Статті в журналах з теми "Grain Diseases and pests South Australia"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Grain Diseases and pests South Australia.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-34 статей у журналах для дослідження на тему "Grain Diseases and pests South Australia".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Jacob, Jens, Grant R. Singleton, and Lyn A. Hinds. "Fertility control of rodent pests." Wildlife Research 35, no. 6 (2008): 487. http://dx.doi.org/10.1071/wr07129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ricefield rats (Rattus argentiventer) in south-east Asian rice fields and house mice (Mus domesticus) in Australian grain fields are major pest species. They cause damage before and after harvest and carry zoonotic diseases. For both species, management techniques have been pursued using the approach of immunocontraceptive vaccination. We review results from a series of enclosure and field studies conducted with these species to assess the effects of fertility control in small rodents. In the experiments, fertility control was simulated by tubal ligation, ovariectomy or progesterone treatment. A once-off sterilisation of 50–75% of enclosed founder females considerably reduced reproductive output of ricefield rat populations until the end of the reproductive period. In house mice, similar success was achieved when a sterility level of 67% of female founders and offspring was maintained. Repeated antifertility treatments are required because of the much longer breeding period of house mice versus ricefield rats. Comparing the results of enclosure trials with the outcome of simulation models suggests that partial compensation of treatment effects can occur through enhanced reproduction of the remaining fertile females and improved survival of juveniles. However, such compensatory effects as well as behavioural consequences of sterility in field populations are not likely to prevent the management effect at the population level. The challenge for effective fertility control of small rodents in the field is the wide-scale delivery of an antifertility treatment to founders at the beginning of the breeding season and to fertile immigrants that are recruited into the population, which otherwise contribute to the reproductive output at the population level. Future research efforts should focus on species-specific techniques and on agents that can be effectively delivered via bait.
2

Nordblom, T. L., T. R. Hutchings, R. C. Hayes, G. D. Li, and J. D. Finlayson. "Does establishing lucerne under a cover crop increase farm financial risk?" Crop and Pasture Science 68, no. 12 (2017): 1149. http://dx.doi.org/10.1071/cp16379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Rainfed farms in south-eastern Australia often combine annual cropping and perennial pasture phases with grazing sheep enterprises. Such diversity serves in managing diseases, pests and plant nutrition while stabilising income in the face of wide, uncorrelated variations in international commodity prices and local weather over time. We use an actuarial accounting approach to capture the above contexts to render financial risk profiles in the form of distributions of decadal cash balances for a representative 1000-ha farm at Coolamon (34°50ʹS, 147°12ʹE) in New South Wales, Australia. For the soil and weather conditions at this location we pose the question of which approach is better when establishing the perennial pasture lucerne (Medicago sativa L.): sowing with the final crop of the cropping phase, or sowing alone following the final crop? It is less expensive to sow lucerne with the final crop, which can provide useful income from the sale of grain, but this practice can reduce pasture quantity and quality in poorer years. Although many years of field research have confirmed that sowing lucerne alone is the most reliable way to establish a pasture in this area, and years of extension messages to this effect have gone out to farmers, they often persist in sowing lucerne with their final cereal crops. For this region, counting all costs, we show that sowing lucerne alone can reduce farm financial risk (i.e. probability of negative decadal cash balances) at stocking rates >10 dry sheep equivalents (DSE)/ha, compared with the practice of sowing lucerne with a cover crop. Establishing lucerne alone allows the farmer the option to profitably run higher stocking rates for higher median decadal cash margins without additional financial risk. At low stocking rates (i.e. 5 DSE/ha), there appears to be no financial advantage of either establishment approach. We consider the level of equity, background farm debt and overhead costs to demonstrate how these also affect risk-profile positions of the two sowing options. For a farm that is deeply in debt, we cannot suggest either approach to establishing lucerne will lead to substantially better financial outcomes.
3

Dillard, HR, TJ Wicks, and B. Philp. "A grower survey of diseases, invertebrate pests, and pesticide use on potatoes grown in South Australia." Australian Journal of Experimental Agriculture 33, no. 5 (1993): 653. http://dx.doi.org/10.1071/ea9930653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In 1991, a survey was distributed to 251 potato growers in South Australia to determine major diseases, insect and other invertebrate pests, and chemicals used to control them. The overall response rate was 48%, but of these, 24 individuals were no longer growing potatoes. The results were summarised for the State and by district (Adelaide Hills, Adelaide Plains, Murray Lands, South East). The most prevalent diseases encountered by respondents in all districts were target spot caused by Alternaria solani, and rhizoctonia canker caused by Rhizoctonia solani. Other diseases of concern to growers included late blight caused by Phytophthora infestans, seed piece decay caused by various pathogenic and saprophytic microorganisms, common scab caused by Streptomyces scabies, and leaf roll caused by potato leaf roll virus. The most commonly used fungicides for disease control were chlorothalonil (33-42% of respondents), mancozeb (30%), and cupric hydroxide (11-13%). The most commonly used seed treatments for control of seed piece decay were mancozeb (51 % of respondents), tolclofos methyl (24%), and lime (20%). Green peach aphid (Myzus persicae), potato aphid (Macrosiphum euphorbiae), potato moth (Phthorimaea operculella), and jassids and leafhoppers (Jassidae, Cicadellidae) were the pests of greatest concern to the growers. Others included Rutherglen bug (Nysius vinitor), redlegged earth mite (Halotydeus destructor), and thrips (Thripidae). The most commonly used insecticides were ethamidophos (40% of respondents), monocrotophos (22-28%), and dimethoate (7-13%).
4

Schultz, JE. "Crop production in a rotation trial at Tarlee, South Australia." Australian Journal of Experimental Agriculture 35, no. 7 (1995): 865. http://dx.doi.org/10.1071/ea9950865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A crop rotation trial was established in 1977 on a hard-setting red-brown earth at Tarlee, South Australia, to monitor the long-term effect of intensive and traditional rotations on soil properties and crop production. The rotations involve wheat alternating with cereals, grain legumes, pasture, and fallow. There are 3 stubble + tillage treatments: remove stubble + cultivate, retain stubble + cultivate, retain stubble + no tillage. Three rates of nitrogen (0,40, 80 kg N/ha as ammonium nitrate) are applied to the wheat. Grain yield varied with seasonal conditions, and water use efficiencies were up to 10 kg/ha. mm. In the more productive rotations, wheat grain yields expressed as a percentage of potential yield tended to increase over time. The best wheat yields were always in rotations that included a grain legume or legume pasture, with additional yield increases in all rotations coming from the use of N fertiliser. By comparison with rotation and N fertiliser effects, there was little effect of the stubble + tillage treatments on grain yield. Most of the yield variations were related to differences in tiller density or grains per ear, with grain weight remaining relatively constant over all seasons. There was a tendency for grain legume yields to decrease over the latter years of the trial, and this was attributed to the build-up of plant diseases through growing the same species on the same plot every second year. Overall, faba beans were the highest yielding grain legume, and the wheat-beans rotation, with 80 kg N/ha on the wheat, gave highest total grain production. Data for residue remaining after harvest indicate that in some years there is less than the desired minimum levels to give adequate protection against erosion, so any grazing of the residues must be carefully managed.
5

Ward, Samantha E., Paul A. Umina, Sarina Macfadyen, and Ary A. Hoffmann. "Hymenopteran Parasitoids of Aphid Pests within Australian Grain Production Landscapes." Insects 12, no. 1 (January 8, 2021): 44. http://dx.doi.org/10.3390/insects12010044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In grain crops, aphids are important pests, but they can be suppressed by hymenopteran parasitoids. A challenge in incorporating parasitoids into Integrated Pest Management (IPM) programs, however, is that parasitoid numbers can be low during periods within the season when aphids are most damaging. Understanding the population dynamics of key aphid species and their parasitoids is central to ameliorating this problem. To examine the composition and seasonal trends of both aphid and parasitoid populations in south-eastern Australia, samples were taken throughout the winter growing seasons of 2017 and 2018 in 28 fields of wheat and canola. Myzus persicae (Sulzer) was the most abundant aphid species, particularly within canola crops. Across all fields, aphid populations remained relatively low during the early stages of crop growth and increased as the season progressed. Seasonal patterns were consistent across sites, due to climate, crop growth stage, and interactions between these factors. For canola, field edges did not appear to act as reservoirs for either aphids or parasitoids, as there was little overlap in the community composition of either, but for wheat there was much similarity. This is likely due to the presence of similar host plants within field edges and the neighbouring crop, enabling the same aphid species to persist within both areas. Diaeretiella rapae (M’Intosh) was the most common parasitoid across our study, particularly in canola, yet was present only in low abundance at field edges. The most common parasitoid in wheat fields was Aphidius matricariae (Haliday), with field edges likely acting as a reservoir for this species. Secondary parasitoid numbers were consistently low across our study. Differences in parasitoid species composition are discussed in relation to crop type, inter-field variation, and aphid host. The results highlight potential focal management areas and parasitoids that could help control aphid pests within grain crops.
6

Ward, Samantha E., Paul A. Umina, Sarina Macfadyen, and Ary A. Hoffmann. "Hymenopteran Parasitoids of Aphid Pests within Australian Grain Production Landscapes." Insects 12, no. 1 (January 8, 2021): 44. http://dx.doi.org/10.3390/insects12010044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In grain crops, aphids are important pests, but they can be suppressed by hymenopteran parasitoids. A challenge in incorporating parasitoids into Integrated Pest Management (IPM) programs, however, is that parasitoid numbers can be low during periods within the season when aphids are most damaging. Understanding the population dynamics of key aphid species and their parasitoids is central to ameliorating this problem. To examine the composition and seasonal trends of both aphid and parasitoid populations in south-eastern Australia, samples were taken throughout the winter growing seasons of 2017 and 2018 in 28 fields of wheat and canola. Myzus persicae (Sulzer) was the most abundant aphid species, particularly within canola crops. Across all fields, aphid populations remained relatively low during the early stages of crop growth and increased as the season progressed. Seasonal patterns were consistent across sites, due to climate, crop growth stage, and interactions between these factors. For canola, field edges did not appear to act as reservoirs for either aphids or parasitoids, as there was little overlap in the community composition of either, but for wheat there was much similarity. This is likely due to the presence of similar host plants within field edges and the neighbouring crop, enabling the same aphid species to persist within both areas. Diaeretiella rapae (M’Intosh) was the most common parasitoid across our study, particularly in canola, yet was present only in low abundance at field edges. The most common parasitoid in wheat fields was Aphidius matricariae (Haliday), with field edges likely acting as a reservoir for this species. Secondary parasitoid numbers were consistently low across our study. Differences in parasitoid species composition are discussed in relation to crop type, inter-field variation, and aphid host. The results highlight potential focal management areas and parasitoids that could help control aphid pests within grain crops.
7

Holloway, Joanne C., Gregory J. Daglish, and David G. Mayer. "Spatial Distribution and Flight Patterns of Two Grain Storage Insect Pests, Rhyzopertha dominica (Bostrichidae) and Tribolium castaneum (Tenebrionidae): Implications for Pest Management." Insects 11, no. 10 (October 19, 2020): 715. http://dx.doi.org/10.3390/insects11100715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The lesser grain borer, Rhyzopertha dominica, and the rust red flour beetle, Tribolium castaneum, are two major beetle pests commonly found infesting stored products worldwide. Both species can cause severe economic damage and their management is complicated by their potential to develop resistance to several of the limited chemical options available. However, pest management strategies can be improved by understanding the ecology of the pest insect. To determine the spatiotemporal activity of R. dominica and T. castaneum, we conducted a trapping study over two years in a temperate region of south-eastern Australia, with traps located near grain storages and fields. We captured higher numbers of R. dominica than T. castaneum, and both species were more prevalent in traps located close to grain storages. Similar and consistent seasonal patterns were displayed by both species with activity ceasing during the winter (June–August) months. We found linear correlations between maximum daily temperatures and trap catches, and minimum threshold temperatures for flight activity were 14.5 °C and 15.6 °C for R. dominica and T. castaneum, respectively. The results are discussed in relation to the ecology of these pests along with their implications for pest management.
8

Henzell, Robert P., Brian D. Cooke, and Gregory J. Mutze. "The future biological control of pest populations of European rabbits, Oryctolagus cuniculus." Wildlife Research 35, no. 7 (2008): 633. http://dx.doi.org/10.1071/wr06164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
European rabbits are exotic pests in Australia, New Zealand, parts of South America and Europe, and on many islands. Their abundance, and the damage they cause, might be reduced by the release of naturally occurring or genetically modified organisms (GMOs) that act as biological control agents (BCAs). Some promising pathogens and parasites of European rabbits and other lagomorphs are discussed, with special reference to those absent from Australia as an example of the range of necessary considerations in any given case. The possibility of introducing these already-known BCAs into areas where rabbits are pests warrants further investigation. The most cost-effective method for finding potentially useful but as-yet undiscovered BCAs would be to maintain a global watch on new diseases and pathologies in domestic rabbits. The absence of wild European rabbits from climatically suitable parts of North and South America and southern Africa may indicate the presence there of useful BCAs, although other explanations for their absence are possible. Until the non-target risks of deploying disseminating GMOs to control rabbits have been satisfactorily minimised, efforts to introduce BCAs into exotic rabbit populations should focus on naturally occurring organisms. The development of safe disseminating GMOs remains an important long-term goal, with the possible use of homing endonuclease genes warranting further investigation.
9

Wicks, TJ, and AR Granger. "Effects of low rates of pesticides on the control of pests and diseases of apples." Australian Journal of Experimental Agriculture 29, no. 3 (1989): 439. http://dx.doi.org/10.1071/ea9890439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fungicides and insecticides used at the recommended rate, and reduced recommended rates were applied at low volume (100 L ha-1) to apple trees in field experiments in South Australia from 1985 to 1988. At harvest the incidence of fruit damaged by fungi and insects was assessed on Golden Delicious, Red Delicious, Jonathan and Granny Smith cultivars. Mixtures of penconazole and mancozeb applied at the recommended rates of 800 mL and 4.5 kg ha-1 respectively as well as 25% and 10% of the recommended rates controlled apple scab completely in 1986, but were less effective in 1987. Azinphos-methyl applied at the recommended rate of 2.7 kg and 25% of the recommended rate reduced codling moth infestation to commercially acceptable levels of <2 % on Red Delicious only in 1987. Considerable cost savings are possible by using low rates of pesticides. Our results suggest that the use of low rates is more applicable to low valued cultivars such as Jonathans and orchards with low levels of pest and disease.
10

Carnegie, Angus J., and Geoff S. Pegg. "Lessons from the Incursion of Myrtle Rust in Australia." Annual Review of Phytopathology 56, no. 1 (August 25, 2018): 457–78. http://dx.doi.org/10.1146/annurev-phyto-080516-035256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Austropuccinia psidii (myrtle rust) is a globally invasive neotropical rust of the Myrtaceae that came into international prominence following extensive damage to exotic Eucalyptus plantations in Brazil in the 1970s and 1980s. In 2005, myrtle rust established in Hawaii (USA), and over the past 12 years has spread from the Americas into Asia, the Pacific, and South Africa. Myrtle rust was detected in Australia in 2010, and the response and ultimately unsuccessful eradication attempt was a lesson to those concerned about the threat of exotic pests and diseases to Australia's environment. Seven years following establishment, we are already observing the decline of many myrtaceous species and severe impacts to native plant communities. However, the recently developed Myrtle rust in Australia draft action plan identified that there is no nationally coordinated response strategy for the environmental dimensions of this threat. Recent reviews have identified a greater need for involvement from environmental agencies in biosecurity preparedness, response, and resourcing, and we believe this approach needs to extend to the management of invasive environmental pathogens once they establish.
11

Goyne, PJ, H. Meinke, SP Milroy, GL Hammer, and JM Hare. "Development and use of a barley crop simulation model to evaluate production management strategies in north-eastern Australia." Australian Journal of Agricultural Research 47, no. 7 (1996): 997. http://dx.doi.org/10.1071/ar9960997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A study was undertaken to identify improved management strategies for barley (Hordeum vulgare L.), particularly in relation to time of planting, location, and frost risk in the variable climate of north-eastern Australia. To achieve this objective, a crop growth simulation model (QBAR) was constructed to integrate the understanding, gained from field experiments, of the dynamics of crop growth as influenced by soil moisture and environmental variables. QBAR simulates the growth and yield potential of barley grown under optimal nutrient supply, in the absence of pests, diseases, and weeds. Genotypic variables have been determined for 4 cultivars commonly grown in the northern cereal production areas. Simulations were conducted using long-term weather data to generate the probabilistic yield outcome of cv. Grimmet for a range of times of planting at 10 locations in the north-eastern Australian grain belt. The study indicated that the common planting times used by growers could be too late under certain circumstances to gain full yield potential. Further applications of QBAR to generating information suitable for crop management decision support packages and crop yield forecasting are discussed.
12

Bolland, M. D. A., M. W. Sweetingham, and R. J. Jarvis. "Effect of applied phosphorus on the growth of Lupinus luteus, L. angustifolius and L. albus in acidic soils in the south-west of Western Australia." Australian Journal of Experimental Agriculture 40, no. 1 (2000): 79. http://dx.doi.org/10.1071/ea99065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Phosphorus is the major nutrient element deficiency of grain legumes in the south-west of Western Australia. Lupinus angustifolius is the major grain legume grown on the acidic soils in Western Australia. However, L. luteus and L. albus are being researched as possible alternatives because of tolerance to diseases and specific soil type adaptation. The fertiliser phosphorus requirements of L. luteus and L. albus in acidic soils of Western Australia are not well known. By contrast, there is much information on the phosphorus requirements of L. angustifolius in these soils where placement of fertiliser phosphorus has been found to be important. Three field experiments were undertaken on different acidic soils in Western Australia (sand, sandy loam, and loamy sand) to compare how L. luteus cv. Teo and L. angustifolius cv. Merrit use fertiliser phosphorus, applied by different methods as superphosphate. Lupinus albus cv. Kiev Mutant, which is not adapted to the sandier soils, was included at the loamy sand site. In 2 experiments on the loamy soils, the phosphorus was either placed with the seed (drilled) or 8 cm below the seed while sowing seed at 5 cm (banded). In the experiment on sand, the phosphorus was either spread over the soil surface immediately in front of the seeding tines (topdressed) or banded below the seed. Compared with L. angustifolius: (i) for the 2 loamy soils, L. luteus used phosphorus more effectively for producing dried shoots, but was less effective at using phosphorus for producing seed (grain); (ii) for the loamy sand, L. albus was less effective at using the phosphorus for producing dried shoots and grain, except it was about equally effective for producing grain when the phosphorus was banded below the seed. For the sandy soil, L. luteus produced no grain yield response whereas L. angustifolius showed an about 20% yield response to the added phosphorus, and both methods of application were about equally effective. Phosphorus banded below the seed was more effective than phosphorus drilled with the seed for producing dried shoots and grain of L. albus on the loamy sand and for grain only of L. luteus on the sandy loam. Both methods of phosphorus application were about equally effective for producing dried shoots and grain of L. angustifolius and grain of L. luteus on the loamy sand. Fertiliser drilled with the seed was more effective than banded fertiliser for producing dried shoots and grain of L. angustifolius on the sandy loam and dried shoots of L. luteus on the loamy sand and sandy loam. The concentration of phosphorus in grain of L. luteus was consistently about double that found in grain of L. angustifolius. The concentration of manganese in dried shoots of L. albus was 3–5 times higher than in the other 2 species.
13

Kaur, Ramanpreet, Simerjeet Kaur, Jasdev Singh Deol, Rajni Sharma, Tarundeep Kaur, Ajmer Singh Brar, and Om Parkash Choudhary. "Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review." Plants 10, no. 5 (May 10, 2021): 953. http://dx.doi.org/10.3390/plants10050953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rice–wheat cropping system (RWCS) has substantially contributed in making India self-sufficient in food grain production; however, rice residue management is of great concern, threatening the sustainability of this system. Rice residue is invariably disposed of by farmers through open burning. In addition to environmental pollution, residue burning of rice also leads to loss of soil nutrients. One of the alternatives to overcome these problems and sustain the RWCS is managing the rice residues in the field itself. Rice residue retention has variable effects on agricultural pests (namely, weeds, insect pests, diseases, and rodents) in the RWCS. High weed infestation in the RWCS results in high consumption of herbicides, which leads to several ecological problems and evolution of herbicide resistance. The shift from intensive tillage to conservation tillage causes major changes in weed dynamics and herbicide efficacy. Incorporation of rice residue reduces weed density and helps in improving soil physical, chemical, and biological properties. Rice residue retention on the surface or mulching reduces weed density and the biomass of both grass and broadleaf weeds in wheat crop as compared to its removal. Long-term field studies involving the use of rice residue as a component of integrated weed management strategies are needed to be done in the RWCS.
14

Davidson, J. A., and M. D. Ramsey. "Pea yield decline syndrome in South Australia: the role of diseases and the impact of agronomic practices." Australian Journal of Agricultural Research 51, no. 3 (2000): 347. http://dx.doi.org/10.1071/ar99111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sixty commercial pea crops were surveyed in 1995 to determine the causes of declining yields. Blackspot (Mycosphaerella pinodes and Phoma medicaginis var. pinodella) and downy mildew (Peronospora viciae) were prevalent in most crops and were identified as probable major contributors to the syndrome. Short rotation intervals (<5 years) between pea crops in paddocks were correlated with increased levels of blackspot and lower grain yields. Early sowing dates were correlated with increased levels of blackspot. A detailed survey of blackspot development was conducted in 5 commercial paddocks in 1996. The relative importance of sowing time and rotation varied between regions and seasons. The impact of a range of herbicides and the micronutrients manganese and zinc on blackspot, caused by the M. pinodes component of the blackspot complex, was investigated in a field trial during 1996. The herbicides diuron, metribuzin, and fluazifop significantly increased blackspot crown lesions compared with the nil treatment. There was a significant interaction between blackspot severity, herbicides, and the micronutrients manganese and zinc. Manganese concentration in pea plants was negatively correlated with the severity of blackspot crown lesions and positively correlated with severity of downy mildew.
15

Muirhead, Kate A., and Kym D. Perry. "Biocontrol of Invasive Conical Snails by the Parasitoid Fly Sarcophaga villeneuveana in South Australia 20 Years after Release." Insects 12, no. 10 (September 24, 2021): 865. http://dx.doi.org/10.3390/insects12100865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two conical snail species introduced to Australia from the Mediterranean region during the 20th century are major pests of pastures and grain crops. In 2000, a parasitoid fly, Sarcophaga villeneuveana, was introduced into South Australia for biocontrol of the conical snail, Cochlicella acuta. The fly successfully established in the region but assessments of its impact in different snail aestivation microhabitats were limited. Twenty years on, field surveys were conducted to assess the geographic distribution and parasitism rates of S. villeneuveana on conical snails in the Yorke Peninsula region. Nineteen sites were sampled on four occasions in January and April of both 2019 and 2020. In total, >85,600 C. acuta and >2400 C. barbara were collected from cryptic (ground or plant refuge) and exposed (open ground or elevated substrate) aestivation habitats and assessed for parasitism. The fly was detected at 13 of 19 sampled sites up to 34 km from nursery release sites. Total parasitism rates of suitably sized snails (≥5 mm shell height) were 2.9% for C. acuta and 3.4% for C. barbara. Maximum parasitism rates of 48% for C. acuta and 29% for C. barbara were found at sites adjacent to spring- and summer-flowering native vegetation. Across 13 sites, parasitism rates were higher for C. acuta (5.4%) and C. barbara (15.2%) in exposed habitats above ground level. However, only 34% of C. acuta and 14% of C. barbara were found in elevated habitats as most snails were found in cryptic refuges. There was a seasonal decline in abundance of C. acuta (66%) and C. barbara (45%) between January and April, suggesting natural mortality. Although the overall impact of the fly is limited, high parasitism rates in local environments with flowering resources indicates the potential to enhance biocontrol of both invasive conical snail species.
16

Hochman, Z., D. Holzworth, and J. R. Hunt. "Potential to improve on-farm wheat yield and WUE in Australia." Crop and Pasture Science 60, no. 8 (2009): 708. http://dx.doi.org/10.1071/cp09064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Water-use efficiency (WUE) is defined here as the ratio of grain yield (kg/ha) to crop water use by evapotranspiration (mm). Much of the WUE literature has focussed on either the determination of the boundary of attainable WUE for any amount of available water, or on the practicalities of measurement of the WUE of a crop. While these are important issues for defining the gap between the attained and the potential WUE, little progress has been reported on clarifying the components that contribute to this gap or on how it can be bridged. To address these questions, we analysed 334 wheat fields for which we had the data necessary to both calculate WUE and to simulate crop growth and water use. Simulations were conducted through Yield Prophet®, an on-line version of the APSIM systems model. For this dataset, evapotranspiration accounted for 69% of observed yield variation, although the more commonly used growing-season (April–October) rainfall accounted for 50%. Considering that evapotranspiration efficiency does not account for a wide range of potentially yield-limiting factors including soil and fertiliser nitrogen supply, crop phenology, and sowing dates, or rainfall distribution, these results reinforce the importance of evapotranspiration efficiency as a yield determinant for well managed crops in water-limited environments. WUE attained over the whole dataset was 15.2 kg grain/ha.mm (x-intercept = 67 mm), although this value contained data subsets with important differences in WUE based on soil water-holding capacity and regional diversity. Yield Prophet® simulated commercial wheat yields with RMSDs of 0.80 t/ha (r2 = 0.71), with some systematic error between observed and simulated yields. Simulated crops achieved a higher WUE (16.9 kg grain/ha.mm; x-intercept = 72 mm) than the observed crops, probably because APSIM does not account for effects of factors such as weeds, pests and diseases and impacts of severe weather. Simulated ‘what-if’ analysis suggested that further improvement in WUE may be achieved with an early sowing strategy or a higher nitrogen input strategy. A ‘yield maximising’ strategy that included an optimal plant density, early sowing date, and higher nitrogen inputs resulted in an average WUE (21.4 kg grain/ha.mm; x-intercept = 80 mm) that is close to the previously reported (French-Schultz) boundary of WUE. This outcome suggests a great deal of scope for Australian wheat growers to adopt strategies that improve their WUE. Yield Prophet® farmers have already demonstrated significant improvement in on-farm WUE compared with previous studies. However, additional improvements will only be partially realised due to considerations of the cost: benefit ratio and risk in a highly variable climate, and the operational feasibility of these strategies with current technologies.
17

Baker, G. H. "The population dynamics of the mediterranean snails Cernuella virgata, Cochlicella acuta (Hygromiidae) and Theba pisana (Helicidae) in pasture - cereal rotations in South Australia: a 20-year study." Australian Journal of Experimental Agriculture 48, no. 12 (2008): 1514. http://dx.doi.org/10.1071/ea08031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The snails Cernuella virgata, Cochlicella acuta and Theba pisana are introduced pests of grain crops and pastures in southern Australia. The population dynamics of these three species of snail were studied for 20 years in two adjacent fields where they coexisted on a farm on the Yorke Peninsula in South Australia. The fields were used for pasture–cereal rotations. Surveys were conducted in autumn and spring each year, coinciding respectively with the start of the breeding season and peak abundance of snails (mostly juveniles). Populations varied greatly in abundance between years and between species, but snails were generally most common in spring, in wet years, especially those with wet autumns and wet springs. Rainfall early in a particular year (i.e. at sowing of crops in autumn) can thus be used to predict the likelihood of heavy snail infestations later in spring (i.e. at harvest). In contrast, the abundance of adult snails in autumn was a poor predictor of the subsequent abundance of juvenile snails in spring, especially in crops. There were no significant correlations, at field scale, between the average abundance of the three species of snail in spring, in either pastures or crops. However, at a sampling scale of 0.25 m2, there were consistent, negative relationships between the abundance of all three snail species. Such patterns may reflect either competitive interactions between snails or subtle differences in micro-habitat choice. Patterns in the abundance of snails (e.g. large numbers near field edges) were suggestive of occasional invasion from dense populations in adjacent fields.
18

Lakew, Biniam T., Adrian H. Nicholas, and Stephen W. Walkden-Brown. "Spatial and temporal distribution of Culicoides species in the New England region of New South Wales, Australia between 1990 and 2018." PLOS ONE 16, no. 4 (April 5, 2021): e0249468. http://dx.doi.org/10.1371/journal.pone.0249468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Culicoides are one of the smallest hematophagous flies measuring 1–5 mm in size with only females seeking blood for egg development. The present study investigated spatio-temporal distribution of Culicoides species trapped between 1990 and 2018 at 13 sites in the New England region of NSW, Australia using automated light traps. Trapping locations were divided into three subregions (tablelands, slopes and plains). Nineteen Culicoides species were identified. Culicoides marksi and C. austropalpalis were the most abundant and widespread species. Culicoides brevitarsis, the principal vector of livestock diseases in New South Wales comprised 2.9% of the total catch and was detected in 12 of the 13 locations in the study. Abundance as determined by Log10 Culicoides count per trapping event for the eight most abundant species did not vary significantly with season but trended towards higher counts in summer for C. marksi (P = 0.09) and C. austropalpalis (P = 0.05). Significant geographic variation in abundance was observed for C. marksi, C. austropalpalis and C. dycei with counts decreasing with increasing altitude from the plains to the slopes and tablelands. Culicoides victoriae exhibited the reverse trend in abundance (P = 0.08). Greater abundance during the warmer seasons and at lower altitudes for C. marksi and C. austropalpalis was indicative of temperature and rainfall dependence in this region with moderate summer dominance in rainfall. The Shannon-Wiener diversity index of species was higher on the tablelands (H = 1.59) than the slopes (H = 1.33) and plains (H = 1.08) with evenness indices of 0.62, 0.46 and 0.39 respectively. Culicoides species on the tablelands were more diverse than on the slopes and plains where C. marksi and C. austropalpalis dominated. The temporal and spatial variation in abundance, diversity and evenness of species reported in this diverse region of Australia provides additional insight into Culicoides as pests and disease vectors and may contribute to future modelling studies.
19

Basnet, Roshan, Shesh Raman Upadhyay, Nutan Raj Gautam, Ramesh Raj Puri, and Deepak Pandey. "FIELD BASED ASSESSMENT OF FOLIAR BLIGHTS DISEASE OF WHEAT (Triticum aestivum L.)." International Journal of Environment 4, no. 3 (August 24, 2015): 140–50. http://dx.doi.org/10.3126/ije.v4i3.13241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Wheat, the third major staple crop of Nepal has been suffered from many diseases. Various diseases are the major limiting factors of considerable wheat production, one of them is Spot blotch. Spot blotch caused by Bipolaris sorokiniana is a major disease of wheat in warm and humid regions of the Nepal. The fungus has a worldwide distribution but as a pathogen it is the most aggressive under the conditions of high relative humidity and temperature associated with the low fertility of soils in South Asia, South America, Africa, and Australia. The yield loss due to the disease is very significant Nepal. This experiment was conducted to identify the genotypes (crossing) having good level of resistance against spot blotch. The experiment set was received from CIMMYT comprises 52 entries and arranged in alpha lattice design with two replication in 2012/13 at NWRP, Bhairahawa condition. Three times diseases scoring were done in double digit method and calculated the Area under disease progress curve (AUDPC). Heading days, days to maturity, plant height and test weight were found highly significant but the grain yield and AUDPC were not significant among the entries. However, the grain yield and test weight (50.5 gm) were found higher where the AUDPC was lower recorded in genotype 6719 (4046 kg/ha and AUDPC 488.33) followed by genotype 6737 (3765 Kg/ha and AUDPC 576.9) and genotype 6718 (3550 kg/ha and AUDPC 596.33). International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 140-150
20

Fei, Li, Li Ya, and Ma Shuang. "Regional difference of grain production potential change and its influencing factors: a case-study of Shaanxi Province, China." Journal of Agricultural Science 157, no. 1 (January 2019): 1–11. http://dx.doi.org/10.1017/s0021859619000145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractGrain production potential (GrPP) is the maximum production in 1 year that can be achieved by land use under the limitations of climate conditions and in the absence of pests and diseases and other factors. Regional GrPP can change over time and there is an urgent need to identify the main factors affecting regional differences in such changes. Therefore, changes in GrPP were studied for six geographical units in Shaanxi Province, with summer maize and winter wheat as the main grain crops. Changes of GrPP during 2000–2015 were simulated by the global aro-ecological zone model. Analysis of modelled GrPP driven by observed changes in climate and land use suggest that over this period GrPP increased to the north but declined to the south of the Qinling Mountains. This is driven mainly by past changes in climate, with modelled GrPP more sensitive to changes in precipitation than temperature in all geographical units except one. Climate change was the main factor affecting GrPP in all geographical units except one; however, model prediction suggests that land use changes had a clear yield-reducing effect in three of the units. It is the conversion from cultivated land to construction land, grassland and woodland that led to the greatest declines in GrPP in these three geographical units. In order to ensure the stable development of regional agriculture and food security, Shaanxi Province should focus on tapping GrPP north of the Qinling Mountains and increasing the conversion rate of GrPP to actual production.
21

Brennan, R. F., and K. W. Jayasena. "Increasing applications of potassium fertiliser to barley crops grown on deficient sandy soils increased grain yields while decreasing some foliar diseases." Australian Journal of Agricultural Research 58, no. 7 (2007): 680. http://dx.doi.org/10.1071/ar06286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Most sandy soils used for cropping in south-western Australia (SWA) have now become potassium (K) deficient due to removal of K in hay and grain, so it is now profitable to apply K fertiliser to most barley (Hordeum vulgare L.) crops in the region. Leaf diseases of barley crops in the region have increased in recent years particularly in the in medium to high (350–600 mm annual average rainfall) areas of SWA. Seventeen field experiments were undertaken to determine the effect of applications of K fertiliser, either the chloride (KCl) or sulfate source (K2SO4), on grain yield increases and on the percentage leaf area diseased (%LAD) when diseases were controlled or not controlled by fungicide sprays. Maximum grain yield of barley was achieved where adequate K fertiliser (~8–22 kg K/ha) was applied and leaf diseases were controlled by fungicide. Applying increasing amounts of applied K fertiliser (0–120 kg K/ha) to barley decreased the %LAD by powdery mildew (Blumeria graminis f. sp. hordei Syn.) and spot-type net blotch (Pyrenophora teres f. maculata (Sacc.) Shoem.) and increased grain yield. By contrast, when leaf rust (Puccinia hordei G. Otth) was present the %LAD was unaffected by K application. When powdery mildew was the major disease, larger increases in grain yields and larger reductions in %LAD were obtained when KCl was used instead of K2SO4. About twice as much K fertiliser as K2SO4 was required for 90% maximum grain yield compared with KCl where powdery mildew was present. Applying larger amounts (>40 kg K/ha) of K fertiliser than required to achieve maximum grain yields did not further reduce %LAD by powdery mildew. There were no significant differences between the 2 sources of K fertiliser on the %LAD by spot-type net blotch. Generally, the percentage protein content and hectolitre weight of grain were unaffected by K fertiliser. Potassium fertiliser decreased the percentage grain < 2.5 mm (known locally as screenings) and control of the foliar leaf diseases by applications of fungicide resulted in a decrease in protein content and screenings and increased hectolitre weight of barley grain. The concentration of K in dried shoots that was related to 90% of the maximum shoot yield (critical diagnostic K) decreased as the plant matured, and was ~41 g/kg at Z22, ~30 g/kg at Z32, ~20 g/kg at Z40, and ~15 g/kg at Z59. The concentration of K in dried shoots which was related to 90% of the grain yield (critical prognostic K) decreased as plant matured, and was similar to critical diagnostic K values. Leaf disease had little effect on critical concentrations of K at early growth stages (Z22 and Z32).
22

Sadras, Víctor, David Roget, and Garry O'Leary. "On-farm assessment of environmental and management constraints to wheat yield and efficiency in the use of rainfall in the Mallee." Australian Journal of Agricultural Research 53, no. 5 (2002): 587. http://dx.doi.org/10.1071/ar01150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The responses of wheat grain yield to soil properties, weather, root diseases, and management practices were investigated in 75 grower-managed crops in the Mallee region of South Australia, Victoria, and New South Wales during 3 growing seasons. Fourteen cultivars were represented in the sampled crops, with Frame being the most common (56%). The most widespread crop sequence was wheat after pasture (43% of wheat crops), followed by wheat after fallow or cereal (both about 20%); 12% of the wheat was sown after legumes. Wheat after cereal was more common in drier sites, and wheat after fallow in wetter sites. Wheat yield was proportional to Fischer’s photothermal coefficient around flowering, and ranged from nil to 4.7 t/ha. On average, wheat crops sown after cereals yielded 0.4 t/ha less than their counterparts sown after fallow, and 0.7 t/ha less than those after legumes. Sowing date ranged from 24 April to 21 July; yield declined with delayed sowing at an average rate of 17 kg/ha.day. Growing season rainfall (April–October) ranged from 111 to 266 mm, and accounted for 27% of the variation in grain yield. Soil water content at sowing (0–1 m) ranged from 32 to 330 mm; yield increased with initial soil water at an average rate of 6 kg/ha.mm. Grain yield per unit growing season rainfall was generally low, with 75% of crops producing <12 kg grain/ha.mm; the maximum ratio was 21 kg/ha.mm. Soil constraints, including sodicity, alkalinity, salinity, and boron toxicity, reduced yield in part by reducing availability of stored soil water. Owing to severity of chemical constraints increasing with soil depth, grain yield and yield per unit growing season rainfall were both inversely related to the proportion of water stored deeper in the soil (0.5–1 m). Yield was unrelated to nitrogen, both initial and applied. Larger amounts of nitrogen accumulated in soils with more severe constraints partially accounted for the lack of association between yield and nitrogen.
23

Li, Guangdi D., Mark K. Conyers, Graeme D. Schwenke, Richard C. Hayes, De Li Liu, Adam J. Lowrie, Graeme J. Poile, Albert A. Oates, and Richard J. Lowrie. "Tillage does not increase nitrous oxide emissions under dryland canola (Brassica napus L.) in a semiarid environment of south-eastern Australia." Soil Research 54, no. 5 (2016): 512. http://dx.doi.org/10.1071/sr15289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dryland cereal production systems of south-eastern Australia require viable options for reducing nitrous oxide (N2O) emissions without compromising productivity and profitability. A 4-year rotational experiment with wheat (Triticum aestivum L.)–canola (Brassica napus L.)–grain legumes–wheat in sequence was established at Wagga Wagga, NSW, Australia, in a semiarid Mediterranean-type environment where long-term average annual rainfall is 541mm and the incidence of summer rainfall is episodic and unreliable. The objectives of the experiment were to investigate whether (i) tillage increases N2O emissions and (ii) nitrogen (N) application can improve productivity without increasing N2O emissions. The base experimental design for each crop phase was a split-plot design with tillage treatment (tilled versus no-till) as the whole plot, and N fertiliser rate (0, 25, 50 and 100kgN/ha) as the subplot, replicated three times. This paper reports high resolution N2O emission data under a canola crop. The daily N2O emission rate averaged 0.55g N2O-N/ha.day, ranging between –0.81 and 6.71g N2O-N/ha.day. The annual cumulative N2O-N emitted was 175.6 and 224.3g N2O-N/ha under 0 and 100kgN/ha treatments respectively. There was no evidence to support the first hypothesis that tillage increases N2O emissions, a result which may give farmers more confidence to use tillage strategically to manage weeds and diseases where necessary. However, increasing N fertiliser rate tended to increase N2O emissions, but did not increase crop production at this site.
24

Waller, R. A., and P. W. G. Sale. "Persistence and productivity of perennial ryegrass in sheep pastures in south-western Victoria: a review." Australian Journal of Experimental Agriculture 41, no. 1 (2001): 117. http://dx.doi.org/10.1071/ea00049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Loss of perennial ryegrass (Lolium perenne L.) from the pasture within several years of sowing is a common problem in the higher rainfall (550–750 mm annual rainfall), summer-dry regions of south-eastern Australia. This pasture grass came to Australia from northern Europe, where it mostly grows from spring to autumn under mild climatic conditions. In contrast, the summers are generally much drier and hotter in this region of south-eastern Australia. This ‘mismatch’ between genotype and environment may be the fundamental reason for the poor persistence. There is hope that the recently released cultivars, Fitzroy and Avalon, selected and developed from naturalised ryegrass pastures in south-eastern Australia for improved winter growth and persistence will improve the performance of perennial ryegrass in the region. Soon-to-be released cultivars, developed from Mediterranean germplasm, may also bridge the climatic gap between where perennial ryegrass originated and where it is grown in south-eastern Australia. Other factors that influence perennial ryegrass persistence and productivity can be managed to some extent by the landholder. Nutrient status of the soil is important since perennial ryegrass performance improves relative to many other pasture species with increasing nitrogen and phosphorus supply. It appears that high soil exchangeable aluminium levels are also reducing ryegrass performance in parts of the region. The use of lime may resolve problems with high aluminium levels. Weeds that compete with perennial ryegrass become prevalent where bare patches occur in the pasture; they have the opportunity to invade pastures at the opening rains each year. Maintaining some herbage cover over summer and autumn should reduce weed establishment. Diseases of ryegrass are best managed by using resistant cultivars. Insect pests may be best managed by understanding and monitoring their biology to ensure timely application of pesticides and by manipulating herbage mass to alter feed sources and habitat. Grazing management has potential to improve perennial ryegrass performance as frequency and intensity of defoliation affect dry matter production and have been linked to ryegrass persistence, particularly under moisture deficit and high temperature stress. There is some disagreement as to the merit of rotational stocking with sheep, since the results of grazing experiments vary markedly depending on the rotational strategy used, climate, timing of the opening rains, stock class and supplementary feeding policy. We conclude that flexibility of grazing management strategies is important. These strategies should be able to be varied during the year depending on climatic conditions, herbage mass, and plant physiology and stock requirements. Two grazing strategies that show potential are a short rest from grazing the pasture at the opening rains until the pasture has gained some leaf area, in years when the opening rains are late. The second strategy is to allow ryegrass to flower late in the season, preventing new vegetative growth, and perhaps allowing for tiller buds to be preserved in a dormant state over the summer. An extension of this strategy would be to delay grazing until after the ryegrass seed heads have matured and seed has shed from the inflorescences. This has the potential to increase ryegrass density in the following growing season from seedling recruitment. A number of research opportunities have been identified from this review for improving ryegrass persistence. One area would be to investigate the potential for using grazing management to allow late development of ryegrass seed heads to preserve tiller buds in a dormant state over the summer. Another option is to investigate the potential, and subsequently develop grazing procedures, to allow seed maturation and recruitment of ryegrass seedlings after the autumn rains.
25

Lodge, GM. "Management practices and other factors contributing to the decline in persistence of grazed lucerne in temperate Australia: a review." Australian Journal of Experimental Agriculture 31, no. 5 (1991): 713. http://dx.doi.org/10.1071/ea9910713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The literature relevant to the grazing management of lucerne in temperate Australia is reviewed with emphasis on the factors likely to affect its persistence. Knowledge of lucerne physiology is used to question the validity of the traditional methods of managing grazed stands, which rely mainly on using 10% flowering as a guide to root carbohydrate levels. From these data several alternative management guidelines are proposed that may lead to increased persistence; however, for long-term persistence, there is little doubt that lucerne needs to be grazed leniently and at a late stage of maturity. Several grazing experiments indicate that grazing periods of 16-20 days should have no effect on persistence, provided that the rest period between successive grazings is 35 days or longer. Data from other countries and Australian data from a limited number of experiments also indicate that grazing in either autumn or winter may substantially reduce production and could affect persistence. Three grazing studies in New South Wales were used to highlight critical differences in experimental design which make comparisons among experiments difficult. Standardised sowing rates and grazing management, and statistical procedures which account for the genotype x management x environment interaction, are suggested to improve the extrapolation of results from experiments to other environments. Persistence of different lucerne types under grazing, particularly those recently imported from the U.S.A. or bred in Australia, is considered. While it has been proposed that grazing effects may be related to crown structure, interactions with other factors which affect persistence may also occur. If grazing can be considered to be stressful to a lucerne plant then it could interact with other stresses, caused by moisture deficit, excessive moisture, insect pests and disease, to reduce persistence. Additionally, considerable variation in varietal resistance to some pests and diseases has been recorded in haycut stands, and so there may also be cultivar x grazing effects. All of these factors could combine to affect the persistence of a particular cultivar under grazing. Patterns of lucerne decline were either continuous or step-like. Continuous decline was associated with prolonged grazing, grazing and moisture stress, grazing under waterlogged conditions, or grazing in situations where the incidence of disease was likely to be high. To understand the reasons why plants fail to persist, measurements need to be made frequently and a1 regular intervals, and the moisture and disease status of the site needs to be accurately monitored. The adequacy of different methods of measuring stand persistence is also questioned. The implications for graziers, researchers and lucerne breeders are discussed.
26

Singh, R. K. "Genetic resource and the role of international collaboration in rice breeding." Genome 42, no. 4 (August 1, 1999): 635–41. http://dx.doi.org/10.1139/g99-042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The international efforts in rice research have led to self-sufficiency and surpluses in many of the south and southeast Asian countries. The trend must continue to meet the growing demand for rice. The global partnership in plant genetic resources has played a significant role in ensuring long-term preservation of and access by researchers to the gene pool worldwide. Large numbers of high-yielding varieties with resistance to diseases and insect pests have been released by the collaborating countries and have both increased national average yields and stabilized rice production. Now, the yields must increase further, as more rice needs to be produced from less land with less labour and pesticides. The new plant type being developed at the International Rice Research Institute (IRRI) seems to have the potential to produce 20-25% more grain than the best of our modern varieties. With the growing complexity of problems, the demand for diverse genetic materials is also increasing. It is no wonder that some of the recently released varieties have genes from as many as 60 or more diverse donors. These developments owe a lot to the free exchange of germplasm among breeders. However, the ever-increasing restrictions on the flow of genetic materials due to political and plant-health requirements pose serious threats to future varietal-improvement programs. Similarly, the problem of genetic erosion continues, and shrinking research support reduces the flexibility of programs. This paper reviews and discusses some of these and other related issues and their implications for rice breeding in the future.Key words: genetic resource, new plant type, marker-aided selection, pedigree complexity, International Network for Genetic Evaluation of Rice (INGER).
27

Kishlyan, N. V., V. D. Bemova, T. V. Matveeva, and V. A. Gavrilova. "Biological peculiarities and cultivation of groundnut (a review)." Proceedings on applied botany, genetics and breeding 181, no. 1 (April 12, 2020): 119–27. http://dx.doi.org/10.30901/2227-8834-2020-1-119-127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Peanut is one of the most important crops in the Fabaceae Lindl. (Leguminosae L.) family. South America is considered to be the homeland of peanut, but now this crop is cultivated in America, Africa, Australia, Europe and Asia. The modern phylogenetic system of the genus Arachis L. includes 79 wild species and one cultivated species of common peanut (A. hypogaea L.). Diploid species contain 2n = 20 chromosomes of the A, B or D genome, tetraploids have A and B genomes. The А and В genomes are sequenced. Special biological features of all peanut varieties are the presence of chasmogamous and cleistogamous flowers and the development of pods only underground (geocarpy). Along with high requirements for improving the quality of oil and food products, much attention is paid to their safety: resistance to aflatoxin contamination and mitigation of allergenicity. Peanut cultivars vary in plant habit, shape and color of pods and seeds. Their growing season in Africa, Latin America and Asia is from 160 to 200 days, so early-ripening forms need to be selected for the south of the Russian Federation. Breeders from the Pustovoit Institute of Oil Crops (VNIIMK) have developed peanut cultivars with a yield of 2.0–3.3 t/ha and growing season duration of 115–120 days, adaptable to the environments of Krasnodar Territory. At present, there is no large-scale peanut production in Russia, nor any breeding efforts are underway. As for the world, along with conventional breeding practices (individual selection, intra- and interspecies crosses, etc.), peanut is widely involved in genomic studies. A number of cultivars highly resistant to pests, diseases and drought have been released. Over 15,000 peanut accessions are preserved in the world’s gene banks, including 1823 accessions in the collection of the Vavilov Institute (VIR). Utilization of the worldwide genetic resources of peanut and use of modern research technologies will contribute to the revival of peanut cultivation in Russia.
28

Robertson, Michael J., and John A. Kirkegaard. "Water-use efficiency of dryland canola in an equi-seasonal rainfall environment." Australian Journal of Agricultural Research 56, no. 12 (2005): 1373. http://dx.doi.org/10.1071/ar05030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The French and Shultz approach that relates seasonal rainfall to potential yield in wheat has yet to be applied to dryland canola. Relationships were derived between grain yield of 42 experimental crops (yield range 0.5–5.4 t/ha) free of weeds, pests, diseases, and nutrient deficiencies in southern New South Wales, and various measures of observed (rainfall, available soil water) and simulated (evapotranspiration) seasonal water supply. April to October rainfall and in-crop rainfall were the poorest predictors of yield (R2 < 0.5). By adjusting in-crop rainfall to account for stored soil water at sowing and that remaining at harvest (termed ‘seasonal water supply’), 68% of the variance in yield could be explained. Estimates derived using the APSIM-Canola simulation model or simulated totals of evapotranspiration or transpiration explained 73–82% of the variance. The slope of the regression line between yield of the 42 crops, which simulation indicated had all yielded to their water-limited potential, and seasonal water supply (termed here the water-use efficiency for grain production, WUE) was 11 kg/ha.mm above an intercept of 120 mm. WUE varied from 4 to 18 kg/ha.mm and the upper boundary for WUE in those seasons where rainfall distribution facilitated maximum efficiency was 15 kg/ha.mm. Long-term simulations, conducted at locations with mean annual rainfall of 430–660 mm, confirmed the variability of WUE due to rainfall distribution and also that WUE would be expected to decline, on average, by one-third between sowings in early April and early July. This necessitates caution in accepting a single WUE value as an indicator of agronomic constraints to yield. For the purposes of practical application by farmers and advisors, water-limited potential yield can be calculated in the region as a function of seasonal water supply minus 120 mm up to a limit of 450 mm, beyond which potential yield is not limited by water. Available soil water at sowing can be estimated from summer fallow rainfall above a threshold of 80 mm, and water remaining at harvest can be estimated from post-anthesis rainfall above a threshold of 50 mm. This improved method for estimating water-limited potential yield in canola retains the ease of use of the French and Shultz approach, so that other constraints to yield can be more accurately diagnosed in dryland environments by farmers and advisors.
29

Li, J., V. L. Gaskins, H. J. Yan, Y. G. Luo, and W. M. Jurick II. "First Report of Mucor Rot on Stored ‘Gala’ Apple Fruit Caused by Mucor piriformis in Pennsylvania." Plant Disease 98, no. 8 (August 2014): 1157. http://dx.doi.org/10.1094/pdis-02-14-0149-pdn.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mucor piriformis E. Fischer causes Mucor rot of pome and stone fruits during storage and has been reported in Australia, Canada, Germany, Northern Ireland, South Africa, and portions of the United States (1,2). Currently, there is no fungicide in the United States labeled to control this wound pathogen on apple. Cultural practices of orchard sanitation, placing dry fruit in storage, and chlorine treatment of dump tanks and flumes are critical for decay management (3,4). Cultivars like ‘Gala’ that are prone to cracking are particularly vulnerable as the openings provide ingress for the fungus. Mucor rot was observed in February 2013 at a commercial packing facility in Pennsylvania. Decay incidence was ~15% on ‘Gala’ apples from bins removed directly from controlled atmosphere storage. Rot was evident mainly at the stem end and was light brown, watery, soft, and covered with fuzzy mycelia. Salt-and-pepper colored sporangiophores bearing terminal sporangiospores protruded through the skin. Five infected apple fruit were collected, placed in an 80-count apple box on trays, and temporarily stored at 4°C. Isolates were obtained aseptically from decayed tissue, placed on potato dextrose agar (PDA) petri plates, and incubated at 25°C with natural light. Five single sporangiospore isolates were identified as Mucor piriformis based on cultural characteristics according to Michailides and Spotts (1). The isolates produced columellate sporangia attached terminally on short and tall, branched and unbranched sporangiophores. Sporangiospores were ellipsoidal, subspherical, and smooth. Chlamydospore-like resting structures (gemmae), isogametangia, and zygospores were not evident in culture. Mycelial growth was examined on PDA, apple agar (AA), and V8 agar (V8) at 25°C with natural light. Isolates grew best on PDA at rates that ranged from 38.4 ± 5.3 to 34.5 ± 2.41 mm/day, followed by AA from 30.5 ± 1.22 to 28.5 ± 2.51 mm/day, and V8 from 29.2 ± 3.0 to 26.7 ± 2.17 mm/day. Species-level identification was conducted by isolating genomic DNA, amplifying a portion of the 28S rDNA gene, and directly sequencing the products. MegaBLAST analysis of the 2X consensus sequences revealed that all five isolates were 99% identical to M. piriformis (GenBank Accession No. JN2064761) with E values of 0.0, which confirms the morphological identification. Koch's postulates were conducted using organic ‘Gala’ apples that were surface sanitized with soap and water, then sprayed with 70% ethanol and allowed to air dry. Wounds 3 mm deep were created using the point of a finishing nail and then inoculated with 50 μl of a sporangiospore suspension (1 × 105 sporangiospores/ml) for each isolate. Ten fruit were inoculated with each isolate, and the experiment was repeated. The fruit were stored at 25°C in 80-count boxes on paper trays for 14 days. Decay observed on inoculated ‘Gala’ fruit was similar to symptoms originally observed on ‘Gala’ apples from storage and the pathogen was re-isolated from inoculated fruit. This is the first report of M. piriformis causing postharvest decay on stored apples in Pennsylvania and reinforces the need for the development of additional tools to manage this economically important pathogen. References: (1) T. J. Michailides, and R. A. Spotts. Plant Dis. 74:537, 1990. (2) P. L. Sholberg and T. J. Michailides. Plant Dis. 81:550, 1997. (3) W. L. Smith et al. Phytopathology 69:865, 1979. (4) R. A. Spotts. Compendium of Apple and Pear Diseases and Pests: Second Edition. APS Press, St. Paul, MN, 2014.
30

Karpuk, L., A. Pavlichenko, V. Karaulna, L. Bogatyr, and V. Polyakov. "Weed infestation structure of fodder beet fields under various tillage systems." Agrobìologìâ, no. 2(142) (December 22, 2018): 71–78. http://dx.doi.org/10.33245/2310-9270-2018-142-2-71-78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nowadays in domestic arable farming sown crop (weed) vegetation is among the leaders as to the harmfulness for agricultural crop yields. Weeds are an annually acting factor which reduces the yields of economically-valuable output in all the regions of Ukraine. It is to be mentioned that in arable farming of the country the yield losses of agricultural crops, caused by weeds, are growing constantly. A serious decrease of public target financing to protect cultivated crops from pests, diseases and weeds resulted in the violation of farm practices in agricultural crop cultivation all over the country. Namely, in all agro-climatic regions of Ukraine well-balanced scientifically-grounded crop rotations were reduced to 3–4 field rotations with 60–70 % share of grain crops. And, without a proper expertise of the farm machinery available at the farms, minimal or zero tillage is used. For example, reduced crop rotation with a dominating share of grain crops led to the increased load, caused by annul application of the same herbicides, and this, in turn, resulted in the appearance of resistant weed kinds in agro-phytocoenoses; the term violation of the weed control measures (first of all, chemical thinning) caused the decrease of their efficiency, particularly in controlling root-sprout weeds. Secondly, climate warming resulted in the increase of weed infestation of the agricultural crop fields due to the fact that most of the weeds survived during winter time and those typical for southern regions moved to the north (barnyard grass, amaranth, nightshade black, milkweed sharp, mallow runty and others). At the same the migration of northern kinds to the south was not recorded. One of the leading measures to regulate a weed component in agro-phytocoenoses is mechanical tillage. The updated tillage system has to be based on the principles of minimization which envisage the reduction of a mechanical effect on the soil aimed at the increasing of its erosion resistance and the optimization of soil fertility indicators. One of the ways to minimize mechanical tillage is to substitute moldboard tillage for mould boardless one, and also to decrease its depth and the number of cultivations. Purpose of the research is to estimate weed infestation of the fodder beet fields when various tillage systems are used. The experiments in five-field crop rotation were carried out in accordance with the theme of the research in a stationary field trial of SPC of Bila Tserkva NAU in 2009-2011. Four systems of tillage were studied. Three-fold replication and compact placing of replications are used; plots of the first order (tillage) are placed in one layer, gradually, systematically. Farm practices of fodder beet cultivation, used in the experiment, are typical to the ones applied in the research institutions and at the advanced farms of the zone. Machines, equipment and mechanisms, which are available at SPC BTsNAU and advanced farm enterprises are equipped with, are used when growing fodder beets. The methodology and organization of the technique of performing the trial facilitated this. Lowing at 30-32 cm depth was done with plow PLN –3–35, mouldboardless tillage – at 30–32 cm depth with subsurface cultivator KPG –250, shelling – at 10–12 cm depth with stubble plow PL – 5–25 and disc harrow BDV –3.0. The largest amount of weed raw mass was recorded under regular tillage with a subsurface cultivator. When differentiated and continuous shallow tillage was done, this indicator was the highest, as compared with the control, in the first year of the trial, and a reverse regularity was recorded in the last year of the trial. The raw mass of one sown crop was the highest under regular mouldboardless tillage, and under differentiated and continuous shallow tillage it was at the level of the control. Under continuous mouldboard, regular mouldboardless, differentiated and continuous shallow tillage this indicator was 3.67; 4.06; 3.71 and 3.73 g in 2009 and 3.37; 3.82; 3.34 and 3.34 g in 2011. A determinative factor, which weed infestation of agricultural crop fields depends on in the period of their vegetation, is light condition of the soil surface in the field. The latter is determined by the peculiarities of plant morphology, their development and sowing practice. In the structure of weed infestation the highest percentage – 20.7 % belongs to amaranth, 15.7 %– to Setaria pumila, 14.2 % – to barnyard grassand 11.1 %– to quinoa white. Under the effect of crop rotation weed grouping is changed (succession) in the period of germination of fodder beets which is connected with both the effect of a forecrop and a fertilization system of crop rotations and variants of tillage. Key words: fodder beet (mangold), tillage system, structure of weed infestation, raw mass of weeds, succession.
31

Healey, Adam L., Mervyn Shepherd, Graham J. King, Jakob B. Butler, Jules S. Freeman, David J. Lee, Brad M. Potts, et al. "Pests, diseases, and aridity have shaped the genome of Corymbia citriodora." Communications Biology 4, no. 1 (May 10, 2021). http://dx.doi.org/10.1038/s42003-021-02009-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCorymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although the two diverged approximately 60 million years ago and have different genome sizes (408 vs 641 Mb), with few large intra-chromosomal rearrangements. C. citriodora shares an ancient whole-genome duplication event with E. grandis but has undergone tandem gene family expansions related to terpene biosynthesis, innate pathogen resistance, and leaf wax formation, enabling their successful adaptation to biotic/abiotic stresses and arid conditions of the Australian continent.
32

Beukes, Ilze, Lindy J. Rose, Gordon S. Shephard, C. Flett Flett, and Altus Viljoen. "Mycotoxigenic Fusarium species associated with grain crops in South Africa – A review." South African Journal of Science Volume 113, Number 3/4 (March 29, 2017). http://dx.doi.org/10.17159/sajs.2017/20160121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Cereal grains include some of the most important crops grown in South Africa and play a major role in the local economy. Maize, wheat and sorghum are extensively consumed by humans and farm animals, and are also utilised in industrial processes. Grain crops that are grown commercially contribute up to 33% of the country’s total gross agricultural production, whereas subsistence farmers grow grains mainly to sustain their families. In rural communities an average intake of maize grain of more than 300 g dry weight per person per day is not uncommon. The production of grains is often constrained by pests and diseases that may reduce their yields and quality. In South Africa, 33 mycotoxin-producing Fusarium species have been associated with grain crops. Mycotoxins, such as fumonisins and deoxynivalenol, have been found in levels exceeding the maximum levels imposed by the US Food and Drug Administration and the European Union and therefore pose a serious public health concern. We provide an extensive overview of mycotoxigenic Fusarium species associated with grain crops in South Africa, with particular reference to maize, wheat and sorghum.
33

"BioBoard." Asia-Pacific Biotech News 11, no. 14 (July 30, 2007): 952–57. http://dx.doi.org/10.1142/s0219030307000985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AUSTRALIA — Australia Commits Extra Fund to Combat AIDS in Asia Pacific. AUSTRALIA — Australia Joins European Molecular Biology Laboratory. AUSTRALIA — Australian Scientists Discovers New Drugs to Treat Childhood Cancer. CHINA — China Tries to Reduce Corruption in Medical Equipment Industry. CHINA — Chinese Police Arrest Fake Drug Ring. CHINA — China Donates US$30 000 to Cambodian Red Cross for Dengue Control. CHINA — Sino-Dutch Center for Plant Molecular Breeding Established in Shanghai. CHINA — Project of S&T for Grain Harvest Launched. CHINA — UNAIDS Chief Heaps Praise on China's Anti-AIDS Efforts. CHINA — China and ASEAN Work as a Team to Fight Against Avian Flu. HONG KONG — Guangdong Province, Macau and Hong Kong Health Authorities Cooperate in Infectious Diseases Control. INDIA — Indian Health Ministry to Finalize Draft on HIV/AIDS Bill. INDONESIA — Indonesia to Step Up Fight Against HIV/AIDS. JAPAN — Japan Scientists Develops Artifical Womb. NEW ZEALAND — Government Urged to Reject Dangerous GM Corn. SINGAPORE — Singapore and France Launch Workshop on Managing Bird Flu Epidemic. SINGAPORE — National Registry of Diseases Act to Help Medical Data Collection for Research. SINGAPORE — New Cervical Cancer Vaccine Available in Singapore Shortly. SOUTH KOREA — Korean Scientists Advance Genome Research with Bioinformatics. TAIWAN — Taiwan to Develop US$900 Million National Biotech Park. OTHERS — Asia Braces for New Dengue Outbreak.
34

Nhemachena, Charity R., and Johann Kirsten. "A historical assessment of sources and uses of wheat varietal innovations in South Africa." South African Journal of Science Volume 113, Number 3/4 (March 29, 2017). http://dx.doi.org/10.17159/sajs.2017/20160008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We undertook a historical review of wheat varietal improvements in South Africa from 1891 to 2013, thus extending the period of previous analyses. We identified popular wheat varieties, particularly those that form the basis for varietal improvements, and attempted to understand how policy changes in the wheat sector have affected wheat varietal improvements in the country over time. The empirical analysis is based on the critical review of information from policies, the varieties bred and their breeders, the years in which those varieties were bred, and pedigree information gathered from the journal Farming in South Africa, sourced mainly from the National Library of South Africa and the International Maize and Wheat Improvement Center (CIMMYT) database. A database of the sources and uses of wheat varietal innovations in South Africa was developed using information from the above sources. The data, analysed using trend and graphical analysis, indicate that, from the 1800s, wheat varietal improvements in the country focused on adaptability to the production area, yield potential and stability and agronomic characteristics (e.g. tolerance to diseases, pests and aluminium toxicity). An analysis of the sources of wheat varietal improvements during the different periods indicates that wheat breeding was driven initially by individual breeders and agricultural colleges. The current main sources of wheat varietal improvements in South Africa are Sensako, the Agricultural Research Council’s Small Grain Institute (ARC–SGI) and Pannar. The structural changes in the agricultural sector, particularly the establishment of the ARC–SGI and the deregulation of the wheat sector, have helped to harness the previously fragmented efforts in terms of wheat breeding. The most popular varieties identified for further analysis of cost attribution and the benefits of wheat varietal improvements were Gariep, Elands and Duzi.

До бібліографії