Добірка наукової літератури з теми "Graphe ordonné"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Graphe ordonné".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Graphe ordonné"
Bélanger, Marie-France, Julien Constantin, and Gilles Fournier. "Graphes et ordonnés démontables, propriété de la clique fixe." Discrete Mathematics 130, no. 1-3 (July 1994): 9–17. http://dx.doi.org/10.1016/0012-365x(92)00518-v.
Повний текст джерелаCoëffé, Vincent. "Les Hawai’i saisies par la géo-graphie: l’espace utopique de Mark Twain." Cahiers de géographie du Québec 49, no. 137 (March 9, 2006): 225–40. http://dx.doi.org/10.7202/012302ar.
Повний текст джерелаBordat, J. P. "Parcours dans les graphes: Un outil pour l'algorithmique des ensembles ordonnes." Discrete Applied Mathematics 12, no. 3 (November 1985): 215–31. http://dx.doi.org/10.1016/0166-218x(85)90026-5.
Повний текст джерелаSareni, Bruno, Gérard Fontan, Elodie Chanthery, and Stéphane Caux. "OrdoNet, un outil de modélisation et d'analyse des graphes potentiel-tâche sous Matlab." J3eA 8 (2009): 1003. http://dx.doi.org/10.1051/j3ea:2008044.
Повний текст джерелаBeazley, Elizabeth T. "Maximal Newton polygons via the quantum Bruhat graph." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AR,..., Proceedings (January 1, 2012). http://dx.doi.org/10.46298/dmtcs.3092.
Повний текст джерелаLenart, Cristian, Satoshi Naito, Daisuke Sagaki, Anne Schilling, and Mark Shimozono. "A uniform model for Kirillov―Reshetikhin crystals." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (January 1, 2013). http://dx.doi.org/10.46298/dmtcs.12790.
Повний текст джерелаTenner, Bridget Eileen. "Boolean complexes and boolean numbers." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AN,..., Proceedings (January 1, 2010). http://dx.doi.org/10.46298/dmtcs.2833.
Повний текст джерелаRubey, Martin. "Maximal 0-1-fillings of moon polyominoes with restricted chain lengths and rc-graphs." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (January 1, 2011). http://dx.doi.org/10.46298/dmtcs.2957.
Повний текст джерелаZhang, Yan X. "Adinkras for Mathematicians." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (January 1, 2013). http://dx.doi.org/10.46298/dmtcs.12826.
Повний текст джерелаFarber, Miriam, and Yelena Mandelshtam. "Arrangements Of Minors In The Positive Grassmannian And a Triangulation of The Hypersimplex." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (January 1, 2015). http://dx.doi.org/10.46298/dmtcs.2469.
Повний текст джерелаДисертації з теми "Graphe ordonné"
Buchwalder, Xavier. "Sur l'algèbre et la combinatoire des sous-graphes d'un graphe." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00441324.
Повний текст джерелаGatse, Franchel. "Spectre ordonné et branches analytiques d'une surface qui dégénère sur un graphe." Electronic Thesis or Diss., Orléans, 2020. http://www.theses.fr/2020ORLE3205.
Повний текст джерелаIn this work, we give a general framework of Riemannian surfaces that can degenerate on metric graphs and that we call surfaces made from cylinders and connecting pieces. The latter depend on a parameter t that describes the degeneration. When t goes to 0, the waists of the cylinders go to 0 but their lengths stay fixed. We thus obtain the edges of the limiting graph. The connecting pieces are squeezed in all directions and degenerate on the vertices of the limiting graph. We then study the asymptotic behaviour of the spectrum of these surfaces when t varies from two different points of view, considering the spectrum either as a sequence of ordered eigenvalues or as a collection of analytic eigenbranches. In the case of ordered eigenvalues, we recover a rather classical statement, and prove that the spectrum converges to the spectrum of the limiting object. The study of the analytic eigenbranches is more original. We prove that any such eigenbranch converges and we give a characterisation of the possible limits. These results apply to translation surfaces on which there is a completely periodic direction
Pitois, François. "Recherche de régularités et représentations succinctes de graphes." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK021.
Повний текст джерелаIn this thesis, we investigate regularities in graphs and succinct representations of graphs.A regularity, or structure, is a generic term that refers to a set of vertices in a graph with certain properties.Among the most well-known regularities, we can mention cliques, dense subgraphs, communities, modules, and splits.A succinct representation of a graph is a way of describing it that is more efficient than simply listing the different edges of the graph.Searching for regularities enables obtaining succinct representations.Thus, in a first step, we developed a graph compression algorithm that searches for different graph regularities, selects a portion of them, and partitions the graph based on the selected structures.This algorithm provides a succinct description of the graph that is better than some benchmark algorithms.In a second step, we created our own structures, so they are suitable for compression and are easy enough to search for.To do this, we started from a known structure, the split, and generalized it to create the r-split, where r is a fixed integer parameter.We then showed that the set of r-splits of a graph has a global coherence, in the sense that only a polynomial number of them is sufficient to describe all r-splits of the graph.This generalizes a well-known property of splits, for which only a linear number of them is sufficient to recover all the others.We also demonstrated that r-splits can be computed in polynomial time using submodular function optimization algorithms.In a third step, we focused on searching for particular regularities: patterns in ordered graphs.An ordered graph is a graph in which the vertices are ordered from 1 to n.A pattern is a partial ordered subgraph, in the sense that each pair of vertices can be connected either by an edge, a non-edge, or neither.The goal is to fix a pattern P and build an algorithm capable of detecting if P is in any ordered graph given as an input.This problem is polynomial in the size of the graph via exhaustive search.However, is it possible to do better?We were able to show that yes: most three-vertex patterns can be detected in linear time while exhaustive search requires cubic time.Regarding larger patterns, we exhibited classes of patterns that can be detected in subcubic time: outerplanar patterns.By adding additional constraints, we exhibited a class of patterns that can be detected in linear time: these are outerplanar patterns without cycles and non-edges
Rexhep, Selim. "Combinatorics of finite ordered sets: order polytopes and poset entropy." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/231859.
Повний текст джерелаLe but de la thèse est d'étudier deux problèmes ouverts sur les ensembles ordonnés finis: la structure des polytopes d'ordre et l'approximation du nombre d'extensions linéaires d'un ordre partiel au moyen de la notion d'entropie de graphe. Les polytopes considérés sont le polytope des ordres totaux, le polytope des semiordres, le polytope des ordres d'intervalles, le polytope des ordres partiels, ainsi qu'une généralisation du polytope des ordres totaux: le polytope des extensions linéaires d'un ensemble ordonné fixé P. Des résultats sur la structure de ces polytopes sont présentés dans la première partie de la thèse. Dans la deuxième partie de la thèse, nous améliorons les bornes existantes liant l'entropie du graphe d'incomparabilité d'un ordre partiel et son nombre d'extensions linéaires.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Retoré, Christian. "Réseaux et séquents ordonnés." Phd thesis, Université Paris-Diderot - Paris VII, 1993. http://tel.archives-ouvertes.fr/tel-00585634.
Повний текст джерелаLécuyer, Fabrice. "Ordonner les nœuds pour passer à l'échelle sur les grands réseaux réels." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS172.
Повний текст джерелаThis thesis focuses on using theoretical tools of computer science to improve algorithms in practice, specifically algorithms that process data in the form of graphs. A graph represents elements (nodes) and their interactions (edges). Computer scientists have designed theoretical algorithms for arbitrary graphs, such as finding shortest paths or identifying inter-connected nodes. However, real-world networks have specific properties that are unknown in advance due to the situations from which they arise. They can be very large, which presents a challenge for processing them in reasonable time. To help design scalable algorithms for real-world networks, we focus on the technique of node ordering, which consists in processing the nodes in a specific order that depends on local or global properties of the network. We provide a review on the different mechanisms and methods that have been used to design orderings across various application domains. Then, we present three contributions that use node orderings to make algorithms more efficient. First, we replicate a paper that designs an ordering to make cache systems more effective, which accelerates different graph algorithms. Second, we create new orderings that diminish the number of operations in an existing algorithm for triangle listing. Third, we use greedy algorithms with certain orderings to bound the size of a minimum vertex cover on a specific instance, which allows us to certify the quality of approximate values. These findings insist on scalability issues, time measurements, mathematical grounding and validation by experiments. Finally, we present a collaboration on network analysis that consists in describing the mobility of researchers within the space of knowledge
Hilali, Abdelmajid. "Ordres de contiguïté." Lyon 1, 1993. http://www.theses.fr/1993LYO10264.
Повний текст джерелаBoneva, Iovka. "Expressivité, satisfiabilité et model checking d'une logique spatiale pour arbres non ordonnés." Lille 1, 2006. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/dffac6b2-50d6-4e6d-9e4c-f8f5731c75e2.
Повний текст джерелаJanaqi, Stefan. "Quelques éléments de la géométrie des graphes : graphes médians, produits d'arbres, génération convexe des graphes de Polymino." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1995GRE10093.
Повний текст джерелаRoux, Bernard. "Une approche relationnelle des automates et de l'ordonnancement." Lyon 1, 2000. http://www.theses.fr/2000LYO10255.
Повний текст джерелаТези доповідей конференцій з теми "Graphe ordonné"
Aubry, Jean-François, and Nicolae Brinzei. "Calcul direct de la fiabilité d'un système par son graphe ordonné." In Congrès Lambda Mu 20 de Maîtrise des Risques et de Sûreté de Fonctionnement, 11-13 Octobre 2016, Saint Malo, France. IMdR, 2016. http://dx.doi.org/10.4267/2042/61796.
Повний текст джерела