Добірка наукової літератури з теми "Gradient damage"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gradient damage".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Gradient damage"
Le, Duc Trung, Jean-Jacques Marigo, Corrado Maurini, and Stefano Vidoli. "Strain-gradient vs damage-gradient regularizations of softening damage models." Computer Methods in Applied Mechanics and Engineering 340 (October 2018): 424–50. http://dx.doi.org/10.1016/j.cma.2018.06.013.
Повний текст джерелаSaczuk, J., K. Hackl, and H. Stumpf. "Rate theory of nonlocal gradient damage-gradient viscoinelasticity." International Journal of Plasticity 19, no. 5 (May 2003): 675–706. http://dx.doi.org/10.1016/s0749-6419(02)00004-9.
Повний текст джерелаda Silva, L. R., and H. J. Herrmann. "Damage spreading in a gradient." Journal of Statistical Physics 52, no. 1-2 (July 1988): 463–70. http://dx.doi.org/10.1007/bf01016427.
Повний текст джерелаZhao, Bing, Ying-ren Zheng, Ming-hua Zeng, Xue-song Tang, and Xiao-gang Li. "First-order gradient damage theory." Applied Mathematics and Mechanics 31, no. 8 (July 24, 2010): 987–94. http://dx.doi.org/10.1007/s10483-010-1334-9.
Повний текст джерелаBui, Q. V. "Initiation of damage with implicit gradient-enhanced damage models." International Journal of Solids and Structures 47, no. 18-19 (September 2010): 2425–35. http://dx.doi.org/10.1016/j.ijsolstr.2010.05.003.
Повний текст джерелаFrémond, Michel, and Boumediene Nedjar. "Damage, gradient of damage and principle of virtual power." International Journal of Solids and Structures 33, no. 8 (March 1996): 1083–103. http://dx.doi.org/10.1016/0020-7683(95)00074-7.
Повний текст джерелаKiefer, Bjoern, Tobias Waffenschmidt, Leon Sprave, and Andreas Menzel. "A gradient-enhanced damage model coupled to plasticity—multi-surface formulation and algorithmic concepts." International Journal of Damage Mechanics 27, no. 2 (January 5, 2017): 253–95. http://dx.doi.org/10.1177/1056789516676306.
Повний текст джерелаLorentz, E., and A. Benallal. "Gradient constitutive relations: numerical aspects and application to gradient damage." Computer Methods in Applied Mechanics and Engineering 194, no. 50-52 (December 2005): 5191–220. http://dx.doi.org/10.1016/j.cma.2004.12.016.
Повний текст джерелаLacy, Thomas E., David L. McDowell, and Ramesh Talreja. "Gradient concepts for evolution of damage." Mechanics of Materials 31, no. 12 (December 1999): 831–60. http://dx.doi.org/10.1016/s0167-6636(99)00029-0.
Повний текст джерелаPlacidi, Luca, Emilio Barchiesi, and Anil Misra. "A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results." Mathematics and Mechanics of Complex Systems 6, no. 2 (May 29, 2018): 77–100. http://dx.doi.org/10.2140/memocs.2018.6.77.
Повний текст джерелаДисертації з теми "Gradient damage"
Crabbé, Blandine. "Gradient damage models in large deformation." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX085/document.
Повний текст джерелаGradient damage models, also known as phase-field models, are now widely used to model brittle and ductile fracture, from the onset of damage to the propagation of a crack in various materials. Yet, they have been mainly studied in the framework of small deformation, and very few studies aims at proving their relevance in a finite deformation framework. This would be more helpful for the tyre industry that deals with very large deformation problems, and has to gain insight into the prediction of the initiation of damage in its structures.The first part of this work places emphasis on finding analytical solutions to unidimensional problems of damaging viscous materials in small and large deformation.In all the cases, the evolution of damage is studied, both in the homogeneous and localised cases. Having such solutions gives a suitable basis to implement these models and validate the numerical results.A numerical part naturally follows the first one, that details the specificities of the numerical implementation of these non local models in large deformation. In order to solve the displacement and damage problems, the strategy of alternate minimisation (or staggered algorithm) is used. When solved on the reference configuration, the damage problem is the same as in small deformation, and consists in a bound constraint minimisation. The displacement problem is non linear, and a mixed finite element method is used to solve a displacement-pressure problem. A quasi-incompressible Mooney-Rivlin law is used to model the behaviour of the hyperelastic material. Various tests in 2D and 3D are performed to show that gradient damage models are perfectly able to initiate damage in sound, quasi-incompressible structures, in large deformation.In the simulations depicted above, it should be noted that the damage laws combined to the hyperelastic potential results in an initiation of damage that takes place in zones of high deformation, or in other words, in zones of high deviatoric stress. However, in some polymer materials, that are known to be quasi-incompressible, it has been shown that the initiation of damage can take place in zones of high hydrostatic pressure. This is why an important aspect of the work consists in establishing a damage law such that the material be incompressible when there is no damage, and the pressure play a role in the damage criterion. Such a model is exposed in the third part.Finally, the last part focuses on the cavitation phenomenon, that can be understood as the sudden growth of a cavity. We first study it as a purely hyperelastic bifurcation, in order to get the analytical value of the critical elongation for which cavitation occurs, in the case of a compressible isotropic neo-hookean material submitted to a radial displacement. We show that there is a competition between the cavitation phenomenon and the damage, and that depending on the ratio of the critical elongation for damage and the critical elongation for cavitation, different rupture patterns can appear
Narayan, Sooraj. "A gradient-damage theory for quasi brittle fracture." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122236.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-77).
Phase-field modeling of brittle fracture of linear elastic solids has been the subject of several studies in the past 25 years. An attractive feature of this approach to model fracture is its seamless ability to simulate the complicated fracture processes of nucleation, propagation, branching and merging of cracks in arbitrary geometries. While most existing models have focussed on fracture of "ideal brittle" materials, we consider fracture of "quasi-brittle" materials. The material is considered to be quasi-brittle in the sense that it does not lose its entire load-carrying capacity at the onset of damage. Instead there is a gradual degradation of the strength of the material, which is the result of microscale decohesion/damage micromechanisms. In this thesis we discuss the formulation of our gradient-damage theory for quasi-brittle fracture using the virtual-power method. The macro- and microforce balances, obtained from the virtual power approach, together with a standard free-energy imbalance law under isothermal conditions, when supplemented with a set of thermodynamically-consistent constitutive equations will provide the governing equations for our theory. We have specialized our general theory to formulate a simple continuum model for fracture of concrete - a quasi-brittle material of vast importance. We have numerically implemented our theory in a finite element program, and simulated numerical examples which show the ability of the simulation capability to reproduce the macroscopic characteristics of the failure of concrete in several technically relevant geometries reported in the literature..
by Sooraj Narayan.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Fassin, Marek [Verfasser]. "Modeling of gradient-extended anisotropic damage using a second order damage tensor / Marek Fassin." Düren : Shaker, 2019. http://d-nb.info/1225653886/34.
Повний текст джерелаSumer, Emre. "Earthquake Damage Detection Using Watershed Segmentation And Intensity-gradient Orientation Approaches." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605485/index.pdf.
Повний текст джерелаWolfe, Christopher Edward. "Damage accumulation in a gradient stress field in graphite/epoxy laminates." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/39360.
Повний текст джерелаFassin, Marek [Verfasser], Stefanie [Akademischer Betreuer] Reese, and Stephan [Akademischer Betreuer] Wulfinghoff. "Modeling of gradient-extended anisotropic damage using a second order damage tensor / Marek Fassin ; Stefanie Reese, Stephan Wulfinghoff." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2020052807010313503272.
Повний текст джерелаFassin, Marek Verfasser], Stefanie [Akademischer Betreuer] [Reese, and Stephan [Akademischer Betreuer] Wulfinghoff. "Modeling of gradient-extended anisotropic damage using a second order damage tensor / Marek Fassin ; Stefanie Reese, Stephan Wulfinghoff." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1211096432/34.
Повний текст джерелаBonello, Kenneth John. "Damage accumulation in graphite/epoxy laminates due to cyclic gradient stress fields." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/42999.
Повний текст джерелаLi, Tianyi. "Gradient-damage modeling of dynamic brittle fracture : variational principles and numerical simulations." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX042/document.
Повний текст джерелаIn civil engineering, mechanical integrity of the reinforced concrete structures under severe transient dynamic loading conditions is of paramount importance for safety and calls for an accurate assessment of structural behaviors in presence of dynamic crack propagation. In this work, we focus on the constitutive modeling of concrete regarded as an elastic-damage brittle material. The strain localization evolution is governed by a gradient-damage approach where a scalar field achieves a smeared description of dynamic fracture phenomena. The contribution of the present work is both theoretical and numerical. We propose a variationally consistent formulation of dynamic gradient damage models. A formal definition of several energy release rate concepts in the gradient damage model is given and we show that the dynamic crack tip equation of motion is governed by a generalized Griffith criterion. We then give an efficient numerical implementation of the model based on a standard finite-element spatial discretization and the Newmark time-stepping methods in a parallel computing framework. Simulation results of several problems are discussed both from a computational and physical point of view. Different damage constitutive laws and tension-compression asymmetry formulations are compared with respect to their aptitude to approximate brittle fracture. Specific properties of the dynamic gradient damage model are investigated for different phases of the crack evolution: nucleation, initiation, propagation, arrest, kinking and branching. Comparisons with experimental results are also performed in order to validate the model and indicate its further improvement
Le, Duc Trung. "Modèle d'endommagement à gradient : approche par homogénéisation." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066662/document.
Повний текст джерелаThe aim of this work is to propose a general framework to obtain a gradient damage model from the micro-structural level. It is based, firstly, on the homogenization method to derive an effective medium from the microstructure, and secondly, on the variational formulation of a damage evolution law from the homogenized medium. We propose, as a first step, an approach based on asymptotic expansion and the variational method for homogenizing a periodic elastic medium. To model the localization of damage, this approach has been extended to a quasi-periodic heterogeneous medium. From an example of quasi periodically micro-cracked solid, we obtain an elastic energy that not only depends on the gradient of the damage but also the strain gradients. Based on the principle of energy minimization, we propose the construction of a gradient damage model from the elastic energy homogenized in the second part. By adding some hypothesis to simplify the model, we can construct localized damage and strain solutions in closed form. Finally, a numerical resolution scheme, which is based on an alternate minimization algorithm, is proposed for the one-dimensional traction bar test. From the numerical results, the advantages and disadvantages of the model are discussed
Книги з теми "Gradient damage"
Martínez Pañeda, Emilio. Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63384-8.
Повний текст джерелаPañeda, Emilio Martínez. Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Springer, 2017.
Знайти повний текст джерелаPañeda, Emilio Martínez. Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Springer, 2018.
Знайти повний текст джерелаDavies, Patricia. Skin assessment. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199642663.003.0013.
Повний текст джерелаManson, S. S., and G. R. Halford. Fatigue and Durability of Metals at High Temperatures. ASM International, 2009. http://dx.doi.org/10.31399/asm.tb.fdmht.9781627083430.
Повний текст джерелаЧастини книг з теми "Gradient damage"
Frémond, Michel. "Damage. Gradient of Damage." In Non-Smooth Thermomechanics, 313–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04800-9_12.
Повний текст джерелаDe Borst, R., A. Benallal, and R. H. J. Peerlings. "On Gradient-Enhanced Damage Theories." In IUTAM Symposium on Mechanics of Granular and Porous Materials, 215–26. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5520-5_20.
Повний текст джерелаNedjar, B. "Damage and Gradient of Damage in Transient Dynamics." In Solid Mechanics and Its Applications, 189–96. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4738-5_22.
Повний текст джерелаBui, Tinh Quoc. "A Smoothing Gradient-Enhanced Damage Model." In Computational and Experimental Simulations in Engineering, 91–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27053-7_9.
Повний текст джерелаForest, Samuel. "Micromorphic Approach to Gradient Plasticity and Damage." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-22977-5_9-1.
Повний текст джерелаForest, Samuel. "Micromorphic Approach to Gradient Plasticity and Damage." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 499–546. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-58729-5_9.
Повний текст джерелаMarigo, Jean-Jacques, and Arthur Geromel Fischer. "Gradient Damage Models Coupled With Plasticity and Their Application to Dynamic Fragmentation." In Dynamic Damage and Fragmentation, 95–141. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119579311.ch3.
Повний текст джерелаMao, Yingyan, and Ningli Wang. "Biomechanical Mechanisms of IOP-/CSFP-Induced Optic Nerve Damage." In Intraocular and Intracranial Pressure Gradient in Glaucoma, 275–80. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2137-5_39.
Повний текст джерелаPijaudier-Cabot, G. "Micro-Crack Clustering, Non Local and Gradient Damage Models." In Damage and Fracture of Disordered Materials, 179–215. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2504-5_5.
Повний текст джерелаFodde, Riccardo, and Monique Losekoot. "Mutation Analysis by Denaturing Gradient Gel Electrophoresis (DGGE)." In Technologies for Detection of DNA Damage and Mutations, 253–65. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-0301-3_19.
Повний текст джерелаТези доповідей конференцій з теми "Gradient damage"
Zhao, Bing, Ying-ren Zheng, Ming-hua Zeng, Xue-song Tang, and Xiao-Qiang Yan. "Gradient-Dependent Damage Constitutive: The Second-Order Gradient Damage Model." In GeoHunan International Conference 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41041(348)5.
Повний текст джерелаVoyiadjis, George Z., and Robert J. Dorgan. "Formulation of a Gradient Enhanced Coupled Damage-Plasticity Model." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59890.
Повний текст джерелаHamed, M., and K. Saanouni. "Elastoplastic Nonlocal Micromorphic Formulations With Damage Gradient." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82928.
Повний текст джерелаDarnton, Aaron, and Massimo Ruzzene. "Damage Mapping in Composites With Phase Gradient." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7685.
Повний текст джерелаCésar de Sá, J. M. A. "Gradient Damage Models in Metal Forming Problems." In MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2004. http://dx.doi.org/10.1063/1.1766816.
Повний текст джерелаSladek, Jan, Vladimir Sladek, Miroslav Repka, and Siegfried Schmauder. "Gradient theory for crack analysis in thermoelectric materials." In FRACTURE AND DAMAGE MECHANICS: Theory, Simulation and Experiment. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033983.
Повний текст джерелаLi, Gang, Fuh Gwo Yuan, Raphael Haftka, and Nam Ho Kim. "Gradient Enhanced Damage Sizing for Structural Health Management." In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1836.
Повний текст джерелаPutar, Filip, Jurica Soric, Tomislav Lesicar, and Zdenko Tonkovic. "DAMAGE MODELING USING STRAIN GRADIENT BASED FINITE ELEMENT FORMULATION." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2292.7030.
Повний текст джерелаVoyiadjis, George, Rashid Abu Al-Rub, and Anthony Palazotto. "A Gradient-Dependent Constitutive Model to Simulate Impact Damage Problem." In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1919.
Повний текст джерелаHernández Torres, Reynier, Marluce Scarabello, Haroldo Campos Velho, Leonardo Chiwiacowsky, Aline Soterroni, Erica Gouvea, and Fernando Ramos. "A Hybrid Method using q-Gradient to Identify Strutuctral Damage." In XXXVI Iberian Latin American Congress on Computational Methods in Engineering. Rio de Janeiro, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2015. http://dx.doi.org/10.20906/cps/cilamce2015-0872.
Повний текст джерелаЗвіти організацій з теми "Gradient damage"
Verhoosel, Clemens V., Michael A. Scott, Michael J. Borden, Thomas J. Hughes, and Ren de Borst. Discretization of higher-order gradient damage models using isogeometric finite elements. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada555369.
Повний текст джерелаCavallaro, Paul V. Effects of Weave Styles and Crimp Gradients on Damage Tolerance and Energy-Absorption Capacities of Woven Kevlar/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada624461.
Повний текст джерела