Добірка наукової літератури з теми ""grapevine transformation""
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему ""grapevine transformation"".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми ""grapevine transformation""
Baribault, T. J., K. G. M. Skene, and N. Steele Scott. "Genetic transformation of grapevine cells." Plant Cell Reports 8, no. 3 (1989): 137–40. http://dx.doi.org/10.1007/bf00716825.
Повний текст джерелаLi, Z. T., S. Dhekney, M. Dutt, M. Aman, J. Tattersall, K. T. Kelley, and D. J. Gray. "Optimizing Agrobacterium-mediated transformation of grapevine." In Vitro Cellular & Developmental Biology - Plant 42, no. 3 (May 2006): 220–27. http://dx.doi.org/10.1079/ivp2006770.
Повний текст джерелаDutt, Manjul, Dennis J. Gray, Zhijian T. Li, Sadanand Dhekney, and Marilyn M. Van Aman. "Micropropagation Cultures for Genetic Transformation of Grapevine." HortScience 41, no. 4 (July 2006): 972C—972. http://dx.doi.org/10.21273/hortsci.41.4.972c.
Повний текст джерелаCutanda, M. C., P. Chatelet, A. Bouquet, G. Lopez, P. Iocco, M. Thomas, O. Botella, F. J. Montero, and L. Torregrosa. "GENETIC TRANSFORMATION OF 'MACABEO' AND 'TEMPRANILLO' GRAPEVINE CULTIVARS." Acta Horticulturae, no. 827 (May 2009): 641–45. http://dx.doi.org/10.17660/actahortic.2009.827.113.
Повний текст джерелаKOVALENKO, P., and A. GALKIN. "Transformation of Grapevine caber net sauvignon by agrobacterium." Cell Biology International Reports 14 (September 1990): 189. http://dx.doi.org/10.1016/0309-1651(90)90855-s.
Повний текст джерелаKikkert, J. R., J. R. Vidal, and B. I. Reisch. "APPLICATION OF THE BIOLISTIC METHOD FOR GRAPEVINE GENETIC TRANSFORMATION." Acta Horticulturae, no. 689 (August 2005): 459–62. http://dx.doi.org/10.17660/actahortic.2005.689.54.
Повний текст джерелаGuellec, Véronique, Chantal David, Michel Branchard, and Jacques Tempé. "Agrobacterium rhizogenes mediated transformation of grapevine (Vitis vinifera L.)." Plant Cell Tissue and Organ Culture (PCTOC) 20, no. 3 (March 1990): 211–15. http://dx.doi.org/10.1007/bf00041883.
Повний текст джерелаVidal, Jose R., Julie R. Kikkert, Bruno D. Donzelli, Patricia G. Wallace, and Bruce I. Reisch. "Biolistic transformation of grapevine using minimal gene cassette technology." Plant Cell Reports 25, no. 8 (March 10, 2006): 807–14. http://dx.doi.org/10.1007/s00299-006-0132-7.
Повний текст джерелаVerdugo-Vásquez, Nicolás, Gastón Gutiérrez-Gamboa, Emilio Villalobos-Soublett, and Andrés Zurita-Silva. "Effects of Rootstocks on Blade Nutritional Content of Two Minority Grapevine Varieties Cultivated under Hyper-Arid Conditions in Northern Chile." Agronomy 11, no. 2 (February 12, 2021): 327. http://dx.doi.org/10.3390/agronomy11020327.
Повний текст джерелаDeák, Tamás, Tünde Kupi, Róbert Oláh, Lóránt Lakatos, Lajos Kemény, György Bisztray, and Ernő Szegedi. "Candidate plant gene homologues in grapevine involved in Agrobacterium transformation." Open Life Sciences 8, no. 10 (October 1, 2013): 1001–9. http://dx.doi.org/10.2478/s11535-013-0218-5.
Повний текст джерелаДисертації з теми ""grapevine transformation""
Joubert, Dirk Albert 1973. "Development of an Agrobacterium vitis transformation system for grapevine." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51687.
Повний текст джерелаENGLISH ABSTRACT: Agrobacterium tumefaciens-mediated transformation technology has been used in a variety of applications throughout the fields of cellular and molecular plant biology as well as plant physiology. Research is conducted in order to extend this application range and overcome some of the intrinsic limitations of the Agrobacterium transformation system. Predominantly, these limitations can be attributed to the host range specificity of A. tumefaciens, as well as adverse effects induced on explant tissue by active plant defence mechanisms, triggered by the plant-pathogen-interaction. Typically, this active defence mechanism culminates in the hypersensitive response (HR), characterised by localised cell death and necrosis. Not all Agrobacterium species, however, share the same host range and some have evolved the ability to infect plant species not normally considered hosts of A. tumefaciens. This host range specificity can be exploited to extend the application of existing Agrobacterium transformation systems. In an attempt to establish an efficient transformation system for Vitis vinifera which, has proven very difficult to transform with A. tumefaciens, indigenous A. vitis strains have been evaluated as possible host-specific transformation agents. Strains of Agrobacterium vitis should be suitable for this type of endeavour, since they have evolved several unique characteristics directly linked to the infection of their hosts. These include the ability to utilise, tartrate, a host abundant carbon source, as well as the production of an acid polygalacturonase that could play a role during the infection process. The proposition that the evolution of A. vitis is a fairly recent event is also confirmed by the relatively little divergence observed between A. tumefaciens and A. vitis. In this study, a selection of A. vitis strains were evaluated in screenings designed to accentuate desirable traits in strains such as good infectivity of grapevine material (presumably an indicator of an efficient mechanism of gene transfer to be exploited in an engineered transformation system) as well as a favourable reaction (causing no necrosis) on grapevine somatic embryos. Two strains produced large tumours on grapevine cuttings and caused little necrosis on the somatic embryos. Significant variation in infectivity as well as callus necrosis was observed between the strains as well as in a genotype-specific manner on the host material. This genotypic-specific effect of either host or pathogen could be an indication of the degree of specialisation developed by plant pathogens to infect specific hosts. On the basis of these results, it was possible to select an A. vitis strain for further biochemical and genetic characterisation. Simple biochemical analysis classified the strain as an octopine strain. DNA-DNA hybridisation techniques combined with a plasmid walking technique resulted in the partial characterisation of the T-DNA of the selected A. vitis strain. A partial restriction enzyme map of the T-DNA was constructed and the T-DNA and flanking areas were cloned. Significant differences, most notably, the absence of a TB-area as well as the absence of the agrocinopine (aes) gene from the 5' area of the T-DNA, were observed. Partial sequencing data indicated the presence of at least four conserved T-DNA genes located on the TA-DNA, as well as the presence of three bacterial insertion (IS-)elements flanking the region. Two of these IS elements, both related to the IS 110 family of IS elements have not yet been reported in A. vitis. In fact, these two elements seem to be the 5' and 3' ends of a disrupted element and could therefore have played an evolutionary role in the development of this strain. This study provides fundamental background for the development of a more efficient transformation system specific for grapevine, exploiting same of-the unique characteristics of one of its pathogens, A. vitis.
AFRIKAANSE OPSOMMING: Agrobacterium tumefaciens-gebaseerde transformasiesisteme word in "n wye reeks van toepassings in die velde van sellulêre- en molekulêre plantbiologie asook plantfisiologie aangewend. Navorsing word voortdurend onderneem om die inherente beperkinge van die Agrobacterium-transformasiesisteem te oorkom en sodoende die toepassingsveld van die sisteem verder te verbreed. Die beperkinge tipies aan dié sisteem kan hoofsaaklik toegeskryf word aan die gasheerspesifisteit van A. tumeteciens, asook die negatiewe reaksies op eksplantmateriaal wat deur die plant se aktiewe verdedigingsmeganisme, soos ontlok deur die plant-patogeen interaksie, veroorsaak word. Hierdie aktiewe verdedigingsmeganisme lei gewoonlik tot In hipersensitiewe respons (HR) in die plant, wat deur gelokaliseerde selafsterwing en nekrose gekenmerk word. Alle Agrobacterium-spesies het egter nie almal dieselfde gasheerreeks nie en sommige rasse het as gevolg van evolusionêre ontwikkelings die vermoë verkry om plantspesies wat normaalweg buite die gasheerreeks van A. tumefaciens val, te infekteer. Hierdie tipe gasheerspesifisiteit kan uitgebuit word om die toepassingsmoontlikhede van bestaande Agrobacterium-transformasiesisteme te verbreed. In In poging om In effektiewe transformasiesisteem vir Vitis vinifera, In moeilik transformeerbare gewas, te ontwikkel, is inheemse rasse van Agrobacterium vitis ondersoek as moontlike gasheerspesifieke transformasie-agente. Rasse van A. vitis behoort uiters geskik te wees vir so "n toepassing, aangesien hulle verskeie unieke eienskappe, wat direk aan die infeksie van die gasheer gekoppel is, vertoon. Van hierdie eienskappe is onder meer die vermoë om tartraat, In koolstofbron volop in druifplante, te benut. A. vitis produseer verder ook In suur poligalaktorunase wat vermoedelik In rol in die infeksieproses speel. Die voorstel dat die evolusionêre ontwikkeling van A. vitis In redelike onlangse gebeurtenis is, word onderskryf deur die betreklike homogenisiteit met A. tumefaciens. In hierdie studie is "n groep A. vitis-rasse met behulp van siftingsprosedures wat daarop gemik is om gesogte eienskappe in rasse uit te wys, beoordeel. Die vermoë om druifplantmateriaal te infekteer (wat vermoedelik "n aanwyser van "n effektiewe meganisme van geenoordraging is wat in "n gemanipuleerde transformasiesisteem benut kan word), sowel as 'n gunstige reaksie (d.w.s geen nekrose) op druifplant somatiese embrio's is van die gesogte eienskappe waarvoor gesoek word. Twee rasse het groot tumors op druifplant-stingelsegmente veroorsaak terwyl hulle bykans geen weefselskade op somatiese embrio's geïnduseer het nie. Betekenisvolle verskille in infektiwiteit en in kallusnekrose is tussen die rasse sowel as in 'n genotipe-spesifieke-verhouding waargeneem. Hierdie genotipe-spesifieke effek, kenmerkend van óf die gasheer óf die patogeen, kan aanduidend wees van die vlak van spesialisasie wat heers by die infeksie van spesifieke gashere. Na aanleiding van bogenoemde resultate was dit moontlik om 'n A. vitis-ras te selekteer wat verder aan biochemiese en genetiese analises onderwerp kon word. Eenvoudige biochemiese analises het dit moontlik gemaak om die ras as oktopien te klassifiseer. DNA-DNA hibridisasietegnieke gekombineerd met 'n unieke plasmiedwandeltegniek het gelei tot die gedeeltelike karakterisering van die geselekteerde A. vitisras. In Gedeeltelike restriksie-ensiem (RE) kaart van die T-DNA kon gevolglik opgestel word. Die T-DNA en die aangrensende gedeeltes is boonop gekloneer. Betekenisvolle verskille, spesifiek die afwesigheid van In TB area, sowel as die afwesigheid van die agrosinopien-sintasegeen (acs) aan die 51-kant van die T-DNA, is waargeneem. Gedeeltelike basispaaropeenvolgingsdata het egter die teenwoordigheid van minstens vier gekonserveerde T-DNA-gene, asook die teenwoordigheid van drie bakteriese invoegingselemente (IS) aan weerskante van die area, geïdentifiseer. Twee van hierdie elemente, wat beide homologie vertoon met die IS110 familie van IS elemente, is nog nie vantevore in A. vitis aangetref nie. Dit wil boonop blyk of dié twee elemente die 51 - en 31 - areas van In onderbroke element vorm, wat dus In moontlike aanduiding is van hul potensiële rol in die evolusionêre ontwikkeling van die ras. Hierdie studie verskaf basiese inligting wat daartoe kan lei dat 'n doeltreffender transformasiesisteem spesifiek vir druifplante ontwikkel word deur van die unieke kenmerke van een van sy patogene, A. vitis, uit te buit.
Cabral, Ana Cristina Garcia Pereira. "New insights in Ilyonectria black foot disease of grapevine." Doctoral thesis, ISA/UTL, 2012. http://hdl.handle.net/10400.5/5192.
Повний текст джерелаConsidering the growing importance of black foot disease of grapevine, this study was aimed to deeply understand details on taxonomy, genetics, biology and pathological behaviour of its main causal agents, previously attributed mostly to Ilyonectria liriodendri and I. macrodidyma. A multi-gene analysis of a collection of Ilyonectria isolates, along with morphological characterisation, enabled the description of 12 species from I. radicicola and four from I. macrodidyma complexes. Among these, pathogenicity experiments revealed I. lusitanica, I. estremocensis and I. europaea as more virulent to grapevine than I. liriodendri and I. macrodidyma. The entire mating-type loci of I. liriodendri and of species from the I. macrodidyma complex were obtained. While the idiomorph structure of species from the latter matches that of other heterothallic Hypocreales, the organization of the mating-type loci in I. liriodendri seems unique, suggesting a potential pseudo-heterothallism. Soilborne inoculum is accepted to contribute significantly to initiate black foot disease in grapevine plants. qPCR amplification from DNA soil samples demonstrate that rotation can reduce the levels of Ilyonectria in nurseries, and that levels of infestation in vineyard soils are lower than in nursery or mother-plant soils. Additionally, a protoplast transformation protocol is presented for the stable integration of the GFP gene in the genome of I. liriondendri, enabling future downstream functional genetic studies.
Benard-Gellon, Mélanie. "Etude de l'embryogenèse somatique et transformation génétique de différentes variétés de porte-greffes de vigne en vue d'induire la résistance au Grapevine Fanleaf Virus." Thesis, Mulhouse, 2011. http://www.theses.fr/2011MULH7332.
Повний текст джерелаIn this study, we initially adapted the protocol of primary somatic embryogenesis in different varieties of hybrid rootstocks (3309C, 110R, Fercal, 41B and SO4) building on the experience gained in the laboratory on Vitis vinifera cv Chardonnay. The results show that the genotype, the explant type (stamen, flower or node), the type and the dose of auxin used in the induction medium (2,4-D or 2,4,5-T) influence the efficiency of somatic embryogenesis. Indeed, for the 3309C, the use of 2,4,5-T in the induction medium showed a higher efficiency from embryogenic nodes compared to that obtained from stamens. However, the better efficiency was obtained from the flowers of this variety on an induction medium containing 2,4-D. In addition, a protocol used in the laboratory for secondary somatic embryogenesis allowed us to obtain embryogenic masses as well as secondary somatic embryos from these rootstocks. The protocol conversion of embryos into plants, in the presence of 4.5 [tM of cytokinin (BAP), was effective for the 110R and 41B. In a second step, we co-cultivated embryogenic material obtained for four of these genotypes (110R, 3309C, Fercal and 41B), with Agrobacteriwn tumefaciens containing three genetic constructs: (i) a copy of a partial sequence (1020 bp) of the coat protein gene of the virus in the sense orientation, (ii) a short part-way and antisense (280 bp) of the same sequence forming a hairpin structure (hairpin RNA = hpRNA) (iii) one amiRNA targeting a viral sequence. The nptll bacterial gene encoding neomycin phosphotransferase and conferring resistance to the antibiotic kanamycin, was used as the selection gene. The selection conditions to kanamycin have required experimental adaptations such as adjusting the concentration of antibiotic because the selection with 75 mg.L-1 of kanamycin was not enough drastic in most of our experiments of co-culture. The results of molecular analysis by PCR showed probable amplification of fragments of interest (CPGFLV and amiRNA-71) in samples of 11OR and 41B resistant to kanamycin. However, additional molecular analysis by AL-PCR did not inform us about a possible integration of the transgene amiRNA-71 in embryogenic masses of 41B
COBANOV, PASCAL. "L'embryogenese somatique chez la vigne et son application a la transformation par agrobacterium tumefaciens en vue de produire des vignes resistantes au grapevine fanleaf virus (gflv) responsable du court-noue de la vigne." Université Louis Pasteur (Strasbourg) (1971-2008), 1998. http://www.theses.fr/1998STR13261.
Повний текст джерелаVan, Eeden C. (Christiaan). "The construction of gene silencing transformation vectors for the introduction of multiple-virus resistance in grapevines." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53764.
Повний текст джерелаENGLISH ABSTRACT: Viruses are some of the most important pathogens of grapevines. There are no effective chemical treatments, and no grapevine- or other natural resistance genes have been discovered against grapevine infecting viruses. The primary method of grapevine virus control is prevention by biological indexing and molecular- and serological screening of rootstocks and scions before propagation. Due to the spread of grapevine viruses through insect vectors, and in the case of GRSPaV the absence of serological screening, these methods of virus control are not always effective. In the past several methods, from cross-protection to pathogen derived resistance (PDR), have been applied to induce plant virus resistance, but with inconsistent results. In recent years the application of post-transcriptional gene silencing (PTGS), a naturally occurring plant defense mechanism, to induce targeted virus resistance has achieved great success. The Waterhouse research group has designed plant transformation vectors that facilitate specific virus resistance through PTGS. The primary focus of this study was the production of virus specific transformation vectors for the introduction of grapevine virus resistance. The Waterhouse system has been successfully utilised for the construction of three transformation vectors with the pHannibal vector as backbone. Each vector contains homologous virus coat protein (CP) gene segments, cloned in a complementary conformation upstream and downstream of an intron sequence. The primary vector (pHann-SAScon) contains complementary CP gene segments of both GRSPaV and GLRaV-3 and was designed for the introduction of multiple-virus resistance. For the construction of the primary vector the GRSPaV CP gene was isolated from RSP infected grapevines. A clone of the GLRaV-3 CP gene was acquired. The second vector (pHann- LR3CPsas) contains complementary CP gene segments of GLRaV-3. The third vector (pHann-LR2CPsas) contains complementary CP gene segments of GLRaV-2. The cassette containing the complementary CP gene segments of both GRSPaV and GLRaV-3 was cloned into pART27 (pART27-HSAScon), and used to transform N tabacum cv. Petit Havana (SRI), through A. tumefaciens mediated transformation. Unfortunately potential transformants failed to regenerate on rooting media; hence no molecular tests were performed to confirm transformation. Once successful transformants are generated, infection with a recombinant virus vector (consisting of PYX, the GFP gene as screenable marker and the complementary CP gene segments of both GRSPaV and GLRaV-3) will be used to test for the efficacy of the vectors to induce resistance. A secondary aim was added to this project when a need was identified within the South African viticulture industry for GRSPaV specific antibodies to be used in serological screening. To facilitate future serological detection of GRSPaV, the CP gene was isolated and expressed with a bacterial expression system (pETI4b) within the E. coli BL2I(DE3)pLysS cell line. The expressed protein will be used to generate GRSPaV CP specific antibodies.
AFRIKAANSE OPSOMMING: Virusse is van die belangrikste patogene by wingerd. Daar bestaan geen effektiewe chemiese beheer nie, en geen wingerd- of ander natuurlike weerstandsgene teen wingerdvirusse is al ontdek nie. Die primêre metode van beheer t.o.v. wingerdvirusse is voorkoming deur biologiese indeksering, en molekulêre- en serologiese toetsing van onderstokke en entlote voor verspreiding. As gevolg van die verspreiding van wingerdvirusse deur insekvektore, en in die geval van GRSPa V die tekort aan serologiese toetsing, is dié metodes van virusbeheer nie altyd effektief nie. In die verlede is metodes soos kruis-beskerming en patogeen-afgeleide weerstand (PDR) gebruik om virusweerstand te induseer, maar met inkonsekwente resultate. In onlangse jare is post-transkripsionele geenonderdrukking (PTGS), 'n natuurlike plantbeskermingsmeganisme, met groot sukses toegepas om geteikende virusweerstand te induseer. Die Waterhouse-navorsingsgroep het planttransformasievektore ontwerp wat spesifieke virusweerstand induseer d.m.v. PTGS. Die vervaardiging van virus spesifieke tranformasievektore vir die indusering van wingerdvirusweerstand was die primêre doelwit van hierdie studie. Die Waterhouse-sisteem was gebruik vir die konstruksie van drie transformasievektore, met die pHannibal vektor as basis. Elke vektor bevat homoloë virus kapsiedproteïen (CP) geensegmente, gekloneer in 'n komplementêre vorm stroom-op en stroom-af van 'n intronvolgorde. Die primêre vektor (pHann-SAScon) bevat komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, en was ontwerp vir die indusering van veelvoudige-virusweerstand. Die CP-geen van GRSPa V was vanuit RSP-geïnfekteerde wingerd geïsoleer, vir die konstruksie van die primêre vektor. 'n Kloon van die GLRa V-3 CP-geen was verkry. Die tweede vektor (pHann-LR3CPsas) bevat komplementêre CP geensegmente van GLRaV-3. Die derde vektor (pHann-LR2CPsas) bevat komplementêre CP geensegmente van GLRa V-2. Die kasset bestaande uit die komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, was gekloneer in pART27 (pART27-HSAScon), en gebruik om N tabacum cv. Petit Havana (SRI) te transformeer d.m.v. A. tumefaciens bemiddelde transformasie. Ongelukkig het potensiële transformante nie geregenereer op bewortelingsmedia nie; gevolglik was geen molekulêre toetse gedoen om transformasie te bevestig nie. Na suksesvolle transformante gegenereer is, sal infeksie met 'n rekombinante-virusvektor (bestaande uit PYX, die GFP geen as waarneembare merker en die komplementêre CP geensegmente van beide GRSPa V en GLRa V-3) gebruik word om die effektiwiteit van die vektore as weerstandsinduseerders te toets. 'n Sekondêre doelwit is by die projek gevoeg toe 'n behoefte aan GRSPaV spesifieke teenliggame binne die Suid-Afrikaanse wynbedryf geïdentifiseer is, vir gebruik in serologiese toetsing. Om toekomstige serologiese toetsing van GRSPa V te bemiddel, was die CP-geen geïsoleer en in 'n bakteriële uitdrukkingsisteem (PETI4b) uitgedruk, in die E. coli BL21(DE3)pLysS sellyn. Die uitgedrukte proteïne sal gebruik word vir die vervaardiging van GRSPa V CP spesifieke antiliggame.
Ariani, Pietro. "FUNCTIONAL ANALYSIS OF A PUTATIVE DOWNY MILDEW DEFENCE GENE IN GRAPEVINE: STABLE TRANSFORMATION OF VITIS VINIFERA WITH VITIS RIPARIA ATL2 AND CHARACTERIZATION OF THE ATL GENE FAMILY IN GRAPEVINE." Doctoral thesis, 2015. http://hdl.handle.net/11562/910782.
Повний текст джерелаGrapevine is one of the most important fruit crop in the world, with a high economic impact mainly due to the wine production. The European Vitis vinifera L. produces high quality grapes but is prone to several pathogens, which cause significant losses to viticulture worldwide. Even if chemical control is available for most of the diseases, agro-ecological concerns pushed the scientific community to search for alternative methods, in order to reduce both the environmental and economic issues associated to pest control. In particular several wild species of the genus Vitis from North America and Eastern Asia exhibit various levels of natural resistance towards distinct pathogens. Despite these natural resistance sources have been used to in the past to produce first resistant hybrids, none of them reached complete growers acceptance because of adverse organoleptic features. A significant step forward was achieved in the 2007, when the Vitis vinifera L. genome was completely sequenced. Since then the deeper knowledge of genetic determinants of both resistance and berry quality traits boosted the grapes scientific community in facing the Vitis susceptibility mainly by two different approaches: marker associated selection (MAS) breeding and genetic transformation. This PhD project was focused on the second approach, in particular we carried out the stable transformation of grapevine in order to enhance its resistance towards Plasmopara viticola, the causative agent of downy mildew. Transcriptomic responses to P. viticola in both the susceptible V. vinifera and the resistant V. riparia have been previously studied by our research group. Eight genes, specifically induced only in V. riparia upon the infection process, were identified as similar to ATLs (Arabidopsis Toxicos en Levadura), a gene family known to be rapidly induced by common elicitors. VrATL2, an ortholog of Arabidopsis thaliana ATL2, was selected as a promising candidate gene for stable grapevine transformation. As the ALT gene family was almost unknown in grapevine, the first step was the complete survey of the family members. The canonical RING-H2 domain was used as bite to search for putative ATLs within the translated genome of V. vinifera cv. Pinot Noir by PSI-Blast analysis. The resulting protein family was manually curated and analysed for specific molecular characteristics, phylogenesis and gene expression profiles in different grapevine tissues and developmental stages. Once set up the induction and maintenance of grapevine embryogenic material, we stably transformed V. vinifera cv. Shiraz producing plants with increased constitutive expression of VrATL2. The newly generated plants were molecularly characterised by Southern blot and Real Time qPCR analyses in terms of number of insertions and actual level of transgene expression respectively. The phenotyping of transformed plants for their resistance against P. viticola was carried out by means of two different methods: microscopical visual inspection and computational image analysis. The observed phenotype was further described analysing the transcriptomic changes in three selected transgenic lines by a microarray experiment and finally, on the same lines, the infection process was evaluated by microscopic observations of a time-course experiment. The last part of this PhD project was focused on the characterization of the ALT2 regulative regions from V. vinifera and V. riparia. After the bioinformatic analysis of the isolated regulative regions in terms of promoter structure and cis-acting elements, their ability to promote the transcription in heterologous systems was verified, by transient transformation of Nicotiana benthamiana and stable transformation of Arabidopsis thaliana. Lastly, we implemented the setup of a custom interrogable database of all cis-acting elements predicted for the ATL gene family in grapevine, which might facilitate further analysis within this family. In conclusion, this PhD project showed that even if stable transformation of grapevine remains an arduous and time-consuming task, and functional analysis are almost precluded, the accurate and informed choice of a candidate gene may provide good results in terms of expected phenotype. Moreover, the actual stable transgenic expression remains the most informative and plausible approach for functional analysis in V. vinifera plants. Indeed we were able to produce transgenic grapevines with enhanced resistance towards P. viticola by constitutive overexpression of the ATL2 gene. Despite further experiments are needed to confirm the durability of the observed resistance and to describe the associated phenotypic features over the time, we hope that in the future this approach could help in terms of sustainable agriculture and food safety.
D'INCA', ERICA. "MASTER REGULATORS OF THE VEGETATIVE-TO-MATURE ORGAN TRANSITION IN GRAPEVINE: THE ROLE OF NAC TRANSCRIPTION FACTORS." Doctoral thesis, 2017. http://hdl.handle.net/11562/961366.
Повний текст джерелаGrapevine is the most widely cultivated and economically important fruit crop in the world. Viticulture has been affected by the global warming currently under way over the past few decades (Webb et al., 2007). Improving the genetics of key grapevine functions is needed to keep producing high quality grapes and wine. In this context, a challenging task is to identify master regulators that program the development of grapevine organs and control transition from vegetative-to-mature growth featured by grape berries during the annual plant cycle. This transition, called véraison, is marked by profound biochemical, physiological and transcriptomic modifications that allow vegetative green berries to enter the ripening process. Thanks to an integrated network analysis performed on the grapevine global gene expression atlas and from a large berry transcriptomic data set (Massonnet, 2015; Palumbo et al., 2014; Fasoli et al., 2012) a new category of genes, called ‘switch’ genes, was identified; they were significantly up-regulated during the developmental shift and inversely correlated with many genes suppressed during the mature growth phase. Among them, plant-specific NAM/ATAF/CUC (NAC) transcription factors represent an interesting gene family due to their key role in the biological processes in plant development and stress responses (Jensen et al., 2014). Five NAC genes were selected for functional characterization as key factor candidates of the major transcriptome reprogramming during grapevine development. VvNAC11, VvNAC13, VvNAC33 and VvNAC60 were identified as ‘switch’ genes in the above-mentioned analysis whereas VvNAC03 was selected because it is a close homologue of tomato NOR (non-ripening), known for its crucial role in tomato fruit ripening regulation (Giovannoni, 2004; Giovannoni et al., 1995). Firstly, the five transcription factors were transiently over-expressed in Vitis vinifera to get an overview of their primary effects on native species. Secondly, we obtained grapevine plants that were stably transformed with VvNAC33 and VvNAC60 and subjected to molecular/phenotypic characterizations. VvNAC33 seemed to be involved in negative regulation of photosynthesis since over-expressing leaves revealed a chlorophyll breakdown, while VvNAC60 affected regular plant development, showing a slight growth and earlier stem lignification in comparison to a same-age plant control. These results reflected typical behaviors of plants undergoing ripening and senescence, thus supporting our working hypothesis proposing a crucial role of NACs in the transition from vegetative to mature development in grapevine. In order to identify downstream targets of the NAC transcription factors analyzed in this work, we performed microarray analysis on leaves of transient and stable ectopic expressing plants. We noted that both over-expressions affected a wide range of cellular processes and among the most represented functional categories we found transport, secondary metabolism and transcription factor activity. The identification of VvMYBA1, a known grapevine regulator of the anthocyanin biosynthetic pathway (Kobayashi et al., 2002), as VvNAC60 target suggests a VvNAC60 role in processes like anthocyanin biosynthesis featured by grape berries at the onset of ripening. Another approach used to clarify NACs roles was to check the ability of VvNACs to fulfil the tomato NOR function. Preliminary results revealed that VvNAC03 and VvNAC60 could partially complement the nor mutation in tomato, establishing a partial ripening phenotype in fruits. Taken together, these findings suggest the ability of the selected VvNACs to affect the expression of genes involved in the regulatory network that controls the developmental shift to a mature phase in grapevine. This work has shed some light on the roles of these NACs in grapevine development, but further analysis must be conducted to fully elucidate the molecular machinery in this complex regulation system.
Частини книг з теми ""grapevine transformation""
Colby, S. M., and C. P. Meredith. "Transformation in Grapevine (Vitis spp.)." In Biotechnology in Agriculture and Forestry, 375–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78037-0_29.
Повний текст джерелаWeber, Jens H. "Tool Support for Functional Graph Rewriting with Persistent Data Structures - GrapeVine." In Graph Transformation, 195–206. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09843-7_11.
Повний текст джерелаDhekney, Sadanand A., Zhijian T. Li, Manjul Dutt, and Dennis J. Gray. "Initiation and Transformation of Grapevine Embryogenic Cultures." In Methods in Molecular Biology, 215–25. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-558-9_18.
Повний текст джерелаSrinivasan, C., and R. Scorza. "Transformation of Somatic Embryos of Fruit Trees and Grapevine." In Somatic Embryogenesis in Woody Plants, 313–30. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4774-3_18.
Повний текст джерелаDutt, Manjul, Zhijian T. Li, Sadanand A. Dhekney, and Dennis J. Gray. "Co-transformation of Grapevine Somatic Embryos to Produce Transgenic Plants Free of Marker Genes." In Methods in Molecular Biology, 201–13. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-558-9_17.
Повний текст джерелаKambiranda, Devaiah, James Obuya, and Janana Snowden. "Grapevine Improvement through Biotechnology." In Genetic Transformation in Crops. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91851.
Повний текст джерелаЗвіти організацій з теми ""grapevine transformation""
Perl, Avichai, Bruce I. Reisch, and Ofra Lotan. Transgenic Endochitinase Producing Grapevine for the Improvement of Resistance to Powdery Mildew (Uncinula necator). United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7568766.bard.
Повний текст джерелаMawassi, Munir, Adib Rowhani, Deborah A. Golino, Avichai Perl, and Edna Tanne. Rugose Wood Disease of Grapevine, Etiology and Virus Resistance in Transgenic Vines. United States Department of Agriculture, November 2003. http://dx.doi.org/10.32747/2003.7586477.bard.
Повний текст джерелаMawassi, Munir, Baozhong Meng, and Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Повний текст джерелаReisch, Bruce, Avichai Perl, Julie Kikkert, Ruth Ben-Arie, and Rachel Gollop. Use of Anti-Fungal Gene Synergisms for Improved Foliar and Fruit Disease Tolerance in Transgenic Grapes. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7575292.bard.
Повний текст джерела