Статті в журналах з теми "Gray molasses cooling"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Gray molasses cooling.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-18 статей у журналах для дослідження на тему "Gray molasses cooling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Triché, C., P. Verkerk, and G. Grynberg. "Blue-Sisyphus cooling in cesium gray molasses and antidot lattices." European Physical Journal D - Atomic, Molecular and Optical Physics 5, no. 2 (February 1, 1999): 225–28. http://dx.doi.org/10.1007/s100530050249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Salomon, G., L. Fouché, P. Wang, A. Aspect, P. Bouyer, and T. Bourdel. "Gray-molasses cooling of 39 K to a high phase-space density." EPL (Europhysics Letters) 104, no. 6 (December 1, 2013): 63002. http://dx.doi.org/10.1209/0295-5075/104/63002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boiron, D., C. Triché, D. R. Meacher, P. Verkerk, and G. Grynberg. "Three-dimensional cooling of cesium atoms in four-beam gray optical molasses." Physical Review A 52, no. 5 (November 1, 1995): R3425—R3428. http://dx.doi.org/10.1103/physreva.52.r3425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boiron, D., A. Michaud, P. Lemonde, Y. Castin, C. Salomon, S. Weyers, K. Szymaniec, L. Cognet та A. Clairon. "Laser cooling of cesium atoms in gray optical molasses down to 1.1 μK". Physical Review A 53, № 6 (1 червня 1996): R3734—R3737. http://dx.doi.org/10.1103/physreva.53.r3734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dobosz, Jakub, Mateusz Bocheński, and Mariusz Semczuk. "Bidirectional, Analog Current Source Benchmarked with Gray Molasses-Assisted Stray Magnetic Field Compensation." Applied Sciences 11, no. 21 (November 8, 2021): 10474. http://dx.doi.org/10.3390/app112110474.

Повний текст джерела
Анотація:
In ultracold-atom and ion experiments, flexible control of the direction and amplitude of a uniform magnetic field is necessary. It is achieved almost exclusively by controlling the current flowing through coils surrounding the experimental chamber. Here, we present the design and characterization of a modular, analog electronic circuit that enables three-dimensional control of a magnetic field via the amplitude and direction of a current flowing through three perpendicular pairs of coils. Each pair is controlled by one module, and we are able to continuously change the current flowing thorough the coils in the ±4 A range using analog waveforms such that smooth crossing through zero as the current’s direction changes is possible. With the electrical current stability at the 10−5 level, the designed circuit enables state-of-the-art ultracold experiments. As a benchmark, we use the circuit to compensate stray magnetic fields that hinder efficient sub-Doppler cooling of alkali atoms in gray molasses. We demonstrate how such compensation can be achieved without actually measuring the stray fields present, thus speeding up the process of optimization of various laser cooling stages.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bruce, G. D., E. Haller, B. Peaudecerf, D. A. Cotta, M. Andia, S. Wu, M. Y. H. Johnson, B. W. Lovett, and S. Kuhr. "Sub-Doppler laser cooling of40K with Raman gray molasses on the ${D}_{2}$ line." Journal of Physics B: Atomic, Molecular and Optical Physics 50, no. 9 (April 12, 2017): 095002. http://dx.doi.org/10.1088/1361-6455/aa65ea.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rio Fernandes, D., F. Sievers, N. Kretzschmar, S. Wu, C. Salomon, and F. Chevy. "Sub-Doppler laser cooling of fermionic 40 K atoms in three-dimensional gray optical molasses." EPL (Europhysics Letters) 100, no. 6 (December 1, 2012): 63001. http://dx.doi.org/10.1209/0295-5075/100/63001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shi, Zhenlian, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, and Jing Zhang. "Sub-Doppler Laser Cooling of 23 Na in Gray Molasses on the D 2 Line." Chinese Physics Letters 35, no. 12 (December 2018): 123701. http://dx.doi.org/10.1088/0256-307x/35/12/123701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ang'ong'a, Jackson, Chenxi Huang, Jacob P. Covey, and Bryce Gadway. "Gray molasses cooling of K39 atoms in optical tweezers." Physical Review Research 4, no. 1 (March 29, 2022). http://dx.doi.org/10.1103/physrevresearch.4.013240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Colzi, Giacomo, Gianmaria Durastante, Eleonora Fava, Simone Serafini, Giacomo Lamporesi, and Gabriele Ferrari. "Sub-Doppler cooling of sodium atoms in gray molasses." Physical Review A 93, no. 2 (February 18, 2016). http://dx.doi.org/10.1103/physreva.93.023421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nath, Dipankar, R. Kollengode Easwaran, G. Rajalakshmi, and C. S. Unnikrishnan. "Quantum-interference-enhanced deep sub-Doppler cooling of39K atoms in gray molasses." Physical Review A 88, no. 5 (November 8, 2013). http://dx.doi.org/10.1103/physreva.88.053407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hsiao, Ya-Fen, Yu-Ju Lin та Ying-Cheng Chen. "Λ -enhanced gray-molasses cooling of cesium atoms on the D2 line". Physical Review A 98, № 3 (28 вересня 2018). http://dx.doi.org/10.1103/physreva.98.033419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Liu Yan-xin, Wang Zhi-hui, Guan Shi-jun, Wang Qin-xia, Zhang Peng-fei, Li Gang та Zhang Tian-cai. "Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process". Acta Physica Sinica, 2024, 0. http://dx.doi.org/10.7498/aps.73.20240182.

Повний текст джерела
Анотація:
Λ-enhanced gray molasses cooling (Λ-GMC) technique has been widely used in experiments to prepare cold atomic samples below the sub-doppler temperature limit. To meet the experimental requirements of cavity quantum electrodynamics systems, we designed and constructed a wide-range, fast-tuning laser system by integrating tapered amplifiers, fiber phase modulators, etalon, and injection locking amplification techniques and so on. This laser system achieves a maximum tuning range of 600MHz and a frequency tuning speed of 5ns. Based on this laser system, loading atom in a crossed dipole trap assisted by cesium D2 line Λ-GMC cooling in the center of the optical microcavity is studied, various factors affecting the atom loading are mainly as follows: laser duration<i>τ</i>, three-dimensional magnetic field(<i>B<sub>x</sub></i>,<i>B<sub>y</sub></i>,<i>B<sub>z</sub></i>), single-photon detuning∆, two-photon detuning<i>δ</i>, ratio of cooling beam power to repumping beam power <i>I<sub>cool</sub></i>/<i>I<sub>rep</sub></i>, and cooling beam power <i>I<sub>cooling</sub></i>. The optimal parameters in this system are:τ=7<i>ms</i>,<i>δ</i>=0.2<i>MHZ</i>,∆=5Γ,<i>I<sub>cool</sub></i>/<i>I<sub>rep</sub></i>=3,<i>I<sub>cool</sub>=1.2<i>I<sub>sat</sub>. Comparing to traditional PGC-assisted loading, the number of atoms is increased by about 4 times, and the atomic temperature is reduced from 25<i>μk</i> to 8<i>μk</i>. This experiment provides important insights for preparing ultracold atomic samples and capturing single atom arrays.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gabardos, L., S. Lepoutre, O. Gorceix, L. Vernac, and B. Laburthe-Tolra. "Cooling all external degrees of freedom of optically trapped chromium atoms using gray molasses." Physical Review A 99, no. 2 (February 4, 2019). http://dx.doi.org/10.1103/physreva.99.023607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Li, Yuqing, Zhennan Liu, Yunfei Wang, Jizhou Wu, Wenliang Liu, Yongming Fu, Peng Li, Jie Ma, Liantuan Xiao, and Suotang Jia. "High efficient Raman sideband cooling and strong three-body recombination of atoms." Chinese Physics B, August 1, 2023. http://dx.doi.org/10.1088/1674-1056/acec42.

Повний текст джерела
Анотація:
Abstract We report a high efficient three-dimensional degenerated Raman sideband cooling (3D dRSC) that enhances the loading of a magnetically levitated optical dipole trap, and observe the strong atom loss due to the three-body recombination. The 3D dRSC is implemented to obtain 5 × 107 Cs atoms with the temperature of ~ 480 nK. The cold temperature enables 1.8 × 107 atoms loaded into a crossed dipole trap with an optimized excessive levitation magnetic gradient. Compared to the loading of atoms from a bare magneto-optical trap or the gray-molasses cooling, there is a significant increase in the number of atoms loaded into the optical dipole trap. We drive for the three-body recombination coefficient of L 3 = 7.73 × 10-25 cm6/s by analyzing the strong atom loss at a large scattering length of 1418 Bohr radius, and discover the transition from the strong three-body loss to the dominant one-body loss. Our result indicates that the lifetime of atoms in the optical dipole trap is finally decided by the one-body loss after the initially strong three-body loss.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bocheński, Mateusz, and Mariusz Semczuk. "Sub-Doppler laser cooling and magnetic trapping of natural-abundance fermionic potassium." Journal of Physics B: Atomic, Molecular and Optical Physics, January 23, 2024. http://dx.doi.org/10.1088/1361-6455/ad2181.

Повний текст джерела
Анотація:
Abstract We demonstrate the largest number of 40K atoms that has ever been cooled to deeply sub-Doppler temperatures in a single chamber apparatus without using an enriched source of potassium. With gray molasses cooling on the D1-line following a standard D2-line magneto-optical trap, we obtain 3×105 atoms at 10(2) μK. We reach densities high enough to measure the temperature via absorption imaging using the time-of-flight method. We magnetically trap a mixture of mF=-3/2,-5/2 and -7/2 Zeeman states of the F=7/2 hyperfine ground state confining 5×104 atoms with a lifetime of 0.6 s or ∼103 atoms with a lifetime of 2.8 s - depending on whether the temperature of the potassium dispensers was chosen to maximize the atom number or the lifetime. The background pressure-limited lifetime of 0.6 s is a reasonable starting point for proof-of-principle experiments with atoms and/or molecules in optical tweezers as well as for sympathetic cooling with another species if transport to a secondary chamber is implemented.&#xD;&#xD;Our results show that unenriched potassium can be used to optimize experimental setups containing 40K in the initial stages of their construction, which can effectively extend the lifetime of enriched sources needed for proper experiments. Moreover, demonstration of sub-Doppler cooling and magnetic trapping of a relatively small number of potassium atoms might influence experiments with laser cooled radioactive isotopes of potassium.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Satter, C. L., S. Tan, and K. Dieckmann. "Comparison of an efficient implementation of gray molasses to narrow-line cooling for the all-optical production of a lithium quantum gas." Physical Review A 98, no. 2 (August 24, 2018). http://dx.doi.org/10.1103/physreva.98.023422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Li, Ziliang, Zhengyu Gu, Zhenlian Shi, Pengjun Wang, and Jing Zhang. "Quantum degenerate Bose-Fermi atomic gas mixture of $^{23}$Na and $^{40}$K." Chinese Physics B, November 9, 2022. http://dx.doi.org/10.1088/1674-1056/aca14f.

Повний текст джерела
Анотація:
Abstract We report a compact experimental setup for producing a quantum degenerate mixture of Bose $^{23}$Na and Fermi $^{40}$K gases. The atoms are collected in dual dark magneto-optical traps (MOT) with species timesharing loading to reduce the light-induced loss, and then further cooled using the gray molasses technique on the $D_{2}$ line for $^{23}$Na and $D_{1}$ line for $^{40}$K. The microwave evaporation cooling is used to cool $^{23}$Na in $| F=2,m_{F}=2\rangle$ in an optically plugged magnetic trap, meanwhile, $^{40}$K in $| F=9/2,m_{F}=9/2\rangle$ is sympathetic cooled. Then the mixture is loaded into a large volume optical dipole trap where $^{23}$Na atoms are immediately transferred to $|1,1\rangle$ for further effective cooling to avoid the strong three-body loss between $^{23}$Na atoms in $|2,2\rangle$ and $^{40}$K atoms in $|9/2,9/2\rangle$. At the end of the evaporation in optical trap, a degenerate Fermi gas of $^{40}$K with 1.9$\times10^{5}$ atoms at $T/T_{F}$=0.5 in the $|9/2,9/2\rangle$ hyperfine state coexists with a Bose-Einstein condensate (BEC) of $^{23}$Na with 8$\times10^{4}$ atoms in the $|1,1\rangle$ hyperfine state at 300 nK. We also can produce the two species mixture with the tunable population imbalance by adjusting the $^{23}$Na magneto-optical trap loading time.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії