Добірка наукової літератури з теми "Graphitic Carbon Nitrides"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Graphitic Carbon Nitrides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Graphitic Carbon Nitrides"

1

Idris, Azeez O., Ekemena O. Oseghe, Titus A. M. Msagati, Alex T. Kuvarega, Usisipho Feleni, and Bhekie Mamba. "Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing." Sensors 20, no. 20 (October 10, 2020): 5743. http://dx.doi.org/10.3390/s20205743.

Повний текст джерела
Анотація:
Graphitic carbon nitride (g-C3N4) is a two-dimensional conjugated polymer that has attracted the interest of researchers and industrial communities owing to its outstanding analytical merits such as low-cost synthesis, high stability, unique electronic properties, catalytic ability, high quantum yield, nontoxicity, metal-free, low bandgap energy, and electron-rich properties. Notably, graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. It has been explored in various analytical fields due to its excellent biocompatibility properties, including ease of surface functionalization and hydrogen-bonding. Graphitic carbon nitride (g-C3N4) acts as a nanomediator and serves as an immobilization layer to detect various biomolecules. Numerous reports have been presented in the literature on applying graphitic carbon nitride (g-C3N4) for the construction of electrochemical sensors and biosensors. Different electrochemical techniques such as cyclic voltammetry, electrochemiluminescence, electrochemical impedance spectroscopy, square wave anodic stripping voltammetry, and amperometry techniques have been extensively used for the detection of biologic molecules and heavy metals, with high sensitivity and good selectivity. For this reason, the leading drive of this review is to stress the importance of employing graphitic carbon nitride (g-C3N4) for the fabrication of electrochemical sensors and biosensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jorge, A. Belen, F. Corà, A. Sella, P. F. McMillan, and Daniel J. L. Brett. "Electrochemical properties of graphitic carbon nitrides." International Journal of Nanotechnology 11, no. 9/10/11 (2014): 737. http://dx.doi.org/10.1504/ijnt.2014.063784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haiber, Diane M., Michael M. J. Treacy, and Peter A. Crozier. "Local Structural Analysis of Graphitic Carbon Nitrides." Microscopy and Microanalysis 24, S1 (August 2018): 1990–91. http://dx.doi.org/10.1017/s1431927618010437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Steinmann, Stephan N., Sigismund T. A. G. Melissen, Tangui Le Bahers, and Philippe Sautet. "Challenges in calculating the bandgap of triazine-based carbon nitride structures." Journal of Materials Chemistry A 5, no. 10 (2017): 5115–22. http://dx.doi.org/10.1039/c6ta08939a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chan, Ming-Hsien, Ru-Shi Liu, and Michael Hsiao. "Graphitic carbon nitride-based nanocomposites and their biological applications: a review." Nanoscale 11, no. 32 (2019): 14993–5003. http://dx.doi.org/10.1039/c9nr04568f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verma, Santosh Kumar, Rameshwari Verma, Yarabahally R. Girish, Fan Xue, Long Yan, Shekhar Verma, Monika Singh, et al. "Correction: Heterogeneous graphitic carbon nitrides in visible-light-initiated organic transformations." Green Chemistry 24, no. 2 (2022): 957. http://dx.doi.org/10.1039/d2gc90005j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fronczak, Maciej, Emília Tálas, Zoltán Pászti, Gábor P. Szijjártó, Judith Mihály, András Tompos, Piotr Baranowski, Santosh Kr Tiwari, and Michał Bystrzejewski. "Photocatalytic performance of alkali metal doped graphitic carbon nitrides and Pd-alkali metal doped graphitic carbon nitride composites." Diamond and Related Materials 125 (May 2022): 109006. http://dx.doi.org/10.1016/j.diamond.2022.109006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liao, Guangfu, Yan Gong, Li Zhang, Haiyang Gao, Guan-Jun Yang, and Baizeng Fang. "Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light." Energy & Environmental Science 12, no. 7 (2019): 2080–147. http://dx.doi.org/10.1039/c9ee00717b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Theerthagiri, J., R. A. Senthil, J. Madhavan, and B. Neppolian. "A Comparative Study on the Role of Precursors of Graphitic Carbon Nitrides for the Photocatalytic Degradation of Direct Red 81." Materials Science Forum 807 (November 2014): 101–13. http://dx.doi.org/10.4028/www.scientific.net/msf.807.101.

Повний текст джерела
Анотація:
The graphitic carbon nitride (g-C3N4) materials have been synthesized from nitrogen rich precursors such as urea and thiourea by directly heating at 520 °C for 2 h. The as-synthesized carbon nitride samples were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) and particle size analysis. The photoelectrochemical measurements were performed using several on-off cycles under visible-light irradiation. The x-ray diffraction peak is broader which indicates the fine powder nature of the synthesized materials. The estimated crystallite size of carbon nitrides synthesized from urea (U-CN) and thiourea (T-CN) are 4.0 and 4.4 nm respectively. The particle size of U-CN and T-CN were analysed by particle size analyser and were found to be 57.3 and 273.3 nm respectively. The photocatalytic activity for the degradation of the textile dye namely, direct red-81 (DR81) using these carbon nitrides were carried out under visible light irradiation. In the present investigation, a comparison study on the carbon nitrides synthesized from cheap precursors such as urea and thiourea for the degradation of DR81 has been carried out. The results inferred that U-CN exhibited higher photocatalytic activity than T-CN. The photoelectrochemical studies confirmed that the (e--h+) charge carrier separation is more efficient in U-CN than that of T-CN and therefore showed high photocatalytic degradation. Further, the smaller particle size of U-CN is also responsible for the observed degradation trend.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Martínez-Cartagena, Manuel Eduardo, Juan Bernal-Martínez, Arnulfo Banda-Villanueva, Javier Enríquez-Medrano, Víctor D. Lechuga-Islas, Ilse Magaña, Teresa Córdova, Diana Morales-Acosta, José Luis Olivares-Romero, and Ramón Díaz-de-León. "Biomimetic Synthesis of PANI/Graphitic Oxidized Carbon Nitride for Supercapacitor Applications." Polymers 14, no. 18 (September 19, 2022): 3913. http://dx.doi.org/10.3390/polym14183913.

Повний текст джерела
Анотація:
Polyaniline (PANI) composites have gained momentum as supercapacitive materials due to their high energy density and power density. However, some drawbacks in their performance remain, such as the low stability after hundreds of charge-discharge cycles and limitations in the synthesis scalability. Herein, we report for the first time PANI-Graphitic oxidized carbon nitride composites as potential supercapacitor material. The biomimetic polymerization of aniline assisted by hematin, supported by phosphorous and oxygen-modified carbon nitrides (g-POCN and g-OCN, respectively), achieved up to 89% yield. The obtained PAI/g-POCN and PANI/g-OCN show enhanced electrochemical properties, such as conductivity of up to 0.0375 S/cm, specific capacitances (Cs) of up to 294 F/g (at high current densities, 5 A/g) and a stable operation after 500 charge-discharge cycles (at 3 A/g). In contrast, the biomimetic synthesis of Free PANI, assisted by stabilized hematin in cosolvents, exhibited lower performance properties (65%). Due to their structural differences, the electrochemical properties of Free PANI (conductivity of 0.0045 S/cm and Cs of up to 82 F/g at 5 A/g) were lower than those of nanostructured PANI/g-POCN and g-OCN supports, which provide stability and improve the properties of biomimetically synthesized PANI. This work reveals the biomimetic synthesis of PANI, assisted by hematin supported by modified carbon nitrides, as a promising strategy to produce nanostructured supercapacitors with high performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Graphitic Carbon Nitrides"

1

Rahman, A. S. "Theoretical and experimental investigations of graphitic and crystalline carbon nitrides." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1426441/.

Повний текст джерела
Анотація:
Solid state carbon nitride materials are useful in a number of areas in industry, ranging from heat retardation, photocatalysis, electrochemistry, as well as the potential to form a new super hard material to rival diamond. The flexible nature of the chemical bonding and environment of C and N atoms in a carbon nitride system gives rise to wide structural diversity, which present challenges in characterisation of the material. Theoretical modeling for such a versatile system is an essential part of scientific research. Quantum mechanical computational methods are employed to study carbon nitride materials in dense sp3 bonded and planar polymeric graphitic phases. The computer codes used for this study are CRYSTAL and CASTEP, both based on DFT. Synthesis of dense and graphitic carbon nitride materials, using ionothermal and thermal methods were also conducted towards part of this research. The results from each theoretically calculated investigation in this thesis are compared with experimental data, to guide the understanding of the experimental results for the system under study. Experimentally synthesised and recovered carbon nitride material, with defective wurtzite structure and C2N3H stoichiometry, was investigated for its stability over a range of pressures. Three possible C2N3H phases arising from different proton arrangements were modeled to determine the most stable arrangement. A metastable C2N3H phase was detected experimentally; an ab initio structure prediction method was employed, which identified a structure that complied with experimental observations. CASTEP was tested and used to calculate NMR chemical shifts for 13C and 15N atoms for a number of carbon nitride materials. Predictions were focused on determining the atom connectivity and structural topology for thermal synthetic methods that yielded dense and graphitic carbon nitride solid‐state materials. Calculated NMR chemical shifts were also employed in a collaborative study to guide the understanding of planetary tholins, formed in Titan’s atmosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kharlamov, A. I., M. E. Bondarenko, G. A. Kharlamova, and V. V. Fomemko. "Direct Synthesis of O-doped Carbon Nitride and Oxide of Graphite-like Carbon Nitride from Melamine." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42601.

Повний текст джерела
Анотація:
It was first performed a special method of pyrolysis of melamine in order to study the possibility of coproduction of carbon nitride and its oxidized derivatives. New compound as a graphite-like carbon nitride oxide (g-C3N4)O, which is isostructural analogue of graphite oxide, and doped with oxygen ( ~ 8.1 % ), carbon nitride (O-g-C3N4) were obtained. In contrast to known methods for the preparation of samples doped with oxygen carbon nitride a new route does not provide a preliminary synthesis of g-C3N4.The synthesized carbon nitride oxide is easily stratified and dissolved in water to form a flocculent solution which may contain not only ultra-thin nanosheets from several heptazine oxidized layers, but also the individual twodimensional monolayers. These monolayers can be a precursor for making reduced heptazine monolayer (or azagraphene). The synthesized substunces were investigated by methods chemical and X-ray analyses, IR spectroscopy, temperature-programmed desorption mass spectrometry (TPDMS) obtained products.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Jing. "Development of Graphitic Carbon Nitride based Semiconductor Photocatalysts for Organic Pollutant Degradation." Doctoral thesis, KTH, Tillämpad processmetallurgi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173216.

Повний текст джерела
Анотація:
As a potential solution to the global energy and environmental pollution, design and synthesis of artificial photocatalysts with high activities have attracted increasing scientific interests worldwide. In recent years, the graphitic carbon nitride (g-C3N4) has shown new possible applications in the photocatalytic field due to its unique properties. However, the photocatalytic efficiency of the pristine g-C3N4 is greatly limited by the high recombination rate of the photo-induced electron-hole pairs. In this thesis, the aim is to design and fabricate efficient g-C3N4 based photocatalysts with enhanced photocatalytic activities under a visible light irradiation. In order to achieve this goal, two strategies have been employed in the present thesis. First, the as-obtained g-C3N4 was used as the host material to construct staggered-aligned composite photocatalysts by selecting semiconductors with suitable band positions. By this method, three kinds of g-C3N4-based composite photocatalysts such as g-C3N4/ZnS nanocage, g-C3N4/m-Ag2Mo2O7 and g-C3N4/MIL-88A were successfully fabricated. Second, the microstructure of the g-C3N4 was modified by the H2O2-treatment at an elevated temperature and ambient pressure. In this study, the g-C3N4 was prepared by a simple pyrolysis of urea. As for all the as-synthesized phtocatalysts, the structures, morphologies and the optical properties were carefully characterized by the following techniques: XRD, SEM, TEM, FT-IR and DRS. Also, the band edge positions of m-Ag2Mo2O7 and MIL-88A were studied by the Mott-Schottky methods. Thereafter, the photocatalytic activities were evaluated by using a solution of rhodamine B (RhB) as a target pollutant for the photodegradation experiments performed under a visible light irradiation. The results showed that all the aforementioned g-C3N4-based photocatalysts exhibited enhanced photocatalytic activities in comparison with the pristine g-C3N4. For the case of the g-C3N4-based composite photocatalysts, the enhancement factor over the pristine g-C3N4 can achieve values ranging from 2.6 to 3.4. As for the H2O2-treated g-C3N4, the degradation rate constant can be 4.6 times higher than that of the pristine g-C3N4. To understand the key factors in new materials design, we also devote a lot of efforts to elucidate the basic mechanisms during the photocatalytic degradation of organic pollutant. Based on the results of the active species trapping (AST) experiments, the main active species in each photocatalytic system were determined. In the g-C3N4/m-Ag2Mo2O7 and the g-C3N4/MIL-88A system, three kinds of active species of ·O2-, h+ and ·OH were found to be involved in the photocatalytic reaction. Among them, the ·O2- and h+ were the main active species. In the g-C3N4/ZnS and H2O2-treated g-C3N4 photocatalytic systems, the main active species was determined as the ·O2-. The reaction pathways of these active species were also demonstrated by comparing the band edge positions with the potentials of the redox couple. In addition, the relationship between the active species and the photocatalytic behaviors of N-de-ethylation and conjugated structure cleavage were studied. Finally, possible mechanisms to explain the enhanced photocatalytic activities were proposed for each photocatalytic system. The results in this thesis clearly confirm that the photocatalytic activity of the g-C3N4 based photocatalyst can efficiently be enhanced by constructions of staggered-aligned composites and by modification of the microstructure of the g-C3N4. The enhanced photocatalytic performance can mainly be ascribed to the efficient separation of the photo-induced electron-hole pairs and the increase of the active sites for the photocatalytic reaction.

QC 20150909

Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Lingling. "Porphyrins, graphitic carbon nitride and their hybrids for photocatalytic solar fuel generation." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/736.

Повний текст джерела
Анотація:
Photocatalytic solar fuel generation is the most green, sustainable and viable approach to deal with both the ever-growing energy crisis and environmental issues, simultaneously. The work presented in this thesis is focused on the development of new organic carbonaceous semiconductors, typically, carbon quantum dots (CQDs) and graphitic carbon nitride (g-C3N4), and porphyrin small molecules and their hybrids with graphitic carbon nitride, meanwhile, their application in the field of photocatalytic solar fuel generation. In the chapter 1, a general review about background and mechanism of photocatalytic solar fuel generation are introduced first. Next, the features and developments of porphyrin and graphitic carbon nitride for the photocatalytic redox reaction are discussed. In chapter 2, the synthesis, characterization methods and photocatalytic experiment in details are described. In chapter 3, gram-scale CQDs are facilely synthesized by simple thermal treatment of citric acid monohydrate, and microporous 1D nanorods of g-C3N4 are prepared through template-free chemical approach. The photocatalytic properties of 1D protonated g-C3N4 (HCN) modified with different amount of CQDs were evaluated by the rate of H2- evolution under visible light irritation. The results demonstrate that g-C3N4/CQDs with the optimal CQDs amount of 0.25 wt.% afford the highest H2-production rate of 382 μmol h-1 g-1 with apparent quantum yield (AQY) of 1.9% which was about 3-fold of pure g- C3N4. The composite g-C3N4/CQDs show a remarkable stability against the photocorrosion within a continuous experiment period over 12h. The enhanced photocatalytic H2-production activity could be attribute to the intimate interface between CQDs and g-C3N4, which not only significantly improves the visible-light absorption, but also prolongs the lifetime of charge carriers and suppresses the recombination of photogenerated electron-hole pairs. This work showed that low-cost and metal-free CQDs could be an efficient photosensitizer to promote photocatalytic hydrogen generation. In chapter 4, we reported a new array of push-pull isomeric naphthalimide- porphyrins (ZnT(p-NI)PP) to investigate the effect of naphthalimide and molecular constitution on light driven hydrogen evolution from water splitting. These compounds were synthesized by integration of four naphthalimide moieties on meso-substituion of porphyrin macrocycle through para phenyl linker. Porphyrins were characterized by UV- Vis, Fluorescence and DFT calculations and compared with those of zinc tertapheylporphyrin (ZnTPP). When these porphyrins were employed as photocatalyst for the photocatalytic hydrogen production (PHP) with platinum co-catalyst, they delivered high hydrogen efficiency compared to that of ZnTPP. Particularly, ZnT(p-NI)PP exhibited 203 times higher hydrogen efficiency than the ZnTPP. This could be ascribed to the efficient exciton dissociation into holes and electrons at the photoexcited state of ZnT(p-NI)PP and then electrons were transferred to the proton through platinum. These results indicate that introduction of naphthalimide at meso-position of porphyrin through para phenyl linker is a versatile strategy to improve the photocatalytic hydrogen evolution of porphyrin based materials. In addition, the other two isomeric naphthalimide conjugated porphyrins through meta-and ortho-phenyl linker, ZnT(m-NI)PP and ZnT(o-NI)PP are also developed for photocatalytic H2 production. The para-linked isomer, ZnT(p-NI)PP delivered a much higher H2 production rate of 973 μmol h−1g -1 compared to that of ZnT(m-NI)PP (597 μmol h−1g −1) and ZnT(o-NI)PP (54 μmol h−1g −1), respectively. This could be attributed to the efficient intramolecular energy transfer from the naphthalimide to the porphyrin ring. In chapter 5, a series of NP/g-C3N4 hybrids of graphitic carbon nitride (g-C3N4) with naphthalimide-porphyrin (ZnT(p-NI)PP, labelled as NP) have been developed for photocatalytic hydrogen production. Planar naphthalimide-porphyrins are adsorbed onto flexible two-dimensional g-C3N4 through π-π stacking, which are characterized by scanning electronic microscopy and X-ray photoelectron spectroscopy. Except for its function as photosensitizer, NP in the hybrids could efficient inhibit the charge recombination by electron transfer for the lower lowest unoccupied molecular orbital of NP than g-C3N4, whereas facilitate energy transfer from g-C3N4 donor to NP acceptor for efficient overlap of emission spectrum of NP and absorption of g-C3N4. As a result, the hybrid containing weigh ratio of 2% NP (2%NP/g-C3N4) exhibits an enhanced photocatalytic hydrogen production rate (HPR) of 2297 μmol g−1 h −1, while pristine g- C3N4 shows a HPR of 698 μmol g−1 h −1. The 2%NP/g-C3N4 shows the best performance when compared with the reported hybrids of g-C3N4 with Zn(II) -tetrakis(4- carboxylphenyl) porphyrin (ZnTCPP/g-C3N4) and Zn(II)-tetrakis(4- hydroxyphenyl)porphyrin (ZnTHPP/g-C3N4) in photocatalytic hydrogen production under the same conditions. In the chapter 6, the future work on photocatalytic CO2 reduction, perspectives and conclusions are included
Стилі APA, Harvard, Vancouver, ISO та ін.
5

He, Jijiang. "Preparation and photocatalysis of graphite carbon nitride based photocatalysts." Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/521.

Повний текст джерела
Анотація:
The connection between ritual and the interior is interrogated through a theoretical framework integrating Van Gennep’s Rites of Passage Theory and Turner’s Theory of Liminality. A multi-faceted methodological framework is developed from the interrogation of the disciplinary edges of multiple methodologies, addressing the experiential, cultural and subjective dimensions of ritual. This new way of exploring the interior demonstrates how knowledge can be acquired from the body’s immersion in unfolding ritual situations, revealing elements of ritual and interior in relation to one another and the generation of new theories on the interior.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Mengdi. "Ta₃N₅/Polymeric g-C₃N₄ as Hybrid Photoanode for Solar Water Splitting:." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108366.

Повний текст джерела
Анотація:
Thesis advisor: Dunwei Wang
Water splitting has been recognized as a promising solution to challenges associated with the intermittent nature of solar energy for over four decades. A great deal of research has been done to develop high efficient and cost-effective catalysts for this process. Among which tantalum nitride (Ta₃N₅) has been considered as a promising candidate to serve as a good catalyst for solar water splitting based on its suitable band structure, chemical stability and high theoretical efficiency. However, this semiconductor is suffered from its special self-oxidation problem under photoelectrochemical water splitting conditions. Several key unique properties of graphitic carbon nitride (g-C₃N₄) render it an ideal choice for the protection of Ta₃N₅. In this work, Ta₃N₅/g-C₃N₄ hybrid photoanode was successfully synthesized. After addition of co-catalyst, the solar water splitting performance of this hybrid photoanode was enhanced. And this protection method could also act as a potential general protection strategy for other unstable semiconductors
Thesis (MS) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Adekoya, Oluwatobi. "Design and Synthesis of Graphitic Carbon Nitride (g-C3N4) Based Materials for Rechargeable Batteries." Thesis, Griffith University, 2020. http://hdl.handle.net/10072/401444.

Повний текст джерела
Анотація:
Carbon nitrides are a unique family of nitrogen-rich carbon materials with multiple beneficial properties for effective alkali metal ion transport/storage. Graphitic carbon nitride (g-C3N4) is considered the most viable member of the carbon nitride family because of its high nitrogen content, wide structure with several nitrogen-defect pore sites, ease of synthesis, affordability, and scalability. Also, g-C3N4 delivers a lithium ion battery (LIBs) theoretical capacity of 524 mAh/g unlike graphite which records only 327 mAh/g. However, due to the ineffective intercalation/deintercalation reaction of Li+ with C3N4 it suffers low capacity, poor conductivity and structural deformation when applied as an anode material for battery application. Due to this problem, the application of g-C3N4 for LIBs has slowed down, and the prospects of g-C3N4 for emerging battery systems such as potassium ion batteries (KIBs) have not been explored. In this thesis, we present unique strategies to resolve the problems of irreversible Li+ intercalation, poor conductivity, and structural destruction, and explore g-C3N4-based composites for KIB system. In the first study, one-dimensional carbon nitride nanofibers were designed and proved to be a more effective and better performing anode material for LIBs than bulk g-C3N4. This work was accomplished by combining theoretical computing and experimental techniques, Density functional theory calculation showed that the edges of the 1D-g- C3N4 nanofibers exhibited a suitable Li adsorption energy for stress-free adsorption and desorption of adsorbed Li-atoms. Moreover, our synthesized 1D-g-C3N4 nanofiber possessed edges and pores, as well as higher pyridinic nitrogen content unlike the bulk g-C3N4. The 1D-g-C3N4 nanofiber delivered a superior specific capacity of 181.7 mAh/g, a specific capacity of 138.6 mAh/g after 5000 cycles when cycled at 10C along with excellent stability and power density. This performance remains the highest amongst reported C3N4 anode materials in literature. Carbon nitride/graphene (C3N4/graphene) heterostructure is commonly reported for lithium ion batteries and this heterostructure design occurs in different configurations of 1D/2D or 2D/2D. However, a clear theoretical understanding of how the configuration of such heterostructure affects battery performance is not established. By using a first principle theory approach we studied the 1D/2D and 2D/2D C3N4/graphene heterostructures with a focus on their conductivity, charge transfer, bond structure and rearrangement/breakage and theoretical reversible capacity. In all our study, the DFT results showed that 1D/2D C3N4/graphene delivers superior charge transfer, electronic conductivity, theoretical capacity, and structural integrity compared to 2D/2D configuration. This work expanded upon the relationship between the heterostructure configuration and the electrochemical performance, this work will encourage the design of effective heterostructures for rechargeable batteries. Motivated by the result of the 1D/2D C3N4/graphene heterostructure for LIBs, we employed it for potassium ion battery application. When the fabricated 1D-g-C3N4 nanofiber was employed in potassium ion batteries, the high nitrogen content facilitated K+ adsorption; however, the K-atom diffusion barrier was too high for effective adsorption/desorption. Therefore, we combined the 1D-g-C3N4 nanofiber with 2D reduced graphene oxide (rGO) to design a 1D/2D C3N4/rGO composite for stable and effective potassium storage. In this work, we also combined the use of Density Functional Theory calculations and experimental battery testing along with high powered characterization techniques to study the storage mechanism of the composite electrode material for potassium ion battery. The 1D/2D composite benefitted from the larger surface area and conductivity of 2D reduced graphene oxide and the nitrogen rich active sites of the 1D-g-C3N4 nanofiber. Additionally, DFT calculations showed that the graphene structure from 2D rGO possessed lower K-atom diffusion barrier and superior conductivity which provided shorter ionic transport distances and boosted electronic conductivity in the composite. Thanks to the synergistic interaction between the 1D-g-C3N4 nanofiber and 2D rGO, the electrode delivered a remarkable specific capacity of 464.9 mAh/g after 200 cycles at 1 A/g and 228.6 mAh/g after 1000 cycles at 10 A/g, which is one of the best potassium ion battery anode material performance reported so far. Another approach to exploring the benefits of the 1D-g-C3N4 nanofiber is to use it as a source of N-doped carbon. Metal oxides such as cobalt oxide (Co3O4) have been widely applied as anode materials in rechargeable LIBs but the small d-spacing limits their application for large-sized metal ion batteries such as potassium ion batteries. Moreover, through DFT calculations we proved that the poor performance of Co3O4 for KIBs is due to poor conductivity, high diffusion barrier, and weak potassium interaction. Thanks to the concept of interfacial engineering, we fabricated a hierarchical composite of Co3O4@N-doped carbon in which the N-doped carbon is derived from 1D-g-C3N4. The material design approach for the composite involved coating the surface of Co3O4 with N-doped carbon such K+ can be effectively transported through the that at the interface both materials via multiple ionic pathways. Furthermore, the structural design of the composite enabled increased Co3O4 spacing for effective K+ diffusion, improved conductivity, and protection of the core structure from damage. Based on the entire composite, a capacity of 448.7 mAh/g was delivered after 40 cycles, and 213 mAh/g was retained after 740 cycles when cycled at 500 mA/g. This work combined the principle of material boundary engineering with theoretical computation to design a composite anode material whose performance exceeded that of most metal-oxide-based KIB anodes reported in literature. In summary, the strategies presented in this thesis show that the morphology and electronic properties of g-C3N4 can be manipulated to resolve the problems of irreversible intercalation/deintercalation, poor conductivity, and structural deformation. Moreover, the application of g-C3N4 has been extended to potassium ion batteries and we are the first research group to demonstrate this in literature. Also, the electrochemical performances recorded from experimental battery testing and theoretical computation (DFT simulation) shows that g-C3N4 and g-C3N4-based materials are promising advanced anode materials for LIBs and KIBs. These strategies can be extended to other members of the carbon nitride family such as CN, C2N, C3N etc. for different metal-ion batteries.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nguyen, Chinh Chien, and Chinh Chien Nguyen. "Novel strategies to develop efficient titanium dioxide and graphitic carbon nitride-based photocatalysts." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30378.

Повний текст джерела
Анотація:
Afin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges.
Afin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges.
The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumru, Baris [Verfasser], and Markus [Akademischer Betreuer] Antonietti. "Utilization of graphitic carbon nitride in dispersed media / Baris Kumru ; Betreuer: Markus Antonietti." Potsdam : Universität Potsdam, 2018. http://d-nb.info/1219078034/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Yibing. "Graphitic Carbon-Based Functional Nanomaterials for Environmental Remediation and Energy Conversion Applications." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/366091.

Повний текст джерела
Анотація:
Carbon-based nanomaterials have attracted significant attention due to their unique optical, electrical, thermal and mechanical properties. In recent years, a large number of carbon-based nanomaterials have been investigated including carbon nanotubes, graphitic carbon nitride (g-C3N4), graphene, carbon nanofibers, carbon nanodots (CNDs), heteroatom-doped carbon, and carbon-based materials obtained from biomass etc. The unique and superior properties of such carbon-based materials make them useful for a wide range of applications in the fields such as environmental remediation and energy conversions. Although significant progress has been made over the past decade or so, few drawbacks of carbon-based materials still remain unresolved. For example, as a photocatalyst, the weak van der Waals interactions between adjacent conjugated planes of g-C3N4 and poor electronic properties affect negatively on the photocatalytic activity. Despite a variety of synthetic methods have been investigated, to fabricate undoped and doped carbon-based materials, the efficiency and level of control on the resultant products are far from satisfactory. Majority of these approaches either involve tedious and complex experimental procedures or require using harsh reaction conditions, or possessing low yield production. Furthermore, to achieve heteroatom-doped carbon-based materials, the reported approaches almost exclusively require the use of synthetic chemicals as carbon and heteroatom sources, respectively. The large-scale application of fuel cells and dye-sensitized solar cells (DSSCs) using Pt-based catalysts is hindered by the inherent disadvantages of Pt such as high cost, scarcity and low resistance to crossover effect of methanol molecule. It is therefore highly desirable to realize heteroatom doping by simple, low-cost, high yield and environmentally benign synthesis methods for fabrication of commercially viable carbon-based materials for applications in solar cells and fuel cells.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Graphitic Carbon Nitrides"

1

Striegler, Karl. Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Striegler, Karl. Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water: Copolymers, Sensitizers and Nanoparticles. Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water: Copolymers, Sensitizers and Nanoparticles. Spektrum Akademischer Verlag GmbH, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nanoscale Graphitic Carbon Nitride. Elsevier, 2022. http://dx.doi.org/10.1016/c2019-0-04468-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pandikumar, Alagarsamy, C. Murugan, and S. Vinoth. Nanoscale Graphitic Carbon Nitride. Elsevier, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pandikumar, Alagarsamy, C. Murugan, and S. Vinoth. Nanoscale Graphitic Carbon Nitride: Synthesis and Applications. Elsevier, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thomas, Sabu, S. Anas, and Jomon Joy. Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material. Elsevier, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thomas, Sabu, S. Anas, and Jomon Joy. Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material. Elsevier, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eid, Kamel, and Aboubakr M. Abdullah. Carbon Nitride Nanostructures for Sustainable Energy Production and Environmental Remediation. Royal Society of Chemistry, The, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Carbon Nitride Nanostructures for Sustainable Energy Production and Environmental Remediation. Royal Society of Chemistry, The, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Graphitic Carbon Nitrides"

1

Kumar, Sudesh, Kakarla Raghava Reddy, Ch Venkata Reddy, Nagaraj P. Shetti, Veera Sadhu, M. V. Shankar, Vasu Govardhana Reddy, A. V. Raghu, and Tejraj M. Aminabhavi. "Metal Nitrides and Graphitic Carbon Nitrides as Novel Photocatalysts for Hydrogen Production and Environmental Remediation." In Nanostructured Materials for Environmental Applications, 485–519. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72076-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ahmad, Fareed, Zishan H. Khan, and Sundar Singh. "Graphitic Carbon Nitrides: Synthesis, Properties, and Applications in Perovskite Solar Cells." In Materials Horizons: From Nature to Nanomaterials, 45–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0553-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Striegler, Karl. "Introduction and Objective." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 1–2. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Striegler, Karl. "Literature Overview." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 3–17. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Striegler, Karl. "Experimental Section." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 19–31. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Striegler, Karl. "Results and Discussion." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 33–68. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Striegler, Karl. "Conclusion and Outlook." In Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water, 69–71. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09740-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Đurđić, Slađana, Vesna Stanković, and Dalibor M. Stanković. "Graphitic Carbon Nitride in Biosensing Application." In Handbook of Nanobioelectrochemistry, 153–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9437-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mostafa, Islam M., Fangxin Du, and Guobao Xu. "CHAPTER 2. Graphitic Carbon Nitride-based Chemiluminescent and Electrochemiluminescent Sensors." In Nanoscience & Nanotechnology Series, 38–79. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164606-00038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Razali, Nur Aqilah Mohd, Wan Norharyati Wan Salleh, Farhana Aziz, Ahmad Fauzi Ismail, and Wan Mohd Asyraf Wan Mahmood. "Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Wastewater Treatment." In Advanced Materials for Wastewater Treatment and Desalination, 3–23. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003167327-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Graphitic Carbon Nitrides"

1

Bucuci, Marian, Ştefan Ungureanu, Anca Miron, and Andrei C. Cziker. "Hydrogen Storage Potential of the Graphitic Carbon Nitride." In 2023 10th International Conference on Modern Power Systems (MPS). IEEE, 2023. http://dx.doi.org/10.1109/mps58874.2023.10187412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Huimin, Huixian Zhang, Keming Fang, Lining Yang, and Jianrong Chen. "Graphitic Carbon Nitride Photocatalysts for Degradation of Organic Pollutants." In 2018 3rd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/amcce-18.2018.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Patra, P. C., and Y. N. Mohapatra. "Synthesis and characterization of Ag embedded graphitic carbon nitride." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pareek, Saurabh, and Supravat Karak. "2-D graphitic carbon nitride nanostructures for optoelectronic application." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0025687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fan, Mingqi, Tao Li, Guiqiu Li, Kejian Yang, Dechun Li та Christian Krankel. "Graphitic carbon nitride: A new saturable absorber for ∼3 μm". У 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Esen, Cansu, and Baris Kumru. "Light-Driven Integration of Graphitic Carbon Nitride into Polymer Materials." In IOCPS 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iocps2021-11590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shalom, Menny. "Graphitic Carbon Nitride Layers as Light-Harvesting Semiconductors for Photoelectrochemical Cells." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Memon, U. B., A. Ibrahim, A. Pattanayak, S. P. Duttagupta, A. Sarkar, and R. K. Singh Raman. "A simulation study of terahertz dielectric resonator using graphitic carbon nitride." In 2018 22nd International Microwave and Radar Conference (MIKON). IEEE, 2018. http://dx.doi.org/10.23919/mikon.2018.8405337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yan, Zhengyu, Caoyuan Wang, Ruowei Yu, Zixian Hu, and Limin Xiao. "Graphitic Carbon Nitride Nanosheets Deposited on Microfibers for Relative Humidity Sensing." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/acpc.2020.m4a.50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cahyadi, Bagas, Leony Inatsan Pertiwi, Queenta Perdania Putri, and Anatta Wahyu Budiman. "Photodegradation of batik waste with graphitic carbon nitride using UV-BLB." In THE 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL, MECHANICAL, ELECTRICAL, AND CHEMICAL ENGINEERING 2019 (ICIMECE 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії