Добірка наукової літератури з теми "Gradient of elasticity"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gradient of elasticity".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Gradient of elasticity"
Askes, Harm, and Miguel A. Gutiérrez. "Implicit gradient elasticity." International Journal for Numerical Methods in Engineering 67, no. 3 (2006): 400–416. http://dx.doi.org/10.1002/nme.1640.
Повний текст джерелаTarasov, Vasily E., and Elias C. Aifantis. "Toward fractional gradient elasticity." Journal of the Mechanical Behavior of Materials 23, no. 1-2 (May 1, 2014): 41–46. http://dx.doi.org/10.1515/jmbm-2014-0006.
Повний текст джерелаLurie, Sergey A., Alexander L. Kalamkarov, Yury O. Solyaev, and Alexander V. Volkov. "Dilatation gradient elasticity theory." European Journal of Mechanics - A/Solids 88 (July 2021): 104258. http://dx.doi.org/10.1016/j.euromechsol.2021.104258.
Повний текст джерелаLazar, Markus. "On gradient field theories: gradient magnetostatics and gradient elasticity." Philosophical Magazine 94, no. 25 (July 11, 2014): 2840–74. http://dx.doi.org/10.1080/14786435.2014.935512.
Повний текст джерелаGutkin, M. Yu, and E. C. Aifantis. "Edge dislocation in gradient elasticity." Scripta Materialia 36, no. 1 (January 1997): 129–35. http://dx.doi.org/10.1016/s1359-6462(96)00352-1.
Повний текст джерелаLazar, Markus, and Gérard A. Maugin. "Dislocations in gradient elasticity revisited." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2075 (June 6, 2006): 3465–80. http://dx.doi.org/10.1098/rspa.2006.1699.
Повний текст джерелаHwang, K. C., T. F. Cuo, Y. Huang, and J. Y. Chen. "Fracture in strain gradient elasticity." Metals and Materials 4, no. 4 (July 1998): 593–600. http://dx.doi.org/10.1007/bf03026364.
Повний текст джерелаGutkin, M. Yu, and E. C. Aifantis. "Screw dislocation in gradient elasticity." Scripta Materialia 35, no. 11 (December 1996): 1353–58. http://dx.doi.org/10.1016/1359-6462(96)00295-3.
Повний текст джерелаGiannakopoulos, Antonios E., Stylianos Petridis, and Dimitrios S. Sophianopoulos. "Dipolar gradient elasticity of cables." International Journal of Solids and Structures 49, no. 10 (May 2012): 1259–65. http://dx.doi.org/10.1016/j.ijsolstr.2012.02.008.
Повний текст джерелаZervos, A. "Finite elements for elasticity with microstructure and gradient elasticity." International Journal for Numerical Methods in Engineering 73, no. 4 (2008): 564–95. http://dx.doi.org/10.1002/nme.2093.
Повний текст джерелаДисертації з теми "Gradient of elasticity"
Lee, Chang-Kye. "Gradient smoothing in finite elasticity : near-incompressibility." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/94491/.
Повний текст джерелаMOSQUEIRA, DANIEL HUAMAN. "FORMULATION OF GRADIENT ELASTICITY FOR HYBRID BOUNDARY METHODS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13048@1.
Повний текст джерелаCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A modelagem matemática de microdispositivos, em que estrutura e microestrutura têm aproximadamente a mesma escala de magnitude, assim como de macroestruturas de natureza predominantemente granular ou cristalina, requer uma abordagem não-local de deformações e tensões. Há mais de cem anos os irmãos Cosserat já tinham desenvolvido uma teoria de grãos rígidos. No entanto, e sem detrimento de desenvolvimentos devidos a Toupin e outros pesquisadores, os trabalhos de Mindlin na década de 1960 podem ser considerados a base da chamada teoria gradiente de deformações, que se tornou recentemente objeto de um grande número de investigações analíticas e experimentais, motivadas pelo desenvolvimento de novos materiais estruturais e do crescente uso de dispositivos micro- e nanomecânicos na indústria. Mais recentemente, Aifantis e colaboradores conseguiram desenvolver uma teoria gradiente de deformações mais simplificada, com base somente em duas constantes elásticas adicionais, representativas de comprimentos característicos relacionados às energias de deformação superficial e volumétrica. Uma série de trabalhos recentes desenvolvidos por Beskos e colaboradores estendeu o campo de aplicações da proposta inicial de Aifantis e introduziu uma solução fundamental que de fato remonta aos trabalhos de Mindlin. A equipe de pesquisa de Beskos propôs as primeiras implementações 2D e 3D de elementos de contorno para análises de elasticidade gradiente tanto estáticas quanto no domínio da freqüência, inclusive para problemas da mecânica da fratura. Desde o tempo de Toupin e Mindlin procura-se estabelecer uma base variacional da teoria e uma formulação consistente das condições de contorno cinemáticas e de equilíbrio, o que parece ter tido êxito com os recentes trabalhos de Amanatidou e Aravas. Esta dissertação faz uma revisão da teoria gradiente da deformações e apresenta um estudo didático do problema mais simples que se possa conceber, que é o de uma barra sob diferentes tipos de ações axiais (Aifantis, Beskos). A solução fundamental para problemas 2D e 3D também é apresentada e estudada, tanto em termos de forças pontuais aplicadas, para uma implementação em termos de elementos de contorno, quanto de desenvolvimentos polinomiais (no caso estático), para implementação em termos de elementos finitos. Mostra-se que a teoria gradiente de deformação de Aifantis é adequada a uma formulação no contexto do potencial de Hellinger-Reissner, o que possibilita implementações híbridas de elementos finitos e de contorno. O presente trabalho de pesquisa objetiva o estudo do estado da arte no tema, com uma abordagem dos principais problemas de implementação computacional, inclusive em termos das integrais singulares que surgem. O desenvolvimento completo de programas de análise de elementos híbridos finitos e de contorno, para problemas estáticos e dinâmicos, está planejado para uma tese de doutorado em futuro próximo.
The mathematical modeling of micro-devices in which structure and the microstructure are about the same scale of magnitude, as well as of macrostructure of markedly granular or crystal nature (microcomposites), demands a nonlocal approach for strains and stresses. More than one hundred years ago the Cosserat brothers had already developed a theory for rigid grains. However, and in no detriment due to Toupin and other researchers, Mindlin s work in the 1960s may be accounted the basis of the so-called strain gradient theory, which has recently become the subject of a large number of analytical and experimental investigations motivated by the development of news structural materials together with the increasing use of micro and nano-mechanical devices in the industry. More recently, Aifantis and coworkers managed to develop a simplified strain gradient theory based only on two additional elasticity constants that are representative of material lengths related to surface and volumetric strain energy. A series of very recent works done by Beskos and collaborators extended the field of applications of Aifantis propositions and introduced a fundamental solution that actually remounts to developments already laid down by Mindlin. Beskos workgroup may be regarded as the proponent of the first of the first boundary element 2D and 3D implementations on the subject for both statics and frequency-domain analyses, also including crack problems. Since Toupin and Mindlin`s time, investigations have been under development to establish the variational basis of the theory and to consistently formulate equilibrium and kinematic boundary conditions established by Amanatidou and Aravas. This dissertation makes a revision of the gradient strain elasticity theory and presents a didactic study of the simplest problem that can be conceived, i.e., a bar under different axial actions (Aifantis, Beskos). The fundamental solution for 2D and 3D problems is also presented and studied for an elastic medium submitted to a point force, for boundary methods developments, as well as submitted to polynomial stress fields (for static problems), as in the hybrid finite element method. It is shown that Aifantis strain gradient theory may be developed in the context of the Hellinger-Reissner potential, for the sake of hybrid finite and boundary element implementations. Goal of the present research work is as a detailed study of state art of the theme, which comprises an investigation of the singular integrals one must deal with in a computational implementation. The complete computational development for static and dynamic hybrid boundary/finite analyses is planned for a future doctoral thesis.
MOSQUEIRA, DANIEL HUAMAN. "THE HYBRID BOUNDARY ELEMENT METHOD FOR GRADIENT ELASTICITY PROBLEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23938@1.
Повний текст джерелаCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Atualmente está bem difundido o uso de novas modelagens matemáticas para o estudo do comportamento de micro e nano sistemas mecânicos e eléctricos. O problema de escala é notável quando o tamanho das moléculas, partículas, grãos ou cristais de um sólido é relativamente considerável em relação ao comprimento do microdispositivo. Nesses casos a teoria clássica dos meios contínuos não descreve apropriadamente a solicitação estrutural e é necessária uma abordagem mais geral através de teorias generalizadas não-clássicas que contém a elasticidade clássica como um caso particular delas, onde os parâmetros constitutivos que representam às partículas são desprezíveis. Quando os efeitos microestruturais são importantes, o comportamento não responde como um material homogêneo se não como um material homogêneo. Cem anos atrás os irmãos Cosserat desenvolveram uma teoria de grãos rígidos imersos dentro de um macromeio elástico; posteriormente Toupin, Mindlin e outros pesquisadores na década de 60 formularam a chamada teoria gradiente de deformações, que recentemente é um objeto de muitas investigações analíticas e experimentais. Na década de oitenta, Aifantis e colaboradores conseguiram desenvolver uma teoria de gradiente de deformações simplificada, baseada em só uma constante elástica adicional não-clássica representativa da energia de deformação volumétrica para caracterizar satisfatoriamente os padrões dos fenômenos não-clássicos. Beskos e colaboradores estenderam o campo de aplicações da proposta inicial de Aifantis e fizeram as primeira implementações de elementos de contorno 2D e 3D para análises de elasticidade gradiente estática, no domínio da frequência e a mecânica da fratura. Desde o tempo de Toupin e Mindlin, procura-se estabelecer uma base variacional da teoria e uma formulação consistente das condições de contorno cinemáticas e de equilíbrio, o que parece ter tido êxito com os recentes trabalhos de Amanatidou e Aravas. Esta tese apresenta a formulação do método híbrido de elementos de contorno e finitos na elasticidade gradiente desenvolvida por Dumont e Huamán decompondo o potencial de Hellinger-Reissner em dois princípios de trabalhos virtuais: o primeiro em deslocamentos virtuais e o segundo em forças virtuais. Com esta finalidade é considerado além dos parâmetros clássicos, o trabalho realizado pelas tensões, deformações, forças e deslocamentos não-clássicos. É apresentado o desenvoltimento das soluções fundamentais singulares e polinomiais atráves das equações diferenciais de sexta ordem obtidas da equação de equilíbrio em termos de deslocamento na elasticidade gradiente. É apresentada também a aplicaçõ do método híbrido de contorno para problemas de tensão axial unidimensional e flexão bidimensional de vigas. Finalmente mostra-se a aplicação numérica do método em elementos finitos, é verificado o patch test de elementos finitos de diferentes ordem e mostra-se também análises de convergência.
The use of new mathematical modeling in the study of micro and Nano electro mechanical systems is currently becoming widespread. The scaling problem is apparent when the length of molecules, particles or grains immersed in the material is relatively important compared with the whole micro device dimension. Under this approach the classical theories of mechanics cannot describe suitably the structural requirement and it is necessary a more general outlook through non classical generalized theories which enclose the classical elasticity as a particular case where the non-classical constitutive parameters are negligible. When the microstructural effects are important, the material does not respond as a homogeneous but as a non-homogeneous one. A hundred years ago Cosserat brothers formulated a new theory of rigid grains which were embedded in an elastic macro medium; later Toupin, Mindlin along others researchers in 1960s developed a gradient strain theory which has been recently the source of many analystics and experimental investigations. In 1980s Ainfantis et al could develop a simplified strain gradient theory with just one additional non classical elastic constant which represents the volumetric elastic strain energy and characterized successfully the whole non classical pattern phenomenon. Beskos et al extended the treatment proposed initially by Aifantis and developed the first numerical applications for 2D and 3D boundary element methods and solved static as dynamic and crack problems. Since the times of Toupin and Mindlin it is looking for to establish a variational theory with a consistent cinematic and equilibrium boundary conditions, which seemed to have had success in the recent works of Amanatiodou and Aravas. This work presents the formulation of the hybrid boundary and finite element methods under the strain gradient scope which were developed by Dumont and Huamán through the versatile decomposition of the Hellinger-Reissner potential in two work principles: the displacements virtual work and the forces virtual work; both principles contain the virtual work performed by the non-classical magnitudes. Following, it is presented the complete development of singular and polynominal fundamental solutions abtained through the sixth order strain gradient differential equilibrium equations in terms of displacements. Next it is shown an application of the method to unidimensional truss element and bidimensional beam. Finally, it is presented a numerical application to strain gradient finite element, it is checked the patch tests to different elements orders and it is also shown a series of convergence analysis.
Runa, Eris [Verfasser]. "Mathematical Analysis of Lattice gradient models & Nonlinear Elasticity / Eris Runa." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1079273298/34.
Повний текст джерелаFischer, Paul [Verfasser], and Paul [Akademischer Betreuer] Steinmann. "C1 Continuous Methods in Computational Gradient Elasticity / Paul Fischer. Betreuer: Paul Steinmann." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2011. http://d-nb.info/1015783635/34.
Повний текст джерелаGoodsell, G. "Gradient superconvergance in the finite element method with applications to planar linear elasticity." Thesis, Brunel University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383122.
Повний текст джерелаReiher, Jörg Christian [Verfasser]. "A thermodynamically consistent framework for finite third gradient elasticity and plasticity / Jörg Christian Reiher." Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1133541526/34.
Повний текст джерелаDona, Marco. "Static and dynamic analysis of multi-cracked beams with local and non-local elasticity." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14893.
Повний текст джерелаSideris, Stergios Alexandros [Verfasser], Charalampos [Akademischer Betreuer] Tsakmakis, and Amsini [Akademischer Betreuer] Sadiki. "Static and Dynamic Analysis of a Simple Model of Explicit Gradient Elasticity / Stergios -. Alexandros Sideris ; Charalampos Tsakmakis, Amsini Sadiki." Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1237816920/34.
Повний текст джерелаBagni, Cristian. "Formalisation of a novel finite element design method based on the combined use of gradient elasticity and the Theory of Critical Distances." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/17118/.
Повний текст джерелаКниги з теми "Gradient of elasticity"
Goodsell, George. Gradient superconvergence in the finite element method with applications to planar linear elasticity. Uxbridge: Brunel University, 1988.
Знайти повний текст джерелаIUTAM Symposium on Transformation Problems in Composite and Active Materials (1997 Cairo, Egypt). IUTAM Symposium on Transformation Problems in Composite and Active Materials: Proceedings of the IUTAM symposium held in Cairo, Egypt, 9-12 March 1997. New York: Kluwer Academic Publishers, 2002.
Знайти повний текст джерелаA, Bahei-El-Din Y., Dvorak George J, and International Union of Theoretical and Applied Mechanics., eds. IUTAM Symposium on Transformation Problems in Composite and Active Materials: Proceedings of the IUTAM symposium held in Cairo, Egypt, 9-12 March 1997. Dordrecht: Kluwer Academic Publishers, 1998.
Знайти повний текст джерелаAĭzikovich, S. M. Analiticheskie reshenii︠a︡ smeshannykh osesimmetrichnykh zadach dli︠a︡ funkt︠s︡ionalʹno-gradientnykh sred. Moskva: FIZMATLIT, 2011.
Знайти повний текст джерела(Editor), Yehia A. Bahei-El-Din, and George J. Dvorak (Editor), eds. IUTAM Symposium on Transformation Problems in Composite and Active Materials (Solid Mechanics and Its Applications). Springer, 1998.
Знайти повний текст джерелаA, Miller Robert, and Lewis Research Center, eds. Determination of creep behavior of thermal barrier coatings under laser imposed temperature and stress gradients. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Знайти повний текст джерела1947-, Miller Robert A., and NASA Glenn Research Center, eds. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Знайти повний текст джерелаЧастини книг з теми "Gradient of elasticity"
Bertram, Albrecht. "Finite Gradient Elasticity and Plasticity." In Mechanics of Strain Gradient Materials, 151–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43830-2_6.
Повний текст джерелаBertram, Albrecht. "Essay on Gradient Materials." In Elasticity and Plasticity of Large Deformations, 345–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72328-6_12.
Повний текст джерелаBertram, Albrecht. "Second-Order Gradient Elasticity and Plasticity under Small Deformations." In Compendium on Gradient Materials, 213–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04500-4_6.
Повний текст джерелаEremeyev, Victor A., and Francesco dell’Isola. "A Note on Reduced Strain Gradient Elasticity." In Advanced Structured Materials, 301–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72440-9_15.
Повний текст джерелаGlüge, Rainer, Jan Kalisch, and Albrecht Bertram. "The Eigenmodes in Isotropic Strain Gradient Elasticity." In Advanced Structured Materials, 163–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31721-2_8.
Повний текст джерелаForest, Samuel. "Strain Gradient Elasticity From Capillarity to the Mechanics of Nano-objects." In Mechanics of Strain Gradient Materials, 37–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43830-2_3.
Повний текст джерелаGlüge, Rainer. "A C1 Incompatible Mode Element Formulation for Strain Gradient Elasticity." In Higher Gradient Materials and Related Generalized Continua, 95–120. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30406-5_6.
Повний текст джерелаJiang, Yu, and Peiheng Long. "Parameter Sensitivity Analysis of Long Span PC Continuous Beam Bridge with Corrugated Steel Webs." In Lecture Notes in Civil Engineering, 298–305. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_26.
Повний текст джерелаNiiranen, Jarkko, and Sergei Khakalo. "Variational Formulations and Galerkin Methods for Strain Gradient Elasticity." In Encyclopedia of Continuum Mechanics, 2601–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_268.
Повний текст джерелаSorić, Jurica, Tomislav Lesičar, Filip Putar, and Zdenko Tonković. "Modeling of Material Deformation Responses Using Gradient Elasticity Theory." In Multiscale Modeling of Heterogeneous Structures, 257–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65463-8_13.
Повний текст джерелаТези доповідей конференцій з теми "Gradient of elasticity"
TSEPOURA, K. G., S. V. TSINOPOULOS, S. PAPARGYRI-BESKOU, and D. POLYZOS. "STATIC FUNDAMENTAL SOLUTION IN 3-D GRADIENT ELASTICITY." In Proceedings of the Fifth International Workshop on Mathematical Methods in Scattering Theory and Biomedical Technology. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777140_0023.
Повний текст джерелаShaat, Mohamed, and Abdessattar Abdelkefi. "Modeling of strain gradient-based nanoparticle composite plates with surface elasticity." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0935.
Повний текст джерелаYang, Xu, Ya-rong Zhou, Kun-yu Yao, and Bing-lei Wang. "The Flexoelectric Effect of Nanobeam Based on a Reformulated Strain Gradient Elasticity." In 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). IEEE, 2019. http://dx.doi.org/10.1109/spawda.2019.8681824.
Повний текст джерелаMonchiet, V., T. H. Tran, and G. Bonnet. "Numerical Implementation of Higher-Order Homogenization Problems and Computation of Gradient Elasticity Coefficients." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82060.
Повний текст джерелаEngler, Adam J. "Probing Mechanisms of Mechano-Sensitive Differentiation in Mesenchymal Stem Cells." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19184.
Повний текст джерелаMatsumoto, Takeo, Norihiro Matsui, Mai Ishiguro, and Kazuaki Nagayama. "How Do Cells Sense Substrate Stiffness? Effects of Substrate Elasticity and Thickness on the Behavior of Rat Aortic Smooth Muscle Cells." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53811.
Повний текст джерелаZeidi, Mahdi, and Chun Il Kim. "Gradient Elasticity Modelling For The Analysis Of Fiber Composites With Fiber Resistant To Flexure." In 2018 Canadian Society for Mechanical Engineering (CSME) International Congress. York University Libraries, 2018. http://dx.doi.org/10.25071/10315/35267.
Повний текст джерелаPAPACHARALAMPOPOULOS, A., D. POLYZOS, A. CHARALAMBOPOULOS, and D. E. BESKOS. "BOUNDARY ELEMENT SOLUTIONS FOR FREQUENCY DOMAIN PROBLEMS IN MINDLIN's STRAIN GRADIENT THEORY OF ELASTICITY." In Proceedings of the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322034_0022.
Повний текст джерелаSadeghi, H., M. Baghani, and R. Naghdabadi. "Stress analysis of thick-walled cylinders made of functionally graded materials using strain gradient elasticity." In Behavior and Mechanics of Multifunctional Materials and Composites 2010. SPIE, 2010. http://dx.doi.org/10.1117/12.846921.
Повний текст джерелаGIANNAKOPOULOS, A. E., and V. I. ZAFIROPOULOU. "THE USE OF STRAIN GRADIENT ELASTICITY IN MODELLING TISSUES: THE CASE OF THE HUMAN HEART." In Proceedings of the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322034_0021.
Повний текст джерелаЗвіти організацій з теми "Gradient of elasticity"
Babuska, I., T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj. Study of Superconvergence by a Computer-Based Approach: Superconvergence of the Gradient of the Displacement, The Strain and Stress in Finite Element Solutions for Plane Elasticity. Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada279885.
Повний текст джерела