatments. Milk urea nitrogen was raised by yeast culture supplementation (P<0,05). Plasma urea nitrogen was reduced by feeding citrus pulp in partial replacement of corn (P<0,05). The partial replacement of finely ground corn by dried citrus pulp did not affect the cows performance with 19 kg/d milk yield. Experiment 2: Twenty eight lactating Holstein cows (230 DIM) were used to evaluate the effects on performance of varying contents of starch in the ration. Starch contents was varied by replacing fine ground corn by dried citrus pulp. Treatments were: 15% (AM15), 20% (AM20), 25% (AM25) e 30% of starch (AM30) in the ration dry matter. A repeated 4x4 Latin Square design was used. Milk yield was 27,94; 29,17; 31,11 e 29,64 kg/d for treatments AM15, AM20, AM25 and AM30, respectively, with cubic effect (P<0,05). Milk fat, protein, lactose and total solids yield were affected cubically (P<0,05). Linear effects were detected for protein, total solids and milk urea nitrogen contents (P<0,05). Milk fat contents, plasma urea nitrogen and glucose were not affected by treatments (P>0.05). Cows producing about 30 kg/d got better performance when fed with rations 25% starch contents. Did not have advantage by supplying 30% starch contents rations. Trial 3: Thirty two mid lactating Holstein cows (160 DIM) were used to study the effects on performance of corn grain grinding (coarse or fine) and its combination with dried citrus pulp or soy hulls. A repeated 4x4 Latin Square design was used. The treatments were: fine ground corn + citrus pulp (MFPC), coarse ground corn + citrus pulp (MGPC), fine ground corn + soy hulls (MFCS), coarse ground corn + soy hulls (MGCS). Treatments did not affect DMI, milk yield, milk fat, protein and lactose contents, plasma urea N and glucose (P>0.05). The interaction corn grain grinding and byproduct source was significative for fat corrected milk, fat and total solids yield (P<0,05). Corn grain grinding and byproduct variety did not affect the cows performance with 24 kg/d milk yield.
Chipakwe, Vitalis. "Comparative Study of Chemical Additives Effects on Dry Grinding Performance." Licentiate thesis, Luleå tekniska universitet, Mineralteknik och metallurgi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85155.
Повний текст джерелаKolarctic CBC (KO1030 SEESIMA)
Kozdas, Ondřej. "Aktivátory mletí." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-233364.
Повний текст джерела"Influence of the grinding dust addition in a matrix ofmagnesium phosphate cement." Tese, Biblioteca Digital de Teses e Dissertações da Universidade Federal de São Carlos, 2006. http://www.bdtd.ufscar.br/tde_busca/arquivo.php?codArquivo=1280.
Повний текст джерелаAmad, Abdulkarim Abdulmaged. "Zum Einfluss unterschiedlicher Behandlungsverfahren und Zusatzstoffe auf ernährungsphysiologische Parameter und Leistung wachsender Broiler nach Verabreichung weizenbetonter Futtermischungen." 2001. http://hdl.handle.net/11858/00-1735-0000-0006-AB8E-D.
Повний текст джерелаКниги з теми "Grinding additive"
Llano, Samuel. Discordant Notes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199392469.001.0001.
Повний текст джерелаЧастини книг з теми "Grinding additive"
Phi-Trong, Hung, Trung Nguyen-Kien, Chung Luong-Hai, and Son Truong-Hoanh. "The Effect of Microstructure and Nano Additive Lubrication on the Specific Grinding Energy and Surface Roughness in Ti-6Al-4V Grinding." In The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering, 1023–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1968-8_87.
Повний текст джерелаLi, X. J., Dong Ming Guo, R. K. Ren, and Zhu Ji Jin. "Research on Effects of Slurry Additives in Cu CMP for ULSI Manufacturing." In Advances in Grinding and Abrasive Technology XIII, 350–54. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-986-5.350.
Повний текст джерела"Optimization Design of Process Parameters for Different Workpiece Materials in NMQL Grinding With Different Vegetable Oils." In Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding, 337–57. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1546-4.ch015.
Повний текст джерелаJemmali, Mosbah, Basma Marzougui, Youssef Ben Smida, Riadh Marzouki, and Mohamed Triki. "Polycrystalline Powder Synthesis Methods." In Crystallization and Applications. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.97006.
Повний текст джерелаSniezhkin, Yurii, Raisa Shapar, and Olena Husarova. "GRINDING AND FRACTIONATION OF DRIED PLANT MATERIALS." In Priority areas for development of scientific research: domestic and foreign experience. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-049-0-35.
Повний текст джерела"Thin-Section Preparation and Transmitted-Light Microscopy." In Optical Microscopy of Fiber-Reinforced Composites, 115–35. ASM International, 2010. http://dx.doi.org/10.31399/asm.tb.omfrc.t53030115.
Повний текст джерелаCarmichael Milton, Jemimah, and Prince Arulraj Gnanaraj. "Compressive Strength of Concrete with Nano Cement." In Cement Industry - Optimization, Characterization and Sustainable Application. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93881.
Повний текст джерелаAyele Haile, Abebe. "Important Medicinal Plants in Ethiopia: A Review in Years 2015–2020." In Herbs and Spices - New Processing Technologies [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97937.
Повний текст джерелаТези доповідей конференцій з теми "Grinding additive"
Wu, Zhi-Yuan, Shu-Hui Wang, Xin-Li Tian, Xiu-Jian Tang, and Jun-Wei Yang. "Research on Interaction of Additive in Paraffin Base Grinding Fluid." In 2016 International Conference on Mechanics and Materials Science (MMS2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813228177_0133.
Повний текст джерелаWu, Zhi-Yuan, Shu-Hui Wang, Kai-Wen Ji, and Jun-Wei Yang. "The Blockage of Diamond Grinding Wheel with Normal Acid and Alcohol Additive." In The 2nd Annual International Workshop on Materials Science and Engineering (IWMSE 2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226517_0047.
Повний текст джерелаTillmann, W., J. Zajaczkowski, I. Baumann, C. Schaak, D. Biermann, and M. Kipp. "Qualification of the Low-Pressure Cold Gas Spraying for the Additive Manufacturing of Copper-Nickel-Diamond Grinding Wheels." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0590.
Повний текст джерелаParamasivam, Ramasamy, and Baskaran Rajendran Nair. "Effect of Calcium Stearate as Grinding Additive for Grinding of Calcite in Ball Mill, Rod Mill and Vibration Ball Mill: A Comparative Study." In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_299.
Повний текст джерелаAgu, Obiora S., Lope G. Tabil, Edmund Mupondwa, Duncan Cree, and Bagher Emadi. "Effect of biochar additive in torrefied biomass: energy consumption, mass yield, grinding performance, and thermochemical properties." In 2021 ASABE Annual International Virtual Meeting, July 12-16, 2021. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2021. http://dx.doi.org/10.13031/aim.202100926.
Повний текст джерелаPavel, Radu, and Anil K. Srivastava. "Investigations for Safe Grinding of Ti-6Al-4V Parts Produced by Direct Metal Laser Sintering (DMLS) Technology." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4130.
Повний текст джерелаSingh, Aswani Kumar, and Varun Sharma. "Comparative Life Cycle Assessment of Various Grinding Strategies for Nickel Base Superalloys." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73073.
Повний текст джерелаQuadrini, F., D. Bellisario, G. M. Tedde, and L. Santo. "Recycling of Printed Circuit Boards by Direct Molding Technology." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2745.
Повний текст джерелаFashanu, Felicia F., Denis J. Marcellin-Little, and Barbara S. Linke. "Review of Surface Finishing of Additively Manufactured Metal Implants." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8419.
Повний текст джерелаOberste-Lehn, Ulli, Andreas Karl, and Chad Beamer. "Influence of Machining on Low Temperature Surface Hardening of Stainless Steel." In HT2019. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.ht2019p0343.
Повний текст джерела