Добірка наукової літератури з теми "Glass extrusion"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Glass extrusion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Glass extrusion"

1

Kalnins, Christopher A. G., Kyle J. Bachus, Andrew Gooley, and Heike Ebendorff-Heidepriem. "High precision extrusion of glass tubes." International Journal of Applied Glass Science 10, no. 2 (December 3, 2018): 172–80. http://dx.doi.org/10.1111/ijag.13092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chiu, Ho Ming, Golden Kumar, Jerzy Blawzdziewicz, and Jan Schroers. "Thermoplastic extrusion of bulk metallic glass." Scripta Materialia 61, no. 1 (July 2009): 28–31. http://dx.doi.org/10.1016/j.scriptamat.2009.02.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chang, Da Wei, Xiao Ming Zhang, and Jin Moon Kim. "Encapsulation of Vitamin E in Glassy Carbohydrates by Extrusion." Advanced Materials Research 842 (November 2013): 95–99. http://dx.doi.org/10.4028/www.scientific.net/amr.842.95.

Повний текст джерела
Анотація:
Vitamin E (VE) was encapsulated in glassy carbohydrates by extrusion. Four typical formulations were prepared in order to have 5% and 8% VE added to each 20% and 30% modified starch containing feed material, all four formulations contained soya lecithin at 1% level as an emulsifier. The physico-chemical properties of glassy extruded products were investigated. The results showed that the VE retention rates were above 93%, meanwhile the VE oil was dispersed uniformly throughout the carbohydrate mass after extrusion. There was a slight loss for VE during the storage. The glass transition temperature (Tg) of the extrudates were above 30°C and Tg could be a good predictor of caking properties at elevated temperatures.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tang, Danna, Yushen Wang, Zheng Li, Yan Li, and Liang Hao. "Coupling additive manufacturing and low-temperature sintering: a fast processing route of silicate glassy matrix." Rapid Prototyping Journal 28, no. 4 (October 18, 2021): 676–85. http://dx.doi.org/10.1108/rpj-07-2020-0173.

Повний текст джерела
Анотація:
Purpose The low-temperature sintering of silica glass combined with additive manufacturing (AM) technology has brought a revolutionary change in glass manufacturing. This study aims to carry out in an attempt to achieve precious manufacturing of silicate glassy matrix through the method of slurry extrusion. Design/methodology/approach A low-cost slurry extrusion modelling technology is used to extrude silicate glassy matrix inks, composed of silicate glass powder with different amounts of additives. Extrudability of the inks, their printability window and the featuring curves of silicate glassy matrix are investigated. In addition, the properties of the low-temperature sintering green part as a functional part are explored and evaluated from morphology, hardness and colour. Findings The results showed that the particle size was mainly distributed from 1.4 µm to 5.3 µm, showing better slurry stability and print continuity. The parameters were set to 8 mm/s, 80% and 0.4 mm, respectively, to achieve better forming of three-dimensional (3D) samples. Besides, the organic binder removal step was concentrated on 200°C–300°C and 590°C–650°C was the fusion bonding temperature of the powder. The hardness values of 10 test samples ranged from 588 HL to 613 HL, which met the requirements of hard stones with super-strong mechanical strength. In addition, the mutual penetration of elements caused by temperature changes may lead to a colourful appearance. Originality/value The custom continuous AM technology enables the fabrication of a glass matrix with 3D structural features. The precise positioning technology of the glass matrix is expected to be applied more widely in functional parts.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sordelet, D. J., E. Rozhkova, P. Huang, P. B. Wheelock, M. F. Besser, M. J. Kramer, M. Calvo-Dahlborg, and U. Dahlborg. "Synthesis of Cu47Ti34Zr11Ni8Bulk Metallic Glass by Warm Extrusion of Gas Atomized Powders." Journal of Materials Research 17, no. 1 (January 2002): 186–98. http://dx.doi.org/10.1557/jmr.2002.0028.

Повний текст джерела
Анотація:
Cu47Ti34Zr11Ni8amorphous gas atomized powders were consolidated by warm extrusion. After consolidation near 723 K using an extrusion ratio of 5, the material retains between 88% and 98% of the amorphous structure found in the gas atomized powder. The onsets of the glass transition and crystallization temperatures of this extruded material are observed respectively at slightly higher and lower temperatures than those of the starting powders. These temperature shifts are attributed to a composition change in the remaining amorphous phase during partial devitrification throughout the extrusion process. Powders extruded at the same temperature, but using higher extrusion ratios of 9 and 13, exhibit substantial devitrification during the consolidation process yet still deform homogeneously.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, X., J. J. Li, Z. Z. Zheng, L. Liu, and Y. Li. "Micro-back-extrusion of a bulk metallic glass." Scripta Materialia 63, no. 5 (September 2010): 469–72. http://dx.doi.org/10.1016/j.scriptamat.2010.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhihui, Ma, Dong Xianghuai, Su Hongjuan, and Wang Ruyan. "Isothermal Extrusion Properties of Zr55Cu30Al10Ni5 Bulk Metallic Glass." Rare Metal Materials and Engineering 41, no. 10 (October 2012): 1706–8. http://dx.doi.org/10.1016/s1875-5372(13)60009-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, L. C., M. Calin, M. Branzei, L. Schultz, and J. Eckert. "Phase stability and consolidation of glassy/nanostructured Al85Ni9Nd4Co2 alloys." Journal of Materials Research 22, no. 5 (May 2007): 1145–55. http://dx.doi.org/10.1557/jmr.2007.0156.

Повний текст джерела
Анотація:
Al85Ni9Nd4Co2 metallic glass/nanostructured ribbons and powders were used as starting materials for producing bulk amorphous/nanostructured Al-based alloys. Glassy ribbons were obtained by melt spinning at wheel surface velocities ranging from 5 to 37 m/s. The amorphous ribbons exhibited a supercooled liquid region of ∼20 K, a reduced glass transition temperature of ∼0.47 and γ ∼ 0.328. Mechanical alloying of the elemental powder mixture did not lead to amorphization. However, amorphous powders obtained by milling the glassy ribbons for 9 h exhibited a thermal stability similar to the initial ribbons. Isothermal differential scanning calorimetry measurements were used to determine the consolidation parameters of the glassy powders. Consolidation at 513 K by uniaxial hot pressing and hot extrusion indicated that the former method leads to bulk glassy samples, whereas the latter one yields nanostructured α-Al/glassy matrix composites.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Chang Yong, Lei Zhang, and Fei Yu Kang. "Experimental Study on Heat Transfer Boundary Conditions for Steel Hot Extrusion Process." Advanced Materials Research 668 (March 2013): 856–60. http://dx.doi.org/10.4028/www.scientific.net/amr.668.856.

Повний текст джерела
Анотація:
Heat transfer boundary conditions have significant influence on the FEM analysis of the steel hot extrusion process using glass lubricant. However, the determination of heat transfer coefficient between billet and tooling lacked experimental basis. In order to obtain rational values of the coefficient, experimental study was conducted to measure it on thermal contact between P92 steel and H13 steel separated by glass lubricant. The influence of contact temperature, contact pressure and lubricant thickness was investigated. The obtained results can provide experimental basis for the determination of heat transfer boundary conditions for steel hot extrusion.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kalthoff, Matthias, Michael Raupach, and Thomas Matschei. "Investigation into the Integration of Impregnated Glass and Carbon Textiles in a Laboratory Mortar Extruder (LabMorTex)." Materials 14, no. 23 (December 2, 2021): 7406. http://dx.doi.org/10.3390/ma14237406.

Повний текст джерела
Анотація:
A promising process for the automatization of concrete structures is extrusion or extrusion molding. An innovative approach is the extrusion of concrete with imbedded technical textiles as reinforcement. For a successful extrusion, the rheological properties of the fresh concrete have to be optimized, as it must be extrudable and have sufficient early strength after leaving the mouthpiece. Within the scope of this paper, a process was developed which allows the integration of flexible as well as stiff impregnated textiles into the extrusion process. For this purpose, different textile-reinforced mortars (TRM) were extruded and their material characteristics were investigated. The results show that the mortar cross-section is considerably strengthened, especially when using carbon textiles, and that extrusion has considerable potential to produce high-performance TRM composites. In uniaxial tension tests with TRM, as well as in the pure roving tensile strength tests, textile stresses of approx. 1200 MPa were achieved for the glass textile and approx. 2250 MPa for the carbon textile. The position of the textile layer deviated a maximal 0.4 mm from its predesigned position, which shows its potential for producing tailor-made TRM elements. In addition, by adjusting the mortar mix design, it was possible to reduce the global warming potential (GWP) of the extrusion compound by up to 49.3% compared to the initial composition from preliminary studies.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Glass extrusion"

1

Damodaran, Dinesh. "Computer aided techniques for improving productivity and quality of the glass lubricated hot extrusion process /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu148794815862597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kannan, Krishna. "A thermodynamical framework for the solidification of molten polymers and its application to fiber extrusion." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3065.

Повний текст джерела
Анотація:
A thermodynamical framework is presented that describes the solidification of molten polymers to an amorphous as well as to a semicrystalline solid-like state. This framework fits into a general structure developed for materials undergoing a large class of entropy producing processes. The molten polymers are usually isotropic in nature and certain polymers crystallize, with the exception of largely atactic polymers, which solidify to an amorphous solid, to an anisotropic solid. The symmetry of the crystalline structures in the semicrystalline polymers is dependent upon the thermomechanical process to which the polymer is subjected to. The framework presented takes into account that the natural configurations associated with the polymer melt (associated with the breaking and reforming of the polymer network) and the solid evolve in addition to the evolving material symmetry associated with these natural configurations. The functional form of the various primitives such as how the material stores, dissipates energy and produces entropy are prescribed. Entropy may be produced by a variety of mechanisms such as conduction, dissipation, solidification, rearragement of crystalline structures due to annealing and so forth. The manner in which the natural configurations evolve is dictated by the maximization of the rate of dissipation. Similarly, the crystallization and glass transition kinetics may be obtained by maximization of their corresponding entropy productions. The restrictions placed by the second law of thermodynamics, frame indiference, material symmetry and incompressibility allows for a class of constitutive equations and the maximization of the rate of entropy production is invoked to select a constitutive equation from an allowable class of constitutive equations. Using such an unified thermodynamic approach, the popular crystallization equations such as Avrami equation and its various modifications such as Nakamura and Hillier and Price equations are obtained. The predictions of the model obtained using this framework are compared with the spinline data for amorphous and semicrystalline polymers.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ramakrishnan, Praveen. "Processing of fluoro alumino-silicate glass-ceramics by Field Assisted Sintering Technology and honeycomb extrusion technique." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6579/.

Повний текст джерела
Анотація:
Field Assisted Sintering Technique (FAST) was used for the crystallisation of ionomer glasses and the production of the relevant glass ceramics. Extrusion was also used as an alternative processing method to produce honeycomb glass ceramics derived from similar glass compositions. Apatite-mullite glass ceramics derived from the general glass composition 4.5SiO\(_2\)-3A1\(_2\)O\(_3\)- 1.5P\(_2\)O\(_5\)-(5-x)CaO-xCaF\(_2\) can be produced by a lost wax method. However, Field Assisted Sintering Technique and Honeycomb Extrusion Technique are never used before and this present work presents the first data on the use of both of the above mentioned techniques. Calcium (Ca), Strontium (Sr) and Magnisium (Mg) containing glass powder compositions were produced and processed by FAST and Extrusion technique. X-ray diffraction of the materials produced by FAST showed the formation of a fluorapatite, mulite and a minor A1PO\(_4\) phase for the calcium glass. Sr-fluorapatite and Sr-aluminium silicate were formed in Sr glass and mullite and wagnerite were formed in Mg glasses. All the crystal phases formed were in good agreement with previous conventional crystallization studies. The FAST sintered glass ceramic properties were improved when compared with conventional sintering. In extrusion technique, the rheological properties were studied using Benow/Bridgwater model for paste parameters. Honeycomb extrusion pressure drop was also studied using a model developed by Blackburn and Bohm. In this study, we used waste glass to model the binder rehology of glass powder and modelled binder rheology in the apatite mullite glass. The measured paste parameters were in good agreement when compared with the experimental results. The produced honeycomb structure was sintered conventionally using a furnace. Microstructural studies and X-ray diffraction were carried out. The results of this studies show a well-defined porous structure and formation of crystal phases similar to the phases observed during conventional sintering.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Altan, Cansu. "Preparation And Characterization Of Glass Fiber Reinforced Poly(ethylene Terephthalate)." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605216/index.pdf.

Повний текст джерела
Анотація:
Glass fiber reinforced poly(ethylene terephthalate), GF/PET has excellent potential for future structural applications of composite materials. PET as a semi-crystalline thermoplastic polyester has high wear resistance, low coefficient of friction, high flexural modulus and superior dimensional stability make it a versatile material for designing mechanical and electromechanical parts. Glass fibers are currently used as strength giving material in structural composites because of their high strength and high performance capabilities. In order to obtain high interfacial adhesion between glass fiber and polymer, glass fibers are treated with silane coupling agents. The objective of this study is to produce GF/PET composites with varying glass fiber concentration at constant process parameters in a twin screw extruder. Also, by keeping GF content constant, it is aimed to observe the effects of process parameters such as screw speed and feed rate on structural properties of the composites. Another objective of the study is to investigate the influence of different coupling agents on the morphological, thermal and mechanical properties and on fiber length distributions of the composites. Tensile strength and tensile moduli of the GF/PET composites increased with increasing GF loading. There was not a direct relation between strain at break values and GF content. The interfacial adhesion between glass fiber received from the manufacturer and PET was good as observed in the SEM photograps. Degree of crystallinity values increased with the addition of GF. Increasing the screw speed did not affect the tensile strength of the material significantly. While increasing the feed rate the tensile strength decreased. The coupling agent, 3-APME which has less effective functional groups than the others showed poor adhesion between glass fiber and PET. Therefore, lower tensile properties were obtained for the composite with 3-APME than those of other silane coupling agents treated composites. Number average fiber length values were reduced to approximately 300&
#61549
m for almost all composites prepared in this study.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kim, Jin Young. "Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-170795.

Повний текст джерела
Анотація:
Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and larger fracture resistance than ceramics. The technological breakthrough of metallic glasses, however, has been greatly hindered by the limited plastic strain to failure. Thus, several strategies have been employed to improve the intrinsic and extrinsic effects on the flow behavior of metallic glasses with respect to their fracture toughness and overall plastic strain. One of the suggested strategies is the production of a composite consisting of the brittle metallic glass along with a ductile second phase that either acts as an active carrier of plastic strain or passively enhances the multiplication of shear bands via shear-band splitting . Another approach for increasing plastic deformation consists of introducing pores as a gaseous second phase into the material. The pores are similarly effective in delaying catastrophic failure resulting from shear band localization. In metallic glasses with high porosity, propagation of shear bands can even become stable, enabling macroscopic compressive strains of more than 80 % without fracture. In this thesis, Ni59Zr20Ti16Si2Sn3 glass and its composites have been fabricated using mechanical milling and consolidation by hot pressing followed by extrusion of Ni59Zr20Ti16Si2Sn3 metallic glass powder or Ni59Zr20Ti16Si2Sn3 metallic glass powder reinforced with 40 vol.% of brass particles to obtained bulk composite materials with high strength and enhanced compressive plasticity and to generate porous structure in Ni59Zr20Ti16Si2Sn3 metallic glass using selective dissolution. The brass–glass powder mixtures to be consolidated were prepared using two different approaches: manual blending and ball milling to properly vary size and morphology of the second phase in the composites. Powder consolidation was carried out at temperatures within the supercooled Liquid (SCL) region, where the glassy phase displays a strong decrease of viscosity, with using the sintering parameters which were chosen after analysis of the crystallization behavior of the glassy phase to avoid its crystallization during consolidation. Ball milling has a significant effect on the microstructure of the powder mixtures: a refined layered structure consisting of alternating layer of glass and brass is formed as a result of the mechanical deformation. However, ball milling reduces the amorphous content of the composite powders due to mechanically induced crystallization and reaction of the glass and brass phases during heating. In addition, the milling of the composite powders and the following consolidation step reduces the amorphous content by about 50 %. The bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy synthesized by hot pressing exhibits higher strength (2.28 GPa) than that of the as-cast bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy (2.2 GPa). The mechanical behavior of the glass-brass composites is significantly affected by the control of the microstructure between the reinforcement and the nano-grained matrix phase through the different methods used for the preparation of the powder mixtures. The strength of the composites increases from 500 MPa for pure brass to 740 and 925 MPa for the composites with 40 and 60 vol.% glass reinforcement prepared by manual blending. The strength further increases to 1240 and 1640 MPa for the corresponding composites produced by ball milling caused by the remarkable effect of the matrix ligament size on the strengthening of the composites. The porous metallic glass was obtained by the selective dissolution in a HNO3 solution of the fugitive brass phase in the Ni59Zr20Ti16Si2Sn3 composite. The microstructure of the porous samples consists of highly elongated layered pore structures and/or irregularly shaped pores. The average size of the pores depends on the processing parameters and can be varied in the range of 0.4–15 µm. Additional porous samples were prepared from different extruded composite precursors of blended and milled powder mixtures. This leads to customized hybrid porous structures consisting of a combination of large and small pores. The specific surface area of the porous Ni-based metallic glass powder measured by the BET method is 16 m2/g, while the as-atomized Ni59Zr20Ti16Si2Sn3 powder has a specific surface area of 0.29 m2/g. This indicates a mechanical milling induced enhancement in surface area by refinement of the fugitive brass phase. However the specific surface area of the porous Ni-based metallic glass obtained from as-extruded precursors is 10 m2/g caused by a breakdown of the porous structure during selective dissolution of the nano-scale fugitive phase. Although milling of the present composite powders and the following consolidation step reduces the amorphous content by about 50 %, through the use of glassy phases with improved stability against mechanically induced crystallization along with reduced affinity with the fugitive phase to avoid unwanted reactions during processing, this approach using powder metallurgical offers the possibility to produce highly active porous bulk materials for functional applications, such as catalysis, which require the fast transport of reactants and products provided by the large pores along with high catalytic activity ensured by the large surface area characterizing the small pores. Accordingly, gas absorption ability tests of porous Ni-based metallic glass powders have been performed in order to evaluate the possibility of replacement of conventional support materials. From these first tests it can be conclude that additional opportunities should exist for nano-porous MGs with designed architecture of porous structures that are tailored to specific functional applications
Metallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern der Pulver erfolgte bei Temperaturen im Bereich der unterkühlten Schmelze, wobei die Legierung eine starke Abnahme der Viskosität zeigte, mit Hilfe optimierter Sinterparameter, die nach der Analyse des Kristallisationsverhaltens der gläsernen Phase ausgewählt wurden, um deren Kristallisation während der Konsolidierung zu vermeiden. Kugelmahlen hat einen signifikanten Einfluss auf die Mikrostruktur der gemahlenen Pulver: Eine verfeinerte Lamellare Struktur, teils bestehend aus Glas und teils aus Messing, wird durch mechanische Verformung gebildet. Kugelmahlen reduziert jedoch den amorphen Anteil der Komposite durch mechanische induzierte Kristallisation und die Reaktion der Glas- und Messing- Phasen durch Erwärmung. Das Kugelmahlen der Komposite (Pulver) und das darauf folgende Sintern führte zur eine Absenkung der freien Enthalpie der amorphen Phase um ca. 50%. Ni59Zr20Ti16Si2Sn3 metallische Massivgläser, welche durch Heißpressen hergestellt werden, weisen eine höhere Streckgrenze von 2.28 GPa als das gegossene Ni59Zr20Ti16Si2Sn3 Massivglas (2.2 GPa) auf. Die mechanischen Eigenschaften der mit Messing Ni59Zr20 Ti16Si2Sn3 verstärkten Komposite sind abhängig von der Kontrolle der Mikrostruktur zwischen den zweiten Phasen und der Matrixphase durch die verschiedenen Verfahren zur Herstellung von Pulvermischungen. Die Festigkeiten der Komposite, welche durch Handmischen und Heißpressen mit nachfolgender Extrusion hergestellt wurden, erhöhten sich von 500 MPa für reines Messing bis auf 740 und 925 MPa für die Komposite mit 40 und 60 Vol. % Glaspartikel- Verstärkung durch Handmischen. Die Festigkeiten erhöhten sich nochmals auf 1240 und 1640 MPa für die Komposite mit 40 und 60 Vol. % an Glaspartikel-Verstärkung mit lamellare Stuktur, die durch Kugelmahlen hergestellt würden. Die Ursache hier für liegt in der Wirkung der Ligamentabmessungen zwischen den Matrixbestandteilen hinsichtlich der Verfestigung der Komposite. Die Porösität im metallischen Glas wurde durch die selektive Auflösung der flüchtigen Messingphasen in den Kompositen mit Salpetersäure-Lösung erhalten. Die Mikrostuktur der porösen metallischen Gläser besteht aus stark elongiert geschichteten Porenstrukturen und/oder unregelmäßig geformten Poren. Die durchschnittliche Größe einer Pore hängt von den behandelnden Parametern ab und kann von 0.4–15 µm variieren. Weitere poröse Proben wurden ausgehend von verschiedenen extrudierten Komposit-Precursoren aus handgemischten und kugelgemahlenen Pulvermixturen erzeugt. Dies führte zu angepassten hybrid-porösen Strukturen bestehend aus einer Kombination von großen und kleinen Poren. Die spezifische Oberfläche des porösen Glaspulvers gemessen mit Hilfe der BET- Methode, beträgt 16m2/g, wohingegen das atomisierte Ni59Zr20Ti16Si2Sn3 MG Ausgangspulver eine spezifische Oberfläche von 0.29 m2/g besitzt. Dies weist darauf hin, dass das Mahlen eine Vergrößerung der Oberfläche durch die Verfeinerung der flüchtigen Messingphase induziert. Die spezifische Oberfläche der porösen-metallischen Gläser beträgt 10 m2/g und entsteht durch die Zerstörung der porösen Struktur während der selektiven Auflösung der nanoskaligen flüchtigen Phase. Obwohl das Kugelmahlen der Komposite (Pulver) und die darauf folgende Konsolidierung zwar den amorphen Anteil um etwa 50% reduziert, bietet die Pulvermetallurgische Herstellung durch die Verwendung von gläsernen Phasen mit verbesserter Stabilität gegenüber mechanisch induzierter Kristallisation, sowie einer reduzierten Affinität mit der flüchtigen Messingphase zur Vermeidung von unerwünschten Reaktionen während des Prozesses eine Möglichkeit, hochaktive poröse metallische Gläser für funktionelle Anwendungen, wie z.B. Katalyse, zu entwickeln. Hier ist eine schnelle Transport von Reaktanten und Produkten, welcher von den großen Poren, sowie eine hohe katalytische Aktivität, die von kleinen Poren und einer großen Oberfläche sichergestellt wird wesentlich. Daher wurden Untersuchungen zur Gasabsorptionsfähigkeit von porösem metallischen Glaspulver durchgeführt, um die Möglichkeit der Ersetzung von konventionellen Trägermaterialen bewerten zu können. Diese ersten Versuche zeigen die grundsäLzliche Eignung nano poröse metallischer Gläser zur Herstellung von porösen Strukturen mit einstellbarer Porenarchitektur auf die Langfristig für spezifische funktionelle Anwendungen von Interesse sein könnten
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Jin Young. "Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders." Doctoral thesis, Technische Universität Dresden, 2014. https://tud.qucosa.de/id/qucosa%3A28746.

Повний текст джерела
Анотація:
Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and larger fracture resistance than ceramics. The technological breakthrough of metallic glasses, however, has been greatly hindered by the limited plastic strain to failure. Thus, several strategies have been employed to improve the intrinsic and extrinsic effects on the flow behavior of metallic glasses with respect to their fracture toughness and overall plastic strain. One of the suggested strategies is the production of a composite consisting of the brittle metallic glass along with a ductile second phase that either acts as an active carrier of plastic strain or passively enhances the multiplication of shear bands via shear-band splitting . Another approach for increasing plastic deformation consists of introducing pores as a gaseous second phase into the material. The pores are similarly effective in delaying catastrophic failure resulting from shear band localization. In metallic glasses with high porosity, propagation of shear bands can even become stable, enabling macroscopic compressive strains of more than 80 % without fracture. In this thesis, Ni59Zr20Ti16Si2Sn3 glass and its composites have been fabricated using mechanical milling and consolidation by hot pressing followed by extrusion of Ni59Zr20Ti16Si2Sn3 metallic glass powder or Ni59Zr20Ti16Si2Sn3 metallic glass powder reinforced with 40 vol.% of brass particles to obtained bulk composite materials with high strength and enhanced compressive plasticity and to generate porous structure in Ni59Zr20Ti16Si2Sn3 metallic glass using selective dissolution. The brass–glass powder mixtures to be consolidated were prepared using two different approaches: manual blending and ball milling to properly vary size and morphology of the second phase in the composites. Powder consolidation was carried out at temperatures within the supercooled Liquid (SCL) region, where the glassy phase displays a strong decrease of viscosity, with using the sintering parameters which were chosen after analysis of the crystallization behavior of the glassy phase to avoid its crystallization during consolidation. Ball milling has a significant effect on the microstructure of the powder mixtures: a refined layered structure consisting of alternating layer of glass and brass is formed as a result of the mechanical deformation. However, ball milling reduces the amorphous content of the composite powders due to mechanically induced crystallization and reaction of the glass and brass phases during heating. In addition, the milling of the composite powders and the following consolidation step reduces the amorphous content by about 50 %. The bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy synthesized by hot pressing exhibits higher strength (2.28 GPa) than that of the as-cast bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy (2.2 GPa). The mechanical behavior of the glass-brass composites is significantly affected by the control of the microstructure between the reinforcement and the nano-grained matrix phase through the different methods used for the preparation of the powder mixtures. The strength of the composites increases from 500 MPa for pure brass to 740 and 925 MPa for the composites with 40 and 60 vol.% glass reinforcement prepared by manual blending. The strength further increases to 1240 and 1640 MPa for the corresponding composites produced by ball milling caused by the remarkable effect of the matrix ligament size on the strengthening of the composites. The porous metallic glass was obtained by the selective dissolution in a HNO3 solution of the fugitive brass phase in the Ni59Zr20Ti16Si2Sn3 composite. The microstructure of the porous samples consists of highly elongated layered pore structures and/or irregularly shaped pores. The average size of the pores depends on the processing parameters and can be varied in the range of 0.4–15 µm. Additional porous samples were prepared from different extruded composite precursors of blended and milled powder mixtures. This leads to customized hybrid porous structures consisting of a combination of large and small pores. The specific surface area of the porous Ni-based metallic glass powder measured by the BET method is 16 m2/g, while the as-atomized Ni59Zr20Ti16Si2Sn3 powder has a specific surface area of 0.29 m2/g. This indicates a mechanical milling induced enhancement in surface area by refinement of the fugitive brass phase. However the specific surface area of the porous Ni-based metallic glass obtained from as-extruded precursors is 10 m2/g caused by a breakdown of the porous structure during selective dissolution of the nano-scale fugitive phase. Although milling of the present composite powders and the following consolidation step reduces the amorphous content by about 50 %, through the use of glassy phases with improved stability against mechanically induced crystallization along with reduced affinity with the fugitive phase to avoid unwanted reactions during processing, this approach using powder metallurgical offers the possibility to produce highly active porous bulk materials for functional applications, such as catalysis, which require the fast transport of reactants and products provided by the large pores along with high catalytic activity ensured by the large surface area characterizing the small pores. Accordingly, gas absorption ability tests of porous Ni-based metallic glass powders have been performed in order to evaluate the possibility of replacement of conventional support materials. From these first tests it can be conclude that additional opportunities should exist for nano-porous MGs with designed architecture of porous structures that are tailored to specific functional applications.
Metallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern der Pulver erfolgte bei Temperaturen im Bereich der unterkühlten Schmelze, wobei die Legierung eine starke Abnahme der Viskosität zeigte, mit Hilfe optimierter Sinterparameter, die nach der Analyse des Kristallisationsverhaltens der gläsernen Phase ausgewählt wurden, um deren Kristallisation während der Konsolidierung zu vermeiden. Kugelmahlen hat einen signifikanten Einfluss auf die Mikrostruktur der gemahlenen Pulver: Eine verfeinerte Lamellare Struktur, teils bestehend aus Glas und teils aus Messing, wird durch mechanische Verformung gebildet. Kugelmahlen reduziert jedoch den amorphen Anteil der Komposite durch mechanische induzierte Kristallisation und die Reaktion der Glas- und Messing- Phasen durch Erwärmung. Das Kugelmahlen der Komposite (Pulver) und das darauf folgende Sintern führte zur eine Absenkung der freien Enthalpie der amorphen Phase um ca. 50%. Ni59Zr20Ti16Si2Sn3 metallische Massivgläser, welche durch Heißpressen hergestellt werden, weisen eine höhere Streckgrenze von 2.28 GPa als das gegossene Ni59Zr20Ti16Si2Sn3 Massivglas (2.2 GPa) auf. Die mechanischen Eigenschaften der mit Messing Ni59Zr20 Ti16Si2Sn3 verstärkten Komposite sind abhängig von der Kontrolle der Mikrostruktur zwischen den zweiten Phasen und der Matrixphase durch die verschiedenen Verfahren zur Herstellung von Pulvermischungen. Die Festigkeiten der Komposite, welche durch Handmischen und Heißpressen mit nachfolgender Extrusion hergestellt wurden, erhöhten sich von 500 MPa für reines Messing bis auf 740 und 925 MPa für die Komposite mit 40 und 60 Vol. % Glaspartikel- Verstärkung durch Handmischen. Die Festigkeiten erhöhten sich nochmals auf 1240 und 1640 MPa für die Komposite mit 40 und 60 Vol. % an Glaspartikel-Verstärkung mit lamellare Stuktur, die durch Kugelmahlen hergestellt würden. Die Ursache hier für liegt in der Wirkung der Ligamentabmessungen zwischen den Matrixbestandteilen hinsichtlich der Verfestigung der Komposite. Die Porösität im metallischen Glas wurde durch die selektive Auflösung der flüchtigen Messingphasen in den Kompositen mit Salpetersäure-Lösung erhalten. Die Mikrostuktur der porösen metallischen Gläser besteht aus stark elongiert geschichteten Porenstrukturen und/oder unregelmäßig geformten Poren. Die durchschnittliche Größe einer Pore hängt von den behandelnden Parametern ab und kann von 0.4–15 µm variieren. Weitere poröse Proben wurden ausgehend von verschiedenen extrudierten Komposit-Precursoren aus handgemischten und kugelgemahlenen Pulvermixturen erzeugt. Dies führte zu angepassten hybrid-porösen Strukturen bestehend aus einer Kombination von großen und kleinen Poren. Die spezifische Oberfläche des porösen Glaspulvers gemessen mit Hilfe der BET- Methode, beträgt 16m2/g, wohingegen das atomisierte Ni59Zr20Ti16Si2Sn3 MG Ausgangspulver eine spezifische Oberfläche von 0.29 m2/g besitzt. Dies weist darauf hin, dass das Mahlen eine Vergrößerung der Oberfläche durch die Verfeinerung der flüchtigen Messingphase induziert. Die spezifische Oberfläche der porösen-metallischen Gläser beträgt 10 m2/g und entsteht durch die Zerstörung der porösen Struktur während der selektiven Auflösung der nanoskaligen flüchtigen Phase. Obwohl das Kugelmahlen der Komposite (Pulver) und die darauf folgende Konsolidierung zwar den amorphen Anteil um etwa 50% reduziert, bietet die Pulvermetallurgische Herstellung durch die Verwendung von gläsernen Phasen mit verbesserter Stabilität gegenüber mechanisch induzierter Kristallisation, sowie einer reduzierten Affinität mit der flüchtigen Messingphase zur Vermeidung von unerwünschten Reaktionen während des Prozesses eine Möglichkeit, hochaktive poröse metallische Gläser für funktionelle Anwendungen, wie z.B. Katalyse, zu entwickeln. Hier ist eine schnelle Transport von Reaktanten und Produkten, welcher von den großen Poren, sowie eine hohe katalytische Aktivität, die von kleinen Poren und einer großen Oberfläche sichergestellt wird wesentlich. Daher wurden Untersuchungen zur Gasabsorptionsfähigkeit von porösem metallischen Glaspulver durchgeführt, um die Möglichkeit der Ersetzung von konventionellen Trägermaterialen bewerten zu können. Diese ersten Versuche zeigen die grundsäLzliche Eignung nano poröse metallischer Gläser zur Herstellung von porösen Strukturen mit einstellbarer Porenarchitektur auf die Langfristig für spezifische funktionelle Anwendungen von Interesse sein könnten.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

GALLICHI, NOTTIANI DUCCIO. "Advanced phosphate glasses for photonics: from materials to applications." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2903486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Osorio, Sergio Paulo Amaral. "Fabricação e caracterização de fibras microestruturadas de vidros teluritos dopados com érbio." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278259.

Повний текст джерела
Анотація:
Orientador: Luiz Carlos Barbosa
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-08T19:58:45Z (GMT). No. of bitstreams: 1 Osorio_SergioPauloAmaral_D.pdf: 8946065 bytes, checksum: 9771cf8636d67bee8eb1b92d030d0d13 (MD5) Previous issue date: 2007
Resumo: Neste trabalho três tipos de vidro telurito são estudados, fabricados e caracterizados, tendo em vista a fabricação de fibras ópticas de cristal fotônico. Basicamente, dois processos de fabricação de fibras de cristal fotônico foram considerados: 1) Empilhamento e puxamento, e 2) Extrusão. Os vidros teluritos fabricados são: 0,77TeO2¿0,23WO3; 0,75TeO2¿0,20Li2O¿0,05TiO2 e 0,68TeO2¿0,155ZnO¿0,05Li2CO3¿0,015Bi2O3¿0,095CsCl (mol%), dos tipos binário, ternário e quinqüenário, respectivamente, os quais foram dopados com Er2O3. As caracterizações efetuadas foram: a) Medida do índice de refração, 2) Fotoluminescência, 3) Absorbância, 4) Tempo de vida dos íons de Érbio, 5) Análise Térmica Diferencial, 6) Análise termogravimétrica e, 7) Viscosidade. Como dito anteriormente, pode-se fabricar fibras microestruturadas de telurito por extrusão, ou pelo método de empilhamento e puxamento. A extrusora disponível no laboratório de materiais vítreos foi feita para extrudar materiais polímeros. Nossa tentativa de utilizá-la para vidros telurito não foi bem sucedida. Porém, pudemos tirar algum proveito desta experiência para futuros projetos. Os tubos de vidro telurito utilizados no método de empilhamento e puxamento foram fabricados tanto por sucção vertical do vidro fundido, quanto por rotação horizontal dos tubos em chama. No primeiro método, o diâmetro interno dos tubos de revestimento diminuiu de baixo para cima, devido ao efeito da gravidade, fazendo com que o preenchimento dos mesmos com tubos capilares fosse inadequado, ou seja, a secção transversal da fibra apresentou espaços vazios não preenchidos pelos capilares. No segundo método, o diâmetro interno dos tubos de revestimento não apresentou variação significativa ao longo de seu comprimento, possibilitando, assim, um melhor preenchimento dos mesmos por tubos capilares. Embora as fibras fabricadas com tubos feitos por rotação horizontal em chama apresentem boa geometria de secção transversal, a contaminação do vidro pela chama acarreta um aumento nas perdas de potência óptica dos modos guiados. Este efeito foi eliminado pela utilização de centrifugação em um forno radiante. Verificamos, também, que as fibras microestruturadas com somente um anel de capilares ao redor do núcleo apresentam grandes perdas por confinamento.
Abstract: In this work, three types of tellurite glasses are synthesized and characterized, aiming the manufacturing of photonic crystal fibers or microstructured fibers. Basically, two types of manufacturing processes are considered: 1) Stacking and draw, and 2) Extrusion. The tellurite glasses are: 0,77TeO 2¿0,23WO3; 0,75TeO2¿0,20Li2O¿0,05TiO2 e 0,68TeO2¿ 0,155ZnO¿0,05Li2C3¿0,015Bi2O3¿0,095CsCl (mol%), composed by two, three and five types of oxides, respectively, and Erbium oxide. The glasses were characterized by: a) index of refraction, 2) photoluminescence, 3) absorbance, 4) Erbium ions lifetime, 5) Differential Thermal Analysis, 6) Thermo gravimetric Analysis, and 7) Viscosity. The extrusion machine of the laboratory was devised for polymers. Nevertheless, we tried with telluride glass but without success. The tellurite glass tubes used for the stack and draw process were manufactured by vertical suction of the melted glass as well as by horizontal rotation of the tubes in flame. For the vertical suction method, the tellurite tube inner diameter shows a taper feature from the bottom to the top of the tube, due to the gravity effect, that makes the jacket tube unsuitable for capillary filling, that is, the fiber transversal section shows empty spaces that could not be filled with capillaries. For the second method, the telluride jacket tube inner diameter do not shows a significant variation with length, so it was possible to better fill it with the capillaries. Although the fibers made with tubes manufactured by horizontal rotation in flame shows good transversal geometry, the contamination of the glass by the flame gases brought about great losses for optical guided modes. The burner was replaced by a radiant oven. We verified, also, that micro structured fibers with only one ring of capillaries around the nucleus shows great confinement loss arising from the leaky nature of the modes
Doutorado
Física da Matéria Condensada
Doutor em Física
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Benhadia, Abrehem M. A. "Evaluation of the critical parameters and polymeric coat performance in compressed multiparticulate systems." Thesis, University of Bradford, 2019. http://hdl.handle.net/10454/17459.

Повний текст джерела
Анотація:
Compression of coated pellets is a practical alternative to capsule filling. The current practice is to add cushioning agents to minimize the stress on the coated pellets. Cushioning agents however add bulkiness and reduce the overall drug loading capacity. In this study, we investigated the performance of compressed coated pellets with no cushioning agent to evaluate the feasibility of predicting the coat behaviour using thermo-mechanical and rheological analysis techniques. Different coating formulations were made of ethyl cellulose (EC) as a coating polymer and two different kinds of additives were incorporated into the polymeric coating solution. Triethyl Citrate (TEC) and Polyethylene glycol 400(PEG400) were used as plasticizers at different levels to the coating formulations (10%, 20%, 30%). Thermal, mechanical and rheological measurements of the coating film formulations were achieved to investigate the effect of plasticizers. Thermal gravimetric analysis results (TGA) showed higher residual moisture content in films plasticised with PEG 400 compared to their TEC counterparts. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and Parallel Plate Shear Rheometer (PPSR) were used to study the influence of the level and type of plasticisers incorporated in coating film formulation on the performance of the coating film. In this study, both DSC and DMA were used to investigate the Tg for each film coating formulation in order to evaluate the effect of the additives. In general DMA results for the Tg value of the films were always higher by 10-20% than those measured by the DSC. Furthermore, clamp size and the frequency of the oscillation have an influence on the evaluation of Tg. Complex viscosity for different coating film formulations revealed that the shear hinning gradient changes with temperature and plasticiser type and concentration. The value of complex viscosity from DMA and PPSR exhibits power law behaviour. The rheological moduli were indirectly affected by the level of plasticiser. There was a discrepancy between the complex viscosity results obtained from both DMA and PPSR at similar temperature but they follow the same trend. The non plasticized polymer showed a 10 time higher complex viscosity values when measured by DMA over that measured by PPSR. The difference was smaller in plasticized films but it was not consistent. Therefore a consistent coefficient to correlate the DMA and PPSR couldn’t be accurately determined Coated pellets were compressed and key process parameters were evaluated. The obtained results revealed that the coating thickness has a significant effect on the release profile of the final products. It was found that by increasing the coating film thickness, the percentage released decreased. Also the compression force has lower influence on the drug release profile, while the dwell time has very low effect on the percentage release from the final products. Optimum release profile was obtained at a coating level of 5.5% w/w and a compression force of 4700N In conclusion, the elasticity of the plasticised EC films in this study meant that the internal stress is not dissipated during compression and the dwell time range that was used in this experiment. Increasing the thickness therefore was necessary to enhance the strength of the film and avoid cracking. The mechanical and rheological profiling was helpful therefore to understand the behaviour of the coated pellets and predict the film properties at various steps of the process of coating and compression (i.e., various shear rate regimes). Experimental design approach to studying the key process and formulation parameters helped identify the optimum values for the process.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ferré, Antoine. "Élaboration et caractérisation 3D de l’endommagement dans les composites amorphe-cristallins métalliques." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0038.

Повний текст джерела
Анотація:
Les verres métalliques ont commencé à être produit dans les années 1960 et sous forme massive dans les années 1980. De nombreuses études se sont intéressées à ces matériaux sous leur forme amorphe et ont conclu qu’ils avaient une forte résistance mécanique mais présentaient un comportement très fragile. Dans le cadre du projet EDDAM débuté en 2011, ces matériaux ont été introduits sous forme de petites sphères dans une matrice d’aluminium. Le premier objectif de notre étude est de voir si le verre métallique sous cette forme permet de le rendre peu fragile. Le second objectif est de trouver une alternative aux renforts céramique dans les composites à matrice métallique qui présentent une faible cohésion à l’interface matrice/inclusion. Dans le but de caractériser l’endommagement dans des nouveaux composites amorphe-cristallins métalliques, la tomographie aux rayons X a été utilisée. Cette technique permet de caractériser de manière non destructive l’endommagement des matériaux et de le visualiser en 3D. Cela apporte une contribution à l’étude des matériaux composites par rapport aux techniques classiques utilisées. L’objectif général de cette thèse a été d’étudier l’endommagement en termes d’amorçage, de croissance et de coales- cence des matériaux composites amorphe-cristallins métallique par tomographie aux rayons X lors d’essais de traction monotone in situ. Les matériaux sélectionnés sont constitués d’une matrice aluminium ("molle" de type 1070A ou "dure" de type 5083) et de renforts en verre métallique Zr57Cu20Al10Ni8Ti5 de taille peu dispersée et répartis de manière homogène, avec différentes fractions volumiques (1%, 4% et 10%). Les matériaux composites ont été élaborés par la voie de la métallurgie des poudres au Spark Plasma Sintering (SPS) suivi d’une étape d’extrusion à chaud. Une attention particulière a été portée sur la caractérisation microstructurale des constituants de base. L’analyse qualitative a permis de comparer l’ensemble des composites fabriqués au SPS et ceux extrudés à chaud après SPS. Les différents modes d’amorçage de l’endommagement ont été observés ainsi que la croissance et la coa- lescence amenant la rupture des composites. L’analyse quantitative a été essentiellement consacrée au premier stade de l’endommagement. La croissance et la coalescence étant très rapide, il a été difficile de les suivre lors des essais interrompus. La modélisation d’un composite amorphe-cristallin métallique à matrice molle a été introduite dans le but de reproduire l’endommagement observé lors des analyses expérimentales. Cette première approche nécessite d’être approfondie dans le but de prédire, compte tenu des propriétés mécaniques des différentes phases et de la fraction volumique des renforts, le mode d’endommagement préférentiel apparaissant dans les composites étudiés. Elle montre cependant les prémices d’une modélisation innovante basée sur la microstructure expérimentale
Metallic glasses have been produced in the 1960s and bulk metallic glasses in the 1980s. Many studies, focused on these materials in their amorphous state, concluded that they had high mechanical strength but shown low ductility. As part of EDDAM project that started in 2011, these materials were introduced as small particles in an aluminum matrix. The first objective of this study is to see if the metallic glass is less brittle in this form. The second objective is to find an alternative of ceramic reinforcements in metal matrix composites. These materials have low cohesion at the matrix/inclusion interface. In order to characterize the damage in new amorphous-crystalline composite, X-ray tomography was used. This allows to characterize damage in materials and to obtain a 3D viewing. The main objective of this thesis was to study damage (nucleation, growth and coalescence) in composite materials using X-ray tomography during tensile tests. Selected materials are constituted of an aluminum matrix and small metallic glass reinforcements (Zr57Cu20Al_10Ni8Ti5). Composites with different volume fractions (from 1vol.% to 10vol.%) were prepared by Spark Plasma Sintering (SPS) and hot extrusion. A particular attention was paid to the microstructural characterization of the basic constituents. Qualitative analysis was used to compare SPS composites with SPS plus hot extrusion composites. Damage nucleation, growth and coalescence were observed. Quantitative analysis was mainly devoted to the first damage step. Growth and coalescence were difficult to follow due to fast rupture and interrupted tensile tests. The modeling of an amorphous-crystalline composite has been introduced in order to reproduce experimental damage analyses. The first approach requires further investigation to predict damage with different volume fractions. However, this part shows the beginning of an innovative model based on the experimental microstructure
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Glass extrusion"

1

S, Pinchuk L., ed. Melt blowing: Equipment, technology, and polymer fibrous materials. Berlin: Springer, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pinchuk, L. S., A. V. Makarevich, and Vi A. Goldade. Melt Blowing. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kestelman, V. N., L. S. Pinchuk, A. V. Makarevich, and Vi A. Goldade. Melt Blowing. Springer, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Glass extrusion"

1

Huang, T. S., M. N. Rahaman, N. D. Doiphode, M. C. Leu, B. S. Bal, D. E. Day, and X. Liu. "Freeze Extrusion Fabrication of 13-93 Bioactive Glass Scaffolds for Repair and Regeneration of Load-Bearing Bones." In Ceramic Transactions Series, 45–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144565.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Furmanski, Jevan, Eric N. Brown, George T. Gray, Carl Trujillo, Daniel T. Martinez, Stephan Bilyk, and Richard Becker. "Extreme Tensile Damage and Failure in Glassy Polymers via Dynamic-Tensile-Extrusion." In Dynamic Behavior of Materials, Volume 1, 107–12. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00771-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bhattacharya, Suvendu. "Extrusion Technology and Glass Transition." In Non-Equilibrium States and Glass Transitions in Foods, 137–52. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-08-100309-1.00009-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Toutou, Z., C. Lanos, and Y. MÉLinge. "Extrusion Criteria of an Extruded Glass Fibre Reinforced Paste Composite." In Design, Manufacturing & Application of Composites, 690–97. CRC Press, 2020. http://dx.doi.org/10.1201/9781003076155-122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manke, Charles W., and Esin Gulari. "Rheological Properties of Polymers Modified with Carbon Dioxide." In Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195154832.003.0016.

Повний текст джерела
Анотація:
Use of supercritical fluids (SCFs), particularly supercritical carbon dioxide, as alternative solvents in polymer synthesis and processing is a rapidly growing research area with successful industrial applications (McCoy, 1999). In some cases, the need for alternative solvents is based on environmental concerns, with regulations mandating replacement solvents. An environmentally mandated example is the 1995 ban of the use of chlorofluorocarbons (CFCs) as physical blowing agents in the manufacture of polymeric foams after CFCs were classified as class-I-ozone-depleting substances (ODPs). Among the alternative blowing agents are gases like CO2 and N2 and refrigerants such as 1,1-difluoroethane (R152a) and 1,1,1,2-tetrafluoroethane (R134a). Under the foaming conditions, at temperatures above the glass transition temperature of a polymer, and at pressures required for flow of highly viscous polymer melts, these alternative blowing agents are frequently supercritical. When polymers are formed into final products by various melt-processing techniques, such as extrusion, injection molding, blow molding, foaming, and spin-coating, extremely high melt viscosity presents a major difficulty. A common method to moderate the processing conditions is to add a liquid solvent or plasticizer to the melt. Solvents and plasticizers lower the glass transition temperature, Tg, of the polymer so that the polymer can be made to flow at lower pressures and temperatures. Replacing liquid solvents with SCFs presents unique processing advantages. Higher diffusivity and lower viscosity of SCFs, compared with liquid solvents, increase rates of dissolution and mixing. The properties of polymer–SCF solutions are tunable via pressure or temperature changes, thus allowing efficient downstream separations. Most importantly, dissolution of an SCF produces very large reductions in melt viscosity compared with a liquid solvent dissolved in the melt. Whether the interest in using SCFs in polymer synthesis and processing is driven by environmental concerns or processing advantages, it is important to understand the rheological behavior of polymer–SCF mixtures. In this chapter, we describe rheological measurements of polymer melts containing dissolved gases for two polymers, polydimethylsiloxane (PDMS) swollen with CO2 at 50 °C and 80 °C and polystyrene (PS) swollen with CO2, R152a, and R134a at 150 °C and 175 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vezzoli, Luigina, Claudia Principe, Daniele Giordano, Sonia La Felice, and Patrizia Landi. "Physical Volcanology and Facies Analysis of Silicic Lavas: Monte Amiata Volcano (Italy)." In Updates in Volcanology - Linking Active Volcanism and the Geological Record [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108348.

Повний текст джерела
Анотація:
Monte Amiata (Italy) is a middle Pleistocene silicic volcano characterized by the extrusion of extensive (5–8 km long and 60 m thick on average) sheet-like lava flows (SLLFs). It is one of the prime volcanoes that have been involved in the volcanological debate on the genetic interpretation of large silicic flows. We performed integrated stratigraphic, volcanological, and structural field survey and petrochemical study of Monte Amiata SLLFs to describe their volcanic facies characteristics and to elucidate their eruptive and emplacement processes. Individual flow units exhibit basal autoclastic breccia beds or shear zones, frontal ramp structures, massive cores with subvertical cooling columnar jointing, coherent non-vesicular upper parts, and plain surfaces with pressure ridges. Internal shear-bedding and crystals and vesicles lineations define planar to twisted and straightened outflow layering. The absence of fragmental textures, both at micro- and macro-scale, supports the effusive nature for the SLLFs. The most common lithology is a vitrophyric trachydacite of whitish to light-gray color, showing a homogeneous porphyritic texture of K-feldspar, plagioclase, pyroxene, and biotite, in a glassy perlitic or microcrystalline poorly vesicular groundmass. Morphological features, facies characteristics, internal structure, and petrographic textures of these silicic sheet-like and long-lasting flows suggest that their effusive emplacement was governed by peculiar physicochemical and structural conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Glass extrusion"

1

Yeo, Felicia Yan Xin, Zhifeng Zhang, Dileep Kumar Chakkathara Janardhanan Nair, and Yilei Zhang. "Diffusion between glass and metals for optical fiber preform extrusion." In International Conference on Optical and Photonic Engineering (icOPEN2015), edited by Anand K. Asundi and Yu Fu. SPIE, 2015. http://dx.doi.org/10.1117/12.2190640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, P. W., C. S. Chou, W. C. J. Wei, B. H. Liu, A. Liu, A. B. Wang, and R. C. Luo. "Glass and hot extrusion by ME module for 3D additive manufacturing." In 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2016. http://dx.doi.org/10.1109/icit.2016.7474920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guzman, Fernando, Andrea Ravagli, Christopher Craig, Bruno Moog, and Daniel W. Hewak. "Fabrication of Structured GLS-Se Glass Preforms by Extrusion for Fibre Drawing." In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.jw4a.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tao, Guangming, Soroush Shabahang, and Ayman F. Abouraddy. "One-step Multi-material Preform Extrusion for Robust Chalcogenide Glass Optical Fibers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/sof.2012.stu1d.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Loretz, Thomas J., Albert R. Hilton, Sr., A. R. Hilton, Jr., and James McCord. "Fabrication of chalcogenide glass rods and tubes by processor-controlled extrusion techniques." In BiOS '97, Part of Photonics West, edited by Abraham Katzir and James A. Harrington. SPIE, 1997. http://dx.doi.org/10.1117/12.271021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cheng, Rong, Xiao Wu, Jianjun Li, and Zhizhen Zheng. "Superplastic micro backward extrusion of Zr65 based bulk metallic glass for microparts." In Fourth International Seminar on Modern Cutting and Measuring Engineering, edited by Jiezhi Xin, Lianqing Zhu, and Zhongyu Wang. SPIE, 2010. http://dx.doi.org/10.1117/12.884406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ebendorff-Heidepriem, Heike, Roger C. Moore, and Tanya M. Monro. "Progress in the Fabrication of the Next-Generation Soft Glass Microstructured Optical Fibers." In Workshop on Specialty Optical Fibers and their Applications. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/wsof.2008.osf95.

Повний текст джерела
Анотація:
We report the fabrication of new soft glass microstructured optical fibers for sensing, high-nonlinearity and mid-infrared applications. The fibers were produced using the extrusion technique and a wide range of glass compositions. They demonstrate a wide variety of structural features and low propagation loss.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lindahl, John, Christopher Hershey, Gary Gladysz, Vinay Mishra, Karana Shah, and Vlastimil Kunc. "Extrusion Deposition Additive Manufacturing Utilizing High Glass Transition Temperature Latent Cured Epoxy Systems." In SAMPE 2019 - Charlotte, NC. SAMPE, 2019. http://dx.doi.org/10.33599/nasampe/s.19.1615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mader, Markus, Leonhard Hambitzer, Holger Becker, Frederik Kotz-Helmer, and Bastian E. Rapp. "High-throughput manufacturing of transparent fused silica glass by injection molding and extrusion." In Microfluidics, BioMEMS, and Medical Microsystems XX, edited by Bonnie L. Gray and Holger Becker. SPIE, 2022. http://dx.doi.org/10.1117/12.2607493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tsiminis, G., E. P. Schartner, M. Bekteshi, M. R. Hutchinson, and H. Ebendorff-Heidepriem. "Hollow-Core Optical Fibers Made by Glass Billet Extrusion as Sensors for Raman Spectroscopy." In Australian Conference on Optical Fibre Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acoft.2016.am3c.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії