Добірка наукової літератури з теми "Grating Coupled Surface Plasmon Resonance"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Grating Coupled Surface Plasmon Resonance".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Grating Coupled Surface Plasmon Resonance"

1

Xiong, Xue Hui, La Min Zhan, and Xuan Ke. "Effects of Grating Slant Angle on Surface Plasmon Resonance and its Applications for Sensors." Applied Mechanics and Materials 536-537 (April 2014): 342–45. http://dx.doi.org/10.4028/www.scientific.net/amm.536-537.342.

Повний текст джерела
Анотація:
In this study, we emphasized on effects of grating slant angle of tilted dielectric gratings (TG) on surface plasmon resonance (SPR). The momentum conservation for an optical wave exciting an SPR via TG is different from unslant gratings. The coupling condition induces the period along the grating surface (in the direction x) be decided not only by grating period but also by slant angle. The results calculated by rigorous coupled-wave analysis theory (RCWA) indicate that the resonant wavelength and the refractive index sensitivity are strongly dependent on the period in the direction x (noted Λx). And the refractive index sensitivity increases with the rise of the period Λx. The SPR sensor through TG offers high sensitivity about 800nm per refractive index unit and narrow full-width at half maximum (FWHM) about 5nm when monitoring biochemical liquid solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bellucci, Stefano, O. Vernyhor, A. Bendziak, I. Yaremchuk, V. M. Fitio, and Y. Bobitski. "Characteristics of the Surface Plasmon–Polariton Resonance in a Metal Grating, as a Sensitive Element of Refractive Index Change." Materials 13, no. 8 (April 16, 2020): 1882. http://dx.doi.org/10.3390/ma13081882.

Повний текст джерела
Анотація:
The resonant excitation of surface plasmon–polariton waves in metal gratings with rectangular and sinusoidal relief was studied. The main characteristics of the resonant excitation of a surface plasmon–polariton wave were obtained using analytical methods due to the fact that the resonance is excited at a grating thickness much smaller than a wavelength (1.064 µm). It is shown that the obtained results are very close to those calculated using numerical methods, e.g., Rigorous Coupled Wave Approach (RCWA). There is a small difference in the numerical data defined by both methods. The difference between the parameters for the two types of gratings is small. New analytical relationships of angular and spectral sensitivities with the change of the refractive index of the medium were obtained, depending on the grating period and the angle of incidence of the light beam. An analytical relationship between the spectral and angular widths of the resonant curves, at full width at half maximum, was determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reiner, Agnes T., Nicolas-Guillermo Ferrer, Priyamvada Venugopalan, Ruenn Chai Lai, Sai Kiang Lim, and Jakub Dostálek. "Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis." Analyst 142, no. 20 (2017): 3913–21. http://dx.doi.org/10.1039/c7an00469a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Seo, Minseok, Jeeyoung Lee, and Myeongkyu Lee. "Grating-coupled surface plasmon resonance on bulk stainless steel." Optics Express 25, no. 22 (October 19, 2017): 26939. http://dx.doi.org/10.1364/oe.25.026939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chien, F. C., C. Y. Lin, J. N. Yih, K. L. Lee, C. W. Chang, P. K. Wei, C. C. Sun, and S. J. Chen. "Coupled waveguide–surface plasmon resonance biosensor with subwavelength grating." Biosensors and Bioelectronics 22, no. 11 (May 15, 2007): 2737–42. http://dx.doi.org/10.1016/j.bios.2006.11.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mendoza, A., D. M. Torrisi, S. Sell, N. C. Cady, and D. A. Lawrence. "Grating coupled SPR microarray analysis of proteins and cells in blood from mice with breast cancer." Analyst 141, no. 2 (2016): 704–12. http://dx.doi.org/10.1039/c5an01749a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kuo, Wen-Kai, and Chih-Hao Chang. "Phase detection properties of grating-coupled surface plasmon resonance sensors." Optics Express 18, no. 19 (August 31, 2010): 19656. http://dx.doi.org/10.1364/oe.18.019656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shibata, T., H. Ikeda, H. Nishiyama, K. Tawa, and J. Nishii. "Optimization of Metal Quality for Grating Coupled Surface Plasmon Resonance." Physics Procedia 48 (2013): 179–83. http://dx.doi.org/10.1016/j.phpro.2013.07.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hoa, Xuyen D., Maryam Tabrizian, and Andrew G. Kirk. "Rigorous Coupled-Wave Analysis of Surface Plasmon Enhancement from Patterned Immobilization on Nanogratings." Journal of Sensors 2009 (2009): 1–7. http://dx.doi.org/10.1155/2009/713641.

Повний текст джерела
Анотація:
We numerically evaluate the optical response of a Kretschmann surface plasmon resonance (SPR) biosensor featuring metallic nanogratings and patterned immobilization of surface receptors. Parameters are chosen such that the biosensor is operated near the generated bandgap of the surface plasmon dispersion. In this paper, we demonstrate that the sensitivity can be increased by concentrating the surface receptors and adsorbed analytes on regions where the field intensity is the greatest. Specifically, a surface presenting receptors on the grating mesas is shown to be twice as sensitive as that of a uniformly functionalized corrugated surface. The grating geometries are also studied; it is found that higher aspect ratio features show increased SPR response. The analysis differs from existing studies of enhanced SPR as the sensitivity improvement originating from the concentration and mapping of surface receptors to the plasmon field distribution is studied rather than the absorption or scattering enhancement effect of the nanostructures.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Babaei, Elham, Zohreh Sharifi, and Reuven Gordon. "Improving sensitivity of existing surface plasmon resonance systems with grating-coupled short-range surface plasmons." Journal of the Optical Society of America B 36, no. 8 (July 31, 2019): F144. http://dx.doi.org/10.1364/josab.36.00f144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Grating Coupled Surface Plasmon Resonance"

1

Pasqualotto, Elisabetta. "Development and characterization of grating-coupled surface plasmon resonance sensors for medical and biological applications." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3424530.

Повний текст джерела
Анотація:
The core of my research activity during the Ph.D. period has been the study and the development of Surface Plasmon Resonance (SPR) based sensors for the detection of molecules of biological and medical interest. In particular, between the different configurations allowing plasmon excitation, I have focused my research on the study of nanostructured gratings, which allow to achieve a higher sensitivity than the prism coupled sensors and to miniaturize the measurement system. First my activity focused on the development of an opto-electronic bench able to detect plasmonic signal and to transduce it into an electric one. The test bench must allow varying independently some parameters that are fundamental for plasmonic excitation, such as the incident angle of laser beam, the azimuthal angle between the scattering plane and the grating vector, and the incident light polarization. The light modulated by the grating is transduced into electrical current through a photodiodes array and then acquired by a parameters analyzer. I have realized a versatile bench in order to perform measurements of both reflectance, analyzing the light reflected from the grating, and transmittance. The use of a motorized rotation stage has automated the measurement and it is controlled by a custom National Instruments LabVIEW software: in this way only few initial steps must be manually performed. I have analyzed three types of gratings: - Gold sinusoidal grating, optimized for reflectance measurements in incident light polarization modulation, exploiting the sensitivity increase due to a non-zero azimuthal angle. This grating has been provided us by LaNN laboratory (Laboratory of research for Nanofabrication and Nanodevices) of National Council of Research (CNR) of Padova. The grating has been manufactured through lithography (by Laser Interference Lithography-LIL) of a photoresist deposited over a glass (or silicon wafer), nanostructure replica and thermal evaporation of the gold plasmonic layer. First I have analyzed the bare grating, and then I have measured bulk with different refractive indexes in order to estimate sensor sensitivity. Then I have measured if the sensor is able to detect biological molecules, first through tests of avidin detection, exploiting avidin-biotin binding, and then through tests of DNA detection, via complementary Peptide Nucleic Acid (PNA) immobilization. - Gold digital grating, that exploits light extraordinary transmission. This grating has been fabricated by LaNN laboratory of CNR of Padova through Electron Beam Lithography (EBL) technique, and it has been designed in order to realize a simple and compact detection system, since the only sensing parameter considered is incident light polarization. Grating ability to detect surface changes of refractive index has been evaluated by a functionalization process with dodecanethiol, that is a molecule composed of a chain of twelve carbon atoms that forms a layer of well- known thickness and refractive index. - Silver trapezoidal grating, developed thanks to the collaboration with the Spin-Off Next Step Engineering, that has involved me in the last months of my Ph.D.. In fact, I have participated in grating fabrication exploiting the industrial facilities of the Spin-Off, which allow producing high quantity of low-cost devices, suitable to be a disposable sensor. The manufacturing process consists of the development of a stamper obtained through interferential lithography, the replica molding of polymeric substrate and the metal layer deposition through sputtering. These gratings have been optimized for transmittance measurements and their response as a function of incident light and azimuthal angles has been analyzed. Measurements of bulk with different refractive indexes, in order to estimate sensor sensitivity, and then of grating functionalized with different lengths alkanethiols have been performed. All experimental data have been compared with simulations results. In fact the behavior of the gratings has been studied through different simulation methods. In particular the digital gold grating has been studied through Finite Element Method (FEM) implemented in COMSOL Multiphysics; the vector model has been applied for both sinusoidal gold gratings and trapezoidal silver ones. The latter grating has been also analyzed through Rigorous Coupled Wave Analysis (RCWA). As already mentioned, during the last period of my Ph.D., I have collaborated with Next Step Engineering to develop an innovative industrial process that allows creating both grating for plasmonic events detection and electronic/microfluidic hybrid devices within a single, well-established, production line. With this process I have manufactured all the custom devices I used for my experimental activity. Moreover, this industrial process is the object of an Italian patent that is now pending and I am one of the inventors. During my PhD I have also developed microfluidic devices through a particular technique of polymer etching, able to create clear-cut profiles without deforming the planar structure, and also through suitable changes of production process adopted by Next Step Engineering, previously mentioned. The former devices have been used with silver gratings for the measurements of bulk with different refractive indexes.
Il tema principale dell’attività di ricerca che ho svolto durante il mio periodo di Dottorato in Scienza e Tecnologia dell’Informazione è stato lo studio e lo sviluppo di sensori basati sull’effetto di risonanza plasmonica per la rilevazione di molecole di interesse medico e biologico. In particolare, tra le varie configurazioni che permettono l’eccitazione plasmonica, mi sono focalizzata sullo studio dei reticoli nanostrutturati, i quali permettono di raggiungere elevate sensibilità, se paragonati ai dispositivi accoppiati con prisma, e di miniaturizzare e integrare il sistema di misura come obiettivo nel lungo periodo. Inizialmente la mia attività si è concentrata sullo sviluppo di un banco opto-elettronico che permettesse di rilevare il segnale plasmonico e trasdurlo in un segnale elettrico. Il banco doveva essere in grado di variare indipendentemente alcuni parametri determinanti per l’eccitazione plasmonica, ossia l’angolo di incidenza del fascio laser, l’angolo azimutale tra il piano di scattering e il vettore del reticolo, e la polarizzazione della luce incidente. La luce modulata dal reticolo viene poi trasformata in corrente elettrica attraverso un array di fotodiodi, e quindi acquisita attraverso un analizzatore di parametri. Ho mirato a realizzare un banco molto versatile in modo da poter effettuare misure sia di riflettanza, andando ad analizzare la luce riflessa dal reticolo, sia di trasmittanza, analizzando la luce trasmessa dal campione. L’introduzione di uno stadio motorizzato ha permesso di rendere la misura più automatizzata e gestibile via software, attraverso un programma custom sviluppato in LabVIEW, e lasciando manuali solo pochi passaggi iniziali. Ho analizzato tre tipologie diverse di reticoli: - Reticolo d’oro con superficie sinusoidale, ottimizzato per effettuare misure in riflessione con modulazione della polarizzazione della luce incidente, sfruttando l’aumento di sensibilità derivante dall’angolo azimutale non nullo. Tale reticolo è stato fornito dal laboratorio LaNN (Laboratorio di ricerca per la Nanofabbricazione e i Nanodispositivi) del Consiglio Nazionale delle Ricerche (CNR) di Padova. Il reticolo è stato realizzato attraverso litografia interferenziale di uno strato di fotoresist deposto su un vetrino (o silicio), da cui è stato ricavato uno stampo che permette la replica della nano struttura; infine, attraverso un’evaporazione termica, è stato depositato uno strato d’oro. Inizialmente ho analizzato il reticolo in condizione “fresh”; successivamente ho effettuato misure di “bulk” con indici di rifrazione diversi, per poter stimare la sensibilità del sensore. Ho poi misurato la capacità del dispositivo nel rilevare molecole di interesse biologico, dapprima attraverso prove di rilevazione di avidina presente in una soluzione, sfruttando il legame avidina-biotina, poi con prove di rilevazione di singole catene di DNA, attraverso l’immobilizzazione sulla superficie della nanostruttra di acido peptidonucleico (PNA) complementare. - Reticolo d’oro digitale, ideato per sfruttare il fenomeno di trasmissione straordinaria della luce. Tale reticolo è stato realizzato dal laboratorio LaNN del CNR di Padova attraverso la tecnica di litografia a fascio di elettroni (Electron Beam Lithography-EBL) e nasce con l’obiettivo di creare un sistema di rilevazione estremamente semplice, poiché l’unico parametro di sensing, e quindi variabile, è la polarizzazione della luce incidente. La capacità del sistema di discriminare variazioni superficiali di indice di rifrazione è stata valutata funzionalizzando il reticolo con dodecanethiol, ossia una molecola composta da una catena di dodici atomi di carbonio in grado di formare uno strato di dimensioni e indice di rifrazione noti. - Reticolo trapezoidale in argento, nato dalla collaborazione con lo Spin-Off Next Step Engineering, che mi ha coinvolta nell’ultimo periodo di dottorato. Infatti, ho partecipato in prima persona alla realizzazione del sensore, sfruttando le facilities industriali a cui l’azienda ha accesso, permettendo di produrre dispositivi a basso costo e in elevate quantità, quindi adatti ad un utilizzo di tipo “usa e getta”. Il processo di fabbricazione prevede la realizzazione di uno stampo attraverso litografia interferenziale, una fase di replica a stampo su substrato polimerico e la deposizione di uno strato metallico per polverizzazione catodica. Tali sensori sono stati ottimizzati per la misura della luce trasmessa e si è analizzato il comportamento al variare dell’angolo di incidenza e dell’angolo azimutale. Si è quindi misurato il comportamento del sensore in presenza di bulk ad indici di rifrazione diversi per la stima della sensibilità, e successivamente si sono effettuate misure funzionalizzando il campione con alcantioli di diversa lunghezza. I risultati sperimentali sono stati confrontati con quelli ottenuti dalle simulazioni. Infatti si è studiato il comportamento di ogni reticolo attraverso metodi di simulazione diversi. In particolare il reticolo digitale in oro è stato studiato attraverso il metodo degli elementi finiti (FEM) implementato in COMSOL Multiphysics, il modello vettoriale è stato applicato sia per lo studio del reticolo sinusoidale in oro che del reticolo trapezoidale in argento. Quest’ultimo reticolo è stato analizzato anche attraverso il metodo RCWA (Rigorous Coupled Wave Analysis). Come già accennato, durante l’ultimo periodo di dottorato ho contribuito a sviluppare, in collaborazione con lo Spin-Off dell’università di Padova Next Step Engineering, un innovativo processo di produzione industriale che consente di creare non solo reticoli per la rilevazione di segnali plasmonici, ma anche dispositivi ibridi elettronici/microfluidici per applicazioni biologiche e mediche, all’interno di una singola linea produttiva automatizzata. Con questo processo ho prodotto i reticoli in argento, che ho utilizzato per la mia attività sperimentale. Il processo di produzione è oggetto di un brevetto italiano attualmente in fase di deposito, di cui sono uno degli inventori. Durante il dottorato ho approfondito anche lo sviluppo di dispositivi microfluidici sia attraverso tecniche di incisione polimerica, in grado di creare profili di taglio netti senza deformarne la struttura planare, sia apportando le appropriate modifiche al processo produttivo utilizzato da Next Step Engineering, precedentemente citato. I dispositivi realizzati sono stati utilizzati per le misure di bulk a diversi indici di rifrazione utilizzando i reticoli in argento.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sultan, Mansoor A. "ELECTRON-BEAM PATTERNING OF TEFLON AF FOR SURFACE PLASMON RESONANCE SENSING." UKnowledge, 2015. http://uknowledge.uky.edu/ece_etds/66.

Повний текст джерела
Анотація:
Variable pressure electron beam etching and lithography for Teflon AF has been demonstrated. The relation between dose and etching depth is tested under high vacuum and water vapor. High resolution structures as small as 75 nm half-pitch have been resolved. Several simulation tools were tested for surface plasmon excitation. Grating based dual mode surface plasmon excitation has been shown numerically and experimentally.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gazzola, Enrico. "Anisotropic propagation of Surface Plasmon Polaritons: study and exploitations." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423724.

Повний текст джерела
Анотація:
Sinusoidally patterned metallic surfaces, known as plasmonic gratings, constitute one of the principal structures which allow to achieve the coupling between an incident light beam and a Surface Plasmon Polariton mode. A variety of phenomena are available when the grating is rotated of an azimuthal angle with respect to the incidence plane. Aim of this work is a comprehensive investigation of the propagation properties of the surface mode under this configuration, correlating the role of the anisotropy introduced by the grating to the position and shape of the plasmonic resonance dip in the reflectance spectra. Analytical models and physical interpretations are provided; both experimental and computational means are exploited in order to validate the models, including the observation of innovative effects. Thin-film coupled modes, the Long Range and Short Range Surface Plasmon Polaritons, are studied and experimentally observed in the azimuthally rotated configuration. Special attention is paid to the role of the plasmon radiative losses, due to the scattering by the grating. Their dependence on the grating amplitude and the plasmon propagation direction is unraveled, and correlated to the width of the observed plasmonic resonances. The outcomes of these analyses lead to the evaluation of the sensitivity and Figure of Merit achievable when the considered configurations are exploited in the framework of Surface Plasmon Resonance sensing. The developed concepts and methods are proved to be valuable tools to predict and understand the response of actual plasmonic structures applied as sensing devices against gaseous analytes. Experimental tests of the plasmonic platforms as TNT, hydrogen and aromatic compounds sensors are reported, giving promising results. A particularly remarkable experiment is the combined exploitation of Long Range modes and azimuthally rotated configuration to sensibly enhance the performance of a xylene sensor
Superfici metalliche con modulazione sinusoidale, note come grating plasmonici, costituiscono una delle principali strutture che permettono di ottenere l’accoppiamento tra un fascio di luce incidente e un Plasmone Polaritone di Superficie. Una varietà di fenomeni sono accessibili quando il grating viene ruotato di un angolo azimutale rispetto al piano di incidenza. Scopo di questo lavoro è uno studio approfondito delle proprietà di propagazione del modo di superficie in questa configurazione, correlando il ruolo dell’anisotropia introdotta dal grating con la posizione e forma del dip di risonanza plasmonica negli spettri in riflettanza. Vengono presentati modelli analitici e interpretazioni fisiche; metodi sia sperimentali che computazionali vengono impiegati per validare i modelli, includendo l’osservazione di nuovi effetti. I modi accoppiati di film sottile, ovvero i Plasmoni Long Range e Short Range, vengono studiati e osservati sperimentalmente nella configurazione ad azimuth ruotato. Una particolare attenzione è dedicata al ruolo delle perdite radiative del plasmone, dovute allo scattering da parte del grating. La loro dipendenza dall’ampiezza del grating e dalla direzione di propagazione del plasmone è spiegata, e correlata con la larghezza delle risonanze plasmoniche osservabili. I risultati di queste analisi conducono alla valutazione delle sensibilità e Figura di Merito che si possono ottenere quando le configurazioni considerate sono sfruttate nell’ambito della sensoristica a Risonanza Plasmonica di Superficie. I concetti e metodi sviluppati si dimostrano strumenti di valore per predire e interpretare la risposta di strutture plasmoniche reali, applicate come dispositivi di sensing verso analiti allo stato gassoso. Le piattaforme plasmoniche vengono testate come sensori per TNT, idrogeno e composti aromatici, con risultati promettenti. Un esperimento particolarmente interessante è l’uso combinato dei modi Long Range e della configurazione ad azimuth ruotato per incrementare notevolmente le performance di un sensore di xylene
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ghoshal, Amitabh. "Plasmon enhanced near-field interactions in surface coupled nanoparticle arrays for integrated nanophotonic devices." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4630.

Повний текст джерела
Анотація:
Reflection measurements on nanoparticle arrays fabricated using electron-beam lithography confirm the predicted particle-grating interaction. An unexpected polarization-dependent splitting of the film-mediated collective resonance is successfully attributed to the existence of out-of plane polarization modes of the metal nanoparticles. In order to distinguish between the excitation of propagating surface plasmons and localized nanoparticle plasmons, spectrally resolved leakage radiation measurements are presented. Based on these measurements, a universally applicable method for measuring the wavelength dependent efficiency of coupling free-space radiation into guided surface plasmon modes on thin films is developed. Finally, it is shown that the resonantly enhanced near-field coupling the nanoparticles and the propagating surface plasmons can lead to optimized coupler device dimensions well below 10 micrometers].; The current thrust towards developing silicon compatible integrated nanophotonic devices is driven by need to overcome critical challenges in electronic circuit technology related to information bandwidth and thermal management. Surface plasmon nanophotonics represents a hybrid technology at the interface of optics and electronics that could address several of the existing challenges. Surface plasmons are electronic charge density waves that can occur at a metal-dielectric interface at optical and infrared frequencies. Numerous plasmon based integrated optical devices such as waveguides, splitters, resonators and multimode interference devices have been developed, however no standard integrated device for coupling light into nanoscale optical circuits exists. In this thesis we experimentally and theoretically investigate the excitation of propagating surface plasmons via resonant metal nanoparticle arrays placed in close proximity to a metal surface. It is shown that this approach can lead to compact plasmon excitation devices. Full-field electromagnetic simulations of the optical illumination of metal nanoparticle arrays near a metal film reveal the presence of individual nanoparticle resonances and collective grating-like resonances related to propagating surface plasmons within the periodic array structure. Strong near-field coupling between the nanoparticle and grating resonances is observed, and is successfully described by a coupled oscillator model. Numerical simulations of the effect of nanoparticle size and shape on the excitation and dissipation of surface plasmons reveal that the optimum particle volume for efficient surface plasmon excitation depends sensitively on the particle shape. This observation is quantitatively explained in terms of the shape-dependent optical cross-section of the nanoparticles.
ID: 028917015; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2010.; Includes bibliographical references (p. 111-119).
Ph.D.
Doctorate
Optics and Photonics
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Harding, Peter J. "A biophysical study of the G protein coupled receptor neurotensin receptor 1." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:0e84f351-696f-42c9-b2fd-8afcde6d586e.

Повний текст джерела
Анотація:
Neurotensin (NT) is a tridecapeptide neurotransmitter found in the central nervous system and gastrointestinal tract. Neurotensin receptor 1 (NTS1), a high affinity receptor for NT, is a member of the GPCR superfamily and is a putative target for the treatment of conditions such as Schizophrenia, Parkinson’s Disease and drug addiction. Overexpression and purification are typically limiting steps in the high resolution structure determination of GPCRs. In this study, through the optimisation of the E.coli strain used for overexpression of rat NTS1 (NTS1) and the inclusion of phospholipids in the purification buffers to prevent delipidation, an approximate 3-fold improvement in active receptor yield was obtained relative to existing protocols. Preliminary electron microscopy (negative stain and cryo) confirmed a monodisperse receptor population. Purified NTS1 is now being produced at a sufficient level for high resolution structural studies, including 3D crystallisation and further electron microscopy studies. The existing construct for the expression of NTS1 in E.coli, termed NTS1B, was modified to contain a fusion to the genes encoding either the eCFP or eYFP fluorescent proteins. These constructs were used for the E.coli expression of NTS1 tagged with either fluorescent protein at the C-terminus. Tagged receptor was successfully expressed at levels of up to 0.29 ± 0.03 mg per l of culture. Successful purification and proteolytic removal of the MBP and TrxA-His10 fusion partners was achieved whilst retaining both fluorescence and ligand binding capability (Kd = 0.91 ± 0.17 nM). Purified, fluorescent receptor was reconstituted into brain polar lipid (BPL) liposomes in an active conformation which was both fluorescent and able to bind NT. Experimentation with alternative lipid compositions suggested that specific lipids are required in order to maintain ligand-binding activity. FRET between the eCFP- and eYFP-tagged receptors was observed in reconstituted samples. The FRET efficiency was comparable to that observed in vivo for other GPCRs, including the yeast α-factor receptor, which is believed to be dimeric. This suggests that NTS1 could also be multimeric. In contrast, no FRET was observed in detergent samples. Therefore, a functioning in vitro system has been developed which enables the study of NTS1 multimerisation in lipid bilayers and future studies will attempt to implement single molecule fluorescence techniques. In addition, fluorescent derivatives of NT were successfully synthesised and purified. Radioligand competition assays and fluorescence correlation spectroscopy (FCS) confirmed that the fluorescent peptides bound to purified NTS1 in specific competition with unlabelled NT. Surface plasmon resonance (SPR) was used to confirm the ligand binding activity of purified NTS1. A novel approach was utilised which involved the measurement of the binding of detergent-solubilised NTS1 to immobilised, N-terminally biotinylated NT on the sensor surface. The use of a rigorous control, which consisted of immobilised ‘scrambled sequence’ NT, demonstrated a specific interaction. Analysis of the kinetics revealed a multiphasic interaction with a Kd in the nanomolar range. In summary, improvements to the expression and purification of NTS1, the generation of fluorescent constructs as useful tools in the study of receptor multimerisation and the optimisation of lipid-reconstitution protocols have opened up several preliminary lines of study which show considerable potential for future research.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Quan. "Enhanced Emission of a Single Quantum Emitter Coupled to a Microcavity and a Nanocavity." Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0029.

Повний текст джерела
Анотація:
Le développement de techniques basées sur une seule molécule au cours des dernières décennies a permis de sélectionner, de suivre et de mesurer directement une molécule individuelle. Dans cette thèse, la dynamique structurelle d'un seul émetteur quantique, servi par l'hypéricine, est caractérisée. En utilisant la microscopie à balayage confocale combinée à des modes laser polarisés radialement / azimutalement, une réorientation tridimensionnelle du moment dipolaire de transition d'une seule molécule est observée. Pour quantifier les propriétés temporelles de la tautomérie, la fonction d'autocorrélation des photons est utilisée pour extraire les fluctuations d'intensité. Les résultats montrent l'influence distincte de l'environnement local, comme la matrice PVA et l'effet de deutération. L'environnement photonique local d'une molécule est modifié par la microcavité / nanocavité. Un changement significatif du taux d'émission radiatif et des spectres de fluorescence est discuté. Il nous permet de mesurer le rendement quantique absolu en utilisant une microcavité accordable. Les résultats montrent la possibilité de contrôler la tautomérisation en modifiant l'environnement photonique. Par la suite, la dissociation moléculaire est discutée par des spectres Raman améliorés en surface à molécule unique bénéficiant de l'amélioration en champ proche de la nanocavité. Une stratégie d'optimisation expérimentale rapide vers une amélioration optimale de la fluorescence est décrite
The development of single molecule-based techniques in the last decades has enabled directly selecting, tracking, and measuring an individual molecule. In this thesis, the structural dynamics of a single quantum emitter, served by hypericin, is characterized. By using confocal scanning microscopy combined with radially/azimuthally polarized laser modes, three-dimensional reorientation of the transition dipole moment of a single molecule is observed. To quantify the temporal properties of the tautomerism, photon autocorrelation function is used to extract the intensity fluctuations. The results show the distinct influence of the local environment, such as PVA matrix and deuteration effect. The local photonic environment of a molecule is modified by the microcavity/nanocavity. A significant change of the radiative emission rate and of the fluorescence spectra is discussed. It allows us to measure the absolute quantum yield by using a tunable microcavity. The results show the possibility of controlling tautomerization by changing the photonic environment. Subsequently, molecular dissociation is discussed by single molecule surface-enhanced Raman spectra profiting from near field enhancement of nanocavity. A fast experimental optimization strategy towards optimal fluorescence enhancement is outlined
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schuster, Tobias. "Entwurf und experimentelle Untersuchung eines faseroptischen Oberflächenplasmonenresonanz-Sensors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-203235.

Повний текст джерела
Анотація:
In der medizinischen Diagnostik, Bioverfahrenstechnik und Umwelttechnik besteht ein steigender Bedarf an kompakten Analysegeräten für die schnelle Vor-Ort-Detektion spezifischer biochemischer Substanzen. Im Rahmen der Arbeit wurde daher ein neuartiger faseroptischer Sensor entwickelt, der in der Lage ist kleinste Brechzahländerungen, z.B. durch molekulare Bindungsprozesse, zu detektieren. Die hohe Empfindlichkeit an der vergoldeten Spitze der Sensorfaser beruht auf der Oberflächenplasmonenresonanz (SPR) einer einzelnen Mantelmode, die durch ein langperiodisches Fasergitter (LPG) ermöglicht wird. Die Übertragungsfunktion des Sensors wurde unter Verwendung eines Schichtwellenleitermodells schnell und präzise modelliert. Es konnte gezeigt werden, dass in einem wässrigen Umgebungsmedium die höchste Empfindlichkeit im Spektralbereich um 660 nm unter Annahme einer rund 35~nm dicken und 2~mm langen Goldbeschichtung erreicht wird. Weiterhin wurde nachgewiesen, dass mit einer intermediale Schicht aus Cadmiumsulfid die SPR der Mantelmode in einen höheren Spektralbereich verschoben und damit die Empfindlichkeit deutlich verbessert werden kann. Um eine geringe Polarisationsabhängigkeit des Sensors sicherzustellen, wurde ein nasschemisches Abscheidungsverfahren für die allseitige Goldbeschichtung der Sensorfaser entwickelt. Die spezifischen optischen Eigenschaften dieser Abscheidungen wurden mit Hilfe von LPGs untersucht, die durch eine spezielle UV-Belichtung hergestellt wurden. Die Experimente ergaben, dass die komplexe Permittivität nasschemischer Abscheidungen mit Schichtdicken oberhalb von 50~nm mit aufgedampften Goldschichten vergleichbar ist. Die Verluste der adressierten Mantelmoden wurden mit einer äquivalenten Sensoranordnung aus zwei identischen LPG untersucht. Dabei konnte ein Skalierfaktor abgeleitet werden, der die effiziente Berechnung der Mantelmodendämpfung erlaubt. Es wurde nachgewiesen, dass die Brechzahlauflösung etablierter volumenoptischer SPR-Sensoren mit einer einfachen Transmissionsmessung an einer geeigneten Wellenlänge erreicht werden kann. Die äußerst kompakte Sensorfläche des faseroptischen Sensors ermöglicht darüber hinaus die Untersuchung deutlich kleinerer Probenvolumina ohne ein zusätzliches mikrofluidisches System zu benötigen. Es wurde gezeigt, dass sekundäre Brechzahländerungen aufgrund von Temperaturschwankungen oder unspezifische Ablagerungen durch eine differentielle Auswertung zweier identischer Sensoren kompensiert werden können. Die verbleibende Querempfindlichkeit wird durch die Polarisationsabhängigkeit der Sensoren bestimmt. Die geringste Querempfindlichkeit konnte daher mit einer homogenen nasschemischen abgeschiedenen Sensorfläche nachgewiesen werden
Compact analysis devices which facilitate the rapid detection of specific biochemical substances are in increasing demand in the fields of point-of-care medical diagnostics, bioprocess engineering and environmental engineering. The aim of this work was therefore to design a novel fiber-optic sensor able to detect small refractive index changes such as those caused by molecular binding processes. The high level of sensitivity at the gold-plated tip of the sensor fiber stems from the surface plasmon resonance (SPR) of a single cladding mode, which is the result of a long-period fiber grating (LPG). The transfer function of the sensor was calculated quickly and accurately using a slab waveguide model. It was observed that the highest level of sensitivity in an aqueous ambient medium is achieved at a wavelength of 660 nm assuming a gold coating of 35 nm in thickness and 2 mm in length. Furthermore, it was demonstrated that an intermedial cadmium sulfide layer shifts the SPR of the cladding mode towards higher wavelengths, thus leading to significantly enhanced sensitivity. An electroless plating process for the omnidirectional deposition of gold on the sensor fiber was developed in order to minimize the sensor\'s dependency on polarization. The specific optical properties of the gold layer deposited were investigated with the aid of LPGs fabricated using a special UV exposure method. The experiments showed the complex permittivity of electroless platings with a thickness of over 50 nm to be comparable with that of evaporated gold layers. The losses of the addressed cladding modes were investigated using an equivalent sensor setup consisting of two identical LPGs. This facilitated the determination of a scaling factor enabling the effcient calculation of cladding mode attenuation. It was demonstrated that it is possible to obtain the refractive index resolution of established volume optical SPR sensors with the aid of simple transmission measurements at a specific wavelength. Moreover, the extremely compact sensing area of the fiber-optic sensor enables the investigation of smaller sample volumes without the need for an additional microfluidic system. Secondary refractive index changes caused by temperature fluctuations or unspecific binding events can be compensated for by means of the differential interrogation of two identical fiber-optic sensors. The residual cross sensitivity is determined by the polarisation dependency of the sensor. The lowest cross sensitivity was therefore demonstrated in combination with a homogeneous electroless plated sensor surface
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mohammed, Kader Hamno. "Development of a label-free biosensor method for the identification of sticky compounds which disturb GPCR-assays." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220645.

Повний текст джерела
Анотація:
It is widely known that early estimates about the binding properties of drug candidates are important in the drug discovery process. Surface plasmon resonance (SPR) biosensors have become a standard tool for characterizing interactions between a great variety of biomolecules and it offers a unique opportunity to study binding activity. The aim of this project was to develop a SPR based assay for pre-screening of low molecular weight (LMW) drug compounds, to enable filtering away disturbing compounds when interacting with drugs. The interaction between 47 LMW compounds and biological ligands were investigated using the instrument BiacoreTM, which is based on SPR-technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Po-Han, and 陳柏翰. "Four-step Phase Shifting System Applies to Grating Coupled Surface Plasmon Resonance." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/60164471586016469325.

Повний текст джерела
Анотація:
碩士
國立中央大學
光機電工程研究所
101
The purpose of the dissertation is to use four-step phase shifting technique to get the phase shift of reflective light caused by the change of refraction index when grating-coupled surface plasmon resonance is processing. Whenever we do an experiment, the signal stability is often interfered by the light source and the pivot optical component. Using four-step phase shifting technique to solve these problems will be a good choose. The structure has been verified workable in our experiment. The experimental results show that the sensitivity is 1.6*10^2 (degree/RIU) and the resolution is 0.048 degree.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Meng-Ting, and 陳孟廷. "Study on surface plasmon resonance light modulator using a grating coupler." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/ss86zt.

Повний текст джерела
Анотація:
碩士
國立虎尾科技大學
光電與材料科技研究所
98
In this study, we used two commercialized optical simulation software programs, EM Explorer and GSolver, to conduct simulation. Calculations in the simulation were based in a finite difference time domain (FDTD) and using the rigorous coupled wave analysis (RCWA) algorithm. To confirm whether if the calculations performed by the software consisted with the theory, the Kretschmann configuration and metal grating structure were simulated, respectively. The results were then compared with the theoretical calculations of the Fresnel equation. The results showed that the calculated results by the two software programs met with the theory. Further on we simulated and designed two types of grating coupler electro-optic modulators. The first type was an inverse grating structure, where simulation results showed the resonance angle was 22.98°, full width at half maximum (FWHM) was approximately 0.07°. When the refractive index of the EO polymer layer changed to 0.0015, the resonance angular shift was 0.06°. The incident angle was fixed at 22.98°, with an applied 9.09 V to enable the reflectivity change from 4 % to 69 %, which a voltage around 4.5 V can achieve 50% of modulation index; the second was a grating coupler with a long-range surface plasmon structure. Simulation results showed the resonance angle was 35.81°, FWHM approximately 0.05°. When the refractive index of the EO polymer layer changed to 0.0007 the resonance angular shift was 0.06°. The incident angle was fixed at 35.81°, with an applied 10.61 V to enable the reflectivity change from 1% to 60 %, which a voltage around 5 V can achieve 50 % of modulation index.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Grating Coupled Surface Plasmon Resonance"

1

Lin, C. W., N. F. Chiu, and C. C. Chang. Modulation design of plasmonics for diagnostic and drug screening. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.18.

Повний текст джерела
Анотація:
This article discusses the modulation design of plasmonics for diagnosis and drug screening applications. It begins with an overview of the advances made in terms of theoretical insights, focusing on the origins of surface plasmon wave and manipulation, admittance loci design method, and surface plasmon grating coupled emission. It then considers how prism coupler, Ge-doped silica waveguide, nanograting and active plasmonics can trigger the excitation of surface plasmon resonance (SPR). It also examines the metallic effect of long-range surface plasmon resonance and conducting metal oxide as adhesive layer before describing three SPR waveguide biosensors that were developed for the realization of a hand-held SPR system. In particular, it presents a lateral-flow microfluidic channel based on a nitrocellulose membrane and integrated with a SPR waveguide biosensor to achieve dynamic detection. Finally, the article evaluates the biomolecular layer effect, with emphasis on kinetics analysis of antibody binding.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Grating Coupled Surface Plasmon Resonance"

1

Toma, Koji, Mana Toma, Martin Bauch, Simone Hageneder, and Jakub Dostalek. "Fluorescence Biosensors Utilizing Grating-Assisted Plasmonic Amplification." In Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 227–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119325161.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fitio, V., O. Vernyhor, I. Yaremchuk, and Y. Bobitski. "Surface Plasmon Polariton Resonance Grating-Based Sensors Elements." In Springer Proceedings in Physics, 309–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52268-1_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kochuveedu, Saji Thomas, and Dong Ha Kim. "Distance and Location-Dependent Surface Plasmon Resonance-Enhanced Photoluminescence in Tailored Nanostructures." In Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 179–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119325161.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jangid, Manish, Ankur Saharia, Nitesh Mudgal, Sajai Vir Singh, and Ghanshyam Singh. "Performance Enhancement of Surface Plasmon Resonance (SPR) Structure Using a Sinusoidal Diffraction Grating." In Lecture Notes in Electrical Engineering, 123–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2818-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Komolov, Konstantin E., and Karl-Wilhelm Koch. "Application of Surface Plasmon Resonance Spectroscopy to Study G-Protein Coupled Receptor Signalling." In Methods in Molecular Biology, 249–60. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wei, Jianjun, Zheng Zeng, and Yongbin Lin. "Localized Surface Plasmon Resonance (LSPR)-Coupled Fiber-Optic Nanoprobe for the Detection of Protein Biomarkers." In Biosensors and Biodetection, 1–14. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6848-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruffato, G., G. Zacco, and F. Romanato. "Innovative Exploitation of Grating-Coupled Surface Plasmon Resonance for Sensing." In Plasmonics - Principles and Applications. InTech, 2012. http://dx.doi.org/10.5772/51044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xue, Jinjuan, and Huwei Liu. "Surface plasmon resonance coupled to mass spectrometry in bioanalysis." In Surface Plasmon Resonance in Bioanalysis, 89–106. Elsevier, 2021. http://dx.doi.org/10.1016/bs.coac.2021.08.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Souza, Nadson Welkson Pereira de, Jefferson Souza Costa, Rafael Correa dos Santos, André Felipe Souza da Cruz, Tommaso Del Rosso, and Karlo Queiroz da Costa. "Modal Analysis of Surface Plasmon Resonance Sensor Coupled to Periodic Array of Core-Shell Metallic Nanoparticles." In Resonance. InTech, 2017. http://dx.doi.org/10.5772/intechopen.70522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Itoh, T., K. Hashimoto, Y. Kikkawa, A. Ikehata, and Y. Ozaki. "Localized surface plasmon resonance-coupled photo-induced luminescence and surface enhanced Raman scattering from isolated single Ag nano-aggregates." In Nanoplasmonics - From Fundamentals to Applications, Proceedings of the 2nd International Nanophotonics Symposium Handai, 197–218. Elsevier, 2006. http://dx.doi.org/10.1016/s1574-0641(06)80016-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Grating Coupled Surface Plasmon Resonance"

1

Pi, Shaohua, Xie Zeng, Nan Zhang, Dengxin Ji, Haoming Song, Suhua Jiang, and Qiaoqiang Gan. "Dielectric-grating-coupled surface plasmon resonance for ultrasensitive sensing." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.jw4a.30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Szalai, A., G. Szekeres, J. Balázs, A. Somogyi, and Maria Csete. "Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings." In SPIE NanoScience + Engineering, edited by Mark I. Stockman. SPIE, 2013. http://dx.doi.org/10.1117/12.2024527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chien, F. C., J. N. Yih, C. Y. Lin, K. L. Lee, Y. M. Chu, Y. C. Mao, W. H. Wang, P. K. Wei, and S. J. Chen. "Coupled waveguide-surface plasmon resonance biosensors constructed with sub-wavelength grating." In Biomedical Optics 2006, edited by Alexander N. Cartwright and Dan V. Nicolau. SPIE, 2006. http://dx.doi.org/10.1117/12.647455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gazzola, Enrico, Michela Cittadini, Laura Brigo, Giovanna Brusatin, Massimo Guglielmi, Filippo Romanato, and Alessandro Martucci. "Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films." In SPIE Nanoscience + Engineering, edited by Allan D. Boardman and Din Ping Tsai. SPIE, 2015. http://dx.doi.org/10.1117/12.2186662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vala, M., J. Dostálek, and J. Homola. "Diffraction grating-coupled surface plasmon resonance sensor based on spectroscopy of long-range and short-range surface plasmons." In International Congress on Optics and Optoelectronics, edited by Francesco Baldini, Jiri Homola, Robert A. Lieberman, and Miroslav Miler. SPIE, 2007. http://dx.doi.org/10.1117/12.723131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Simon, H. J., and Zhan Chen. "Second Harmonic Generation with Grating Excitation of Coupled Surface Plasmons." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.tha4.

Повний текст джерела
Анотація:
The properties of surface electromagnetic modes associated with multi-layer thin films continues to be a subject of interest. Particular attention has been given to the resonances associated with coupled surface plasmons which propagate on opposite sides of a thick metal film bounded by dielectrics with the same index of refraction. Of the two modes, corresponding to symmetric and antisymmetric magnetic field profiles, the former has a surprisingly low attenuation for a sufficiently thin metal film and has been named the long-range surface plasmon (LRSP) while the latter has been named the short-range surface plasmon (SRSP).(1) Recent attention has focused on the use of grating structures for coupling to the LRSP mode. Attenuated total reflectance (ATR) from a thin silver grating multi-layer structure has recently been reported.(2)
Стилі APA, Harvard, Vancouver, ISO та ін.
7

DiPippo, William, Bong Jae Lee, and Keunhan Park. "Development of Surface Plasmon Resonance Immuno-Sensors at Mid-Infrared Range." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22914.

Повний текст джерела
Анотація:
This paper reports the design analysis of a novel doped-silicon infrared-surface plasmon resonance (IR-SPR) platform. The structure combines the advantages of both conventional grating and prism surface plasmon couplers while providing several intrinsic beneficial aspects. In combination with a Fourier transform infrared spectrometer, the biosensor is shown to compare favorably in trace analyte detection with visible range SPR devices while still maintaining the advantageous characteristics of IR-SPR. A numeric analysis of the structure was completed using a rigorous coupled wave analysis method to determine the geometric parameters of the diffraction grating as well as assess the sensor’s performance. Finite element analysis simulations were used to model the electromagnetic field distributions during the plasmon resonance. The results demonstrate that surface binding concentrations of biochemical species as small as 70 pg/mm2 can be measured. The large probing depth resulting from the IR spectrum facilitates the study of larger analyte (e.g. living cells). Additionally, the structure offers unequaled adaptability for a user’s specific biosensing needs while remaining inexpensive owing to the microelectromechanical systems (MEMS) batch protocols used in fabrication.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cady, Nathaniel, Gabriel Zenteno, Benjamin Taubner, Eunice Chou, Arturo Pilar, Ernest Guignon, William Page, and Yi-Pin Lin. "Grating coupled-surface plasmon resonance and fluorescent plasmonics biosensor for diagnosis of Lyme disease." In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, edited by Augustus W. Fountain, Jason A. Guicheteau, and Chris R. Howle. SPIE, 2018. http://dx.doi.org/10.1117/12.2303798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kintaka, Kenji, Xiaoqiang Cui, Keiko Tawa, and Junji Nishii. "100-Fold Enhancement of Fluorescence Imaging by Two-Dimensional-Grating-Coupled Surface Plasmon Resonance." In Advances in Optical Materials. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/aiom.2009.atha6p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, S. S., and R. Magnusson. "Resonance anomalies of dielectric-layered diffraction gratings for TE and TM polarized incident waves." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thbb3.

Повний текст джерела
Анотація:
Grating anomalies are natural phenomena associated with diffraction gratings. Three categories are defined to distinguish the different types of anomaly: Rayleigh wavelength, resonance, and surface plasmon. In this paper, the guided-mode resonance characteristics of dielectric waveguide diffraction gratings are studied by the rigorous coupled-wave theory. For weakly modulated gratings, it is shown that elementary waveguide theory can be used to locate the resonances and define associated parametric ranges. It is also shown that the transverse field equation describing the field distribution across waveguide structures can be used to express the ratio of the complex amplitudes of the spectral orders on the grating boundaries. It is found that unslanted dielectric diffraction gratings at the first Bragg condition or normal incidence exhibit almost complete energy exchange between the forward and backward propagating zeroth orders. For waveguide gratings with identical parameters, the resonance characteristics are compared for TE and TM polarized input light. The resonances generally occur at different locations and the linewidths of the propagating zeroth orders are also different.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії