Добірка наукової літератури з теми "Glass-ceramic coating"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Glass-ceramic coating".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Glass-ceramic coating"

1

Chen, Xiang Tian, Ye Han, Shu Yu Yao, Wei Wei Zhang, Yun Sui Yao, and Zong Feng Wang. "A New High Temperature Resistant Glass–Ceramic Coating Material." Applied Mechanics and Materials 99-100 (September 2011): 810–14. http://dx.doi.org/10.4028/www.scientific.net/amm.99-100.810.

Повний текст джерела
Анотація:
A new glass-ceramic coating material on nickel based super alloy substrate had been found, the glass¬-ceramic coating material was developed from a glass based on MgO–Al2O3–TiO2 system. The coating material was characterized through X-ray diffractometry (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), hardness, thermal expansion coefficient testing. XRD analysis of the coating materials and the resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs indicated microstructure of the material. Optical micrographs showed smooth glossy impervious free surface with defects. Hardness analysis showed the glass-ceramic coating material had higher microhardness. The thermal expansion coefficient of the nimonic alloy was much higher compared to the coating material at specific temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mohd Rosli, Zulkifli, Nur Hamizah Ahmad Rusli, Jariah Mohamad Juoi, and Mazidah Zainudi. "The Effect of Ceramic Substrates Surface Roughness on the Deposition of AgTiO2 Coatings." Applied Mechanics and Materials 699 (November 2014): 9–14. http://dx.doi.org/10.4028/www.scientific.net/amm.699.9.

Повний текст джерела
Анотація:
This research aims to determine the effect of ceramic substrates surface roughness on the deposition of silver-titania (AgTiO2) coating. The ceramic substrates were prepared from three batch mixture of waste glass namely transparent glass (99 wt. %): carbon black (1 wt. %), green glass (85 wt. %): ball clay (15 wt. %) and transparent glass (85 wt. %): ball clay (15 wt. %) deposited with AgTiO2 using sol gel dip coating method. Ti and Ag phases have been identified via glancing angle X-Ray diffraction analysis (GAXRD). The thickness and morphology of coatings were characterized using Scanning Electron Microscopy (SEM). Analyses conducted have confirmed that AgTiO2 coating layers have been successfully deposited into various types of selected ceramic substrates. Microstructure analysis shows that coatings deposited on ceramic substrate with a moderate surface roughness of 2.13 (green glass: ball clay) produced the most homogeneous surface and uniform thickness.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huang, Yong Jun, Shuang Xi Wang, Wen Jun Wang, and Hai Feng Lan. "Study of Glass-Ceramic Coating on the SUS430 Stainless Steel Plate with High Temperature Oxidation Resistance." Solid State Phenomena 281 (August 2018): 487–92. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.487.

Повний текст джерела
Анотація:
Currently, the ceramic inner container draws great attention in the field of induction heating pot. Based on the traditional roll-forming process for ceramic pot, a new kind process was proposed to fabricate ceramic inner container and synchronously embed stainless steel plate by one-step high temperature sintering. The key technology for this process is to avoid the oxidation of SUS430 stainless steel plate during the high temperature sintering for a longtime by coating a glass-ceramic layer. In this research, the glass-ceramic coating with excellent high temperature oxidation resistance was optimized. The influences of ZrO2 content in the coating slurry on the high temperature oxidation resistance and thermal shock resistance of SUS430 stainless steel plate with glass-ceramic coating were studied. Meanwhile, the coatings were characterized by Scanning Electron Microscopy, X-ray Diffraction and Thermal Expansion Analysis. The experimental results showed that the glass-ceramic coating was smooth and had excellent thermal shock resistance when the addition of ZrO2 reached 15wt%. The mass gain of the SUS430 stainless steel plate with glass-ceramic coating was only 0.453% after sintering at 1300°C for 10h in air atmosphere, which was less one percent than that of SUS430 stainless steel plate under the same sintering condition.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Han, Ye, Shu Yu Yao, Wei Wei Zhang, Ming Gu, and Yu Sui Yao. "A Novel Wear Resistant Glass-Ceramic Coating Material." Materials Science Forum 686 (June 2011): 521–27. http://dx.doi.org/10.4028/www.scientific.net/msf.686.521.

Повний текст джерела
Анотація:
A novel wear resistant glass-ceramic coating system (based on SiO2-B2O3-Al2O3 glass system) on iron based substrate was developed. Friction coefficient, wear rate and coefficient of thermal expansion of coating material were evaluated using suitable methods. The coating materials and the resultant coatings were characterized using differential thermal analysis (DTA), X-ray diffraction analysis (XRD) and Scanning Electron Microscope (SEM). XRD analysis of the coating materials showed presence of a number of microcrystal. SEM micrographs indicate strong chemical bonding at the iron-ceramic interface. The coating material showed perfect properties for protection the iron substrate from abrasion.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsueh, Chun-Hway, and Pedro Miranda. "Modeling of contact-induced radial cracking in ceramic bilayer coatings on compliant substrates." Journal of Materials Research 18, no. 5 (May 2003): 1275–83. http://dx.doi.org/10.1557/jmr.2003.0175.

Повний текст джерела
Анотація:
Contact-induced radial cracking in ceramic coatings on compliant substrates was analyzed recently. Radial cracks initiate at the coating/substrate interface beneath the contact where maximum flexural tension occurs, and an analytical expression for the onset of radial cracking in monolayer coatings was formulated on the basis of the classical solution for flexing plates on elastic foundation. In the present study, the analytical expression was derived for the case of ceramic bilayer coatings on compliant substrates, which have significant applications in the structure of dental crowns. It was found that the analytical solution for bilayer-coating/substrate systems can be obtained from that of monolayer-coating/substrate systems by replacing the neutral surface position and the flexural rigidity of monolayer coating with those of bilayer coating. The predicted critical loads for initiating radial cracking were found to be in good agreement with existing measurements and finite element results for glass/alumina, glass/glass-ceramic, and glass/Y2O3-stabilized ZrO2polycrystal bilayers on polycarbonate substrates. Limitations of the present analysis are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vaidya, K. J., and L. F. Francis. "Processing of calcium metaphosphate-based glass-ceramic coatings on alumina." Journal of Materials Research 11, no. 1 (January 1996): 100–109. http://dx.doi.org/10.1557/jmr.1996.0013.

Повний текст джерела
Анотація:
Dense, crystalline, glass-ceramic coatings containing calcium metaphosphate and aluminum phosphate were prepared on aluminum oxide substrates by a three-step method. The processing involved glass (40 mol% CaO, 10 mol% Al2O3, 50 mol% P2O5) formation, deposition of a glass particle coating, and heat treatment to sinter the glass and crystallize the phosphates. Sintering and microstructure evolution were influenced by wet coating thickness, heat-treatment temperature, time, and heating rate. Heat treatment for 1 h at 725 °C using a 50 °C/min heating rate was found to give a dense, crack-free coating. The resultant coating microstructure has spherulitic morphology (0.3 μm size) with aluminum phosphate in the center of the spherulite. The hardness of the fully crystallized glass-ceramic coating was ∼5.2 GPa.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Min Wei, Cao Gao, Yue Xia Ding, Jie Tao, and Tao Wang. "Lead-Free Oxidation- Resistant Glass-Ceramic Coating for Heat Processing of Ti-6Al-4V Alloy." Key Engineering Materials 373-374 (March 2008): 601–4. http://dx.doi.org/10.4028/www.scientific.net/kem.373-374.601.

Повний текст джерела
Анотація:
Now the oxidation-resistant glass-ceramic coatings have been widely used in reducing surface oxidation of Ti alloys during heat process. In present investigation, a lead-free glass-ceramic coating with wider protection temperature range was developed to protect Ti-6Al-4V alloy from oxidation. The phase compositions of the present coating and the oxygen distributions in the surface layers of Ti-6Al-4V specimens were investigated by means of XRD, as well as the metallographs of cross-section were observed and the depths of oxidized layers were determined by microhardness analysis. The results show that the present glass-ceramic coating can provide the oxidation-resistant effect over the temperature range of 500-1000oC in ambient air, with an environmentally friendly lead-free coating composition.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Wei, Tong Yang, and Shi Quan Liu. "Performance of a Waterproof Glass-Ceramic Coating." Applied Mechanics and Materials 670-671 (October 2014): 535–38. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.535.

Повний текст джерела
Анотація:
The surface of a porous silica ceramic substrate was coated with water impermeable lithium aluminosilicate glass-ceramic layer by sintering a slurry consisted of fine glass powder. The coating was 600~800 microns thick. It is demonstrated that the glass-ceramic coating consists of β-Li2Al2Si3O10 crystallites. The coated sample has an excellent water proof performance. After the coating, both the dielectric constant and loss increase. The coating protected the substrate from ablation under 1700°C.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Russo, Francesca, Stefano Rossi, and Attilio Monzio Compagnoni. "Porcelain Enamel Coatings." Encyclopedia 1, no. 2 (April 27, 2021): 388–400. http://dx.doi.org/10.3390/encyclopedia1020032.

Повний текст джерела
Анотація:
Porcelain enamel is an inorganic-type coating, which is applied to metals or glass for both decorative and functional purposes. This coating is a silica-based solidified glass mass obtained by high-temperature firing (temperature can range between 450 and 1200 °C depending on the substrate). Porcelain enamel coatings differ from ceramic coatings mainly by their glass structure and dilatation coefficient, and from organic paints mainly by the inorganic nature of the matrix and the chemical bond that exists between the coating and the substrate.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Karasik, Elena, and Yurii Hordieiev. "Determining the influence of the microstructure and phase composition of glass-metal-ceramic coatings on their basic physical-technical properties." Eastern-European Journal of Enterprise Technologies 6, no. 12 (114) (December 22, 2021): 53–61. http://dx.doi.org/10.15587/1729-4061.2021.244004.

Повний текст джерела
Анотація:
Given the development of new heat-resistant nickel alloys that operate at temperatures up to 1,250 °C, as well as the introduction of additive technologies for the production of various parts, it is a relevant task to devise new compositions of highly heat-resistant coatings. Determining the influence of the phase composition of glass-metal-ceramic coatings on its basic properties could improve the effectiveness of protecting those parts that operate under extreme conditions. Therefore, it is promising to conduct a study aimed at establishing the relationship between the microstructure and phase composition of glass-metal-ceramic coatings and the main physical-technical characteristics. This study's results have established that the most high-quality coatings were obtained on the basis of non-crystallizing glass. Such glass is characterized by a temperature coefficient of linear expansion of 92·10-7 degrees-1, a glass transition temperature of 625 °C, and surface tension of 260·10-3 N/m at 850 °C. These properties contribute to the formation of a defect-free coating, providing uniform spreading and high-quality adhesion to the substrate. The resulting optimal coating is characterized by the adhesion strength of 98 %, the thermal resistance (mode 950↔20 °C) of 50 cycles, and the high heat resistance (a weight gain after 100 h in the temperature range of 1,000‒1,050 °C) of 0.03 g/m2·h. Coatings with a minimum amount of glass bonding are distinguished by uniformity and high quality. The optimal ratio of phases "glass:metal-ceramic composition" is 10:90. The structure of the recommended coating is uniform, characterized by the homogeneous distribution of components, the absence of cracks, visible defects, and high quality. The phase composition of the coating after firing is represented by crystals of metallic nickel and silicon, as well as a small amount of residual glass phase.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Glass-ceramic coating"

1

Ashcroft, Ian A. "Characterisation of glass-ceramic to metal bonds." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Oues, Adnan Khalil. "PROTECTION OPTIMIZATION OF CARBON-CARBON COMPOSITES AGAINST AIR OXIDATION BY COATING WITH ANTI-OXIDANTS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1376.

Повний текст джерела
Анотація:
AN ABSTRACT OF THE DISSERTATION OF TITLE: (OPTIMIZATION PROTECTION OF CARBOB-CARBON COMPOSITES DISC-BRAKES MATERIAL BY COATING WITH ANTI-OXIDANTS) Developing glass enhancer mixture solutions (Ki’s), which promote the formation of a stable glass layer, homogenous clear liquid solution, and low viscosity liquid form, are easy to apply, and penetrating. They are compatible with ceramic liquid glass based anti-oxidants for treating surfaces of carbon/carbon composites material, and significantly increase the rate of protection against oxidation. Ki’s’ are comprised of mixing chemical compositions at standard temperature and pressure conditions from group one and two such as Na, K, Ca, Mg, etc. of 5 to 25 wt. %, deionized water from 95 to 75 % by weight, and adding up to 1 % by weight of surfactants such as DF-16, DF-20, and CF-10 with specific proportions, and followed by thorough stirring to produce a homogeneous blend of mixture solution. The glass enhancers, which are aqueous mixture solutions, are applied to the surfaces of carbon/carbon (C/C) composites by dipping, brushing, spraying, or other painting application techniques, followed by annealing, or a heat-treating range of 80 to 110 ℃ for a minimum of 8 hours, and allowing cooling time of the coated C/C composites of a minimum of 12 hours to room temperature. Preferential compatibility of the glass enhancer mixture solutions (Ki's) is with liquid glass former's, anti-oxidants comprised mostly of borate and phosphate glasses. The glass enhancer solution mixtures (Ki’s) are supplemental additions to ceramics’ liquid anti-oxidants coatings used for carbon-carbon composites protection against oxidation, and it will increase the rate of protection against oxidation for low, and moderate temperature’s range from 400 to 900 ℃. The glass enhancer Ki’s mixture solutions should be used with liquid glass former's’ anti-oxidants, such as SiO₂, GeO₂, B₂O₃, and P₂O₅. A series of glass enhancer’s Ki’s, heat treatment cycle (char-cycle) ranged between 700 to 900 ℃, and application methods, were developed and tested experimentally. Two arbitrary isothermal temperatures of 650 ℃, and 871 ℃ were selected for thermal oxidation testing, and a temperature of 650 ℃ was selected, and tested against catalytic thermal oxidation. Additions of glass enhancer Ki’s improved protection of C/C composites disc-brakes against oxidation by double, and triple amount of time in hours versus the use of anti-oxidant coatings alone.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Фесенко, Олексій Ігорович. "Склокристалічні покриття по сплавах титану для стоматологічного ендопротезування на основі кальційфосфатосилікатних стекол". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39048.

Повний текст джерела
Анотація:
Дисертаційна робота на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018. Дисертаційну роботу присвячено розробці складів склокристалічних покриттів по сплавах титану на основі кальційфосфатосилікатної скломатриці для стоматологічного ендопротезування та вибору технологічних параметрів їх одержання. Сформульовано комплекс вимог до фізико-хімічних, технологічних і експлуатаційних властивостей біоактивних склокристалічних покриттів по сплавах титану для дентального ендопротезування та обрано оптимальні технології їх нанесення, а саме для суцільноциліндричних імплантатів – шлікерну, а для гвинтових – електрофоретичну технології нанесення. Розроблено систему критеріїв до скломатриці та обґрунтовано вибір склокристалічного типу покриття по титану на основі системи Na2O–K2O–Li2О–CaO–ZnO–CaF2–Al2O3–B2O3–P2O5–SiO2 для одночасного забезпечення формування зміцненої хімічно-активної тонкокристалічної структури покриття в умовах низькотемпературної (780 °С) короткотривалої (1,0 ÷ 1,5 хв) термічної обробки. Встановлено механізм структуро- та фазоутворення в модельних стеклах і склокристалічних покриттях на їх основі. Досліджено особливості структурної перебудови поверхні покриття в процесі формування міцного апатитоподібного шару в умовах in vitro. Визначені оптимальні технологічні параметри одержання біоактивних склокристалічних покриттів по титану за шлікерною (H = 6,64ГПа, K1C = 2,8МПа·м1/2, Ra = 3,52 мкм, σадг = 15 МПа) та електрофоретичною (H = 6,72 ГПа, K1C = 3,0 МПа·м1/2, Ra = 2,86 мкм, σадг = 17 МПа) технологіями нанесення. Практично підтверджена можливість використання розроблених біоактивних склокристалічних покриттів по титану як елементів імплантатів для стоматологічного ендопротезування зі скороченим терміном зрощування близько одного місяця.
Thesis for the degree of Candidate of Technical Sciences in specialty 05.17.11 – technology of refractory nonmetallic materials. – National Technical University "Kharkov Polytechnic Institute", Kharkov, 2018. The thesis is devoted to the development of glass-ceramic coating compositions for titanium alloys based on the system Na2O–K2O–Li2О–CaO–ZnO–CaF2–Al2O3–B2O3–P2O5–SiO2 for dental prosthetics and the choice of technological parameters for their preparation. A set of requirements for the physicochemical, technological and operational properties of bioactive glass-ceramic coatings on titanium alloys for dental endoprosthetics is formulated and optimal methods of their application are chosen, in particular for whole-cylindrical implants – slip, and for screw – electrophoretic technology. A system of criteria for glass matrices has been developed and a choice of a glass-ceramic type of a titanium coating based on calcium phosphosilicate glass matrices for the simultaneous provision of a reinforced chemically active fine-grain crystalline coating structure under conditions of a low-temperature (780 °С) short-term (1,0 ÷ 1,5 min) heat treatment is substantiated. The mechanism of structure and phase formation in model glasses and glass-ceramic coatings, based on them, and the structural rearrangement of the coating surface during the formation of a strong apatite-like layer under in vitro conditions during the first month are established. Optimum technological parameters of obtaining bioactive glass-ceramic coatings for titanium by slip were determined (H = 6.64 GPa, K1C = 2.8 MPa·m1/2, Ra = 3.52 μm, σadg = 15 MPa) and electrophoretic (H = 6, 72 GPa, K1C = 3.0 MPa·m1/2, Ra = 2.86 μm, σadg = 17 MPa) with microbiological testing techniques. Practically confirmed the possibility of using the developed bioactive glass-ceramic coatings on titanium as a member of implants for dental endoprosthetics with a shortened period of fusion of about one month.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sturgeon, Andrew John. "Glass-ceramic coatings for metals." Thesis, University of Warwick, 1987. http://wrap.warwick.ac.uk/34630/.

Повний текст джерела
Анотація:
An investigation was conducted into the coating of metal substrates with a glass-ceramic enamel. Two metal types were coated, a 17% chrome-iron and a low carbon mild steel. The glass-ceramic was based on a complex lithium aluminosilicate glass. The enamel was applied using a vitreous enamelling coating technique, followed by conversion to a glass-ceramic. The coating process strongly influenced the microstructural form developed. For both metal substrate types it was possible to produce coatings which wet well and exhibit good adhesion. Crystalline substrate oxide is observed at the interfaces of these coatings. Abrasion prior to preoxidation is an essential requirement for good coating adhesion on a chrome-iron substrate. The interface region for a coating on chrome-iron exhibits little interaction or microstructural change. -However the coating on mild steel exhibits extensive interaction, with a reaction zone extending into the coating. The marked difference between the two coated substrate types can be explained by the different substrate oxide formed, solubility of the substrate oxide in the coating and nucleating ability of the substrate oxide surface. Addition of adherence oxides (NiO, CoO) to the coating on mild steel was examined. The adherence oxides participate in complex reactions which result in the formation of metallic alloys adjacent the interface. Both adherence oxides promote wetting under conditions where wetting is not possible if they are absent. Nickel oxide is detremental to coating adhesion. This may be related to its ability to cause a rapid dissolution of iron oxide present at the interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Фесенко, Олексій Ігорович. "Склокристалічні покриття по сплавах титану для стоматологічного ендопротезування на основі кальційфосфатосилікатних стекол". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39047.

Повний текст джерела
Анотація:
Дисертаційна робота на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018. Дисертаційну роботу присвячено розробці складів склокристалічних покриттів по сплавах титану на основі кальційфосфатосилікатної скломатриці для стоматологічного ендопротезування та вибору технологічних параметрів їх одержання. Сформульовано комплекс вимог до фізико-хімічних, технологічних і експлуатаційних властивостей біоактивних склокристалічних покриттів по сплавах титану для дентального ендопротезування та обрано оптимальні технології їх нанесення, а саме для суцільноциліндричних імплантатів – шлікерну, а для гвинтових – електрофоретичну технології нанесення. Розроблено систему критеріїв до скломатриці та обґрунтовано вибір склокристалічного типу покриття по титану на основі системи Na2O–K2O–Li2О–CaO–ZnO–CaF2–Al2O3–B2O3–P2O5–SiO2 для одночасного забезпечення формування зміцненої хімічно-активної тонкокристалічної структури покриття в умовах низькотемпературної (780 °С) короткотривалої (1,0 ÷ 1,5 хв) термічної обробки. Встановлено механізм структуро- та фазоутворення в модельних стеклах і склокристалічних покриттях на їх основі. Досліджено особливості структурної перебудови поверхні покриття в процесі формування міцного апатитоподібного шару в умовах in vitro. Визначені оптимальні технологічні параметри одержання біоактивних склокристалічних покриттів по титану за шлікерною (H = 6,64ГПа, K1C = 2,8МПа·м1/2, Ra = 3,52 мкм, σадг = 15 МПа) та електрофоретичною (H = 6,72 ГПа, K1C = 3,0 МПа·м1/2, Ra = 2,86 мкм, σадг = 17 МПа) технологіями нанесення. Практично підтверджена можливість використання розроблених біоактивних склокристалічних покриттів по титану як елементів імплантатів для стоматологічного ендопротезування зі скороченим терміном зрощування близько одного місяця.
Thesis for the degree of Candidate of Technical Sciences in specialty 05.17.11 – technology of refractory nonmetallic materials. – National Technical University "Kharkov Polytechnic Institute", Kharkov, 2018. The thesis is devoted to the development of glass-ceramic coating compositions for titanium alloys based on the system Na2O–K2O–Li2О–CaO–ZnO–CaF2–Al2O3–B2O3–P2O5–SiO2 for dental prosthetics and the choice of technological parameters for their preparation. A set of requirements for the physicochemical, technological and operational properties of bioactive glass-ceramic coatings on titanium alloys for dental endoprosthetics is formulated and optimal methods of their application are chosen, in particular for whole-cylindrical implants – slip, and for screw – electrophoretic technology. A system of criteria for glass matrices has been developed and a choice of a glass-ceramic type of a titanium coating based on calcium phosphosilicate glass matrices for the simultaneous provision of a reinforced chemically active fine-grain crystalline coating structure under conditions of a low-temperature (780 °С) short-term (1,0 ÷ 1,5 min) heat treatment is substantiated. The mechanism of structure and phase formation in model glasses and glass-ceramic coatings, based on them, and the structural rearrangement of the coating surface during the formation of a strong apatite-like layer under in vitro conditions during the first month are established. Optimum technological parameters of obtaining bioactive glass-ceramic coatings for titanium by slip were determined (H = 6.64 GPa, K1C = 2.8 MPa·m1/2, Ra = 3.52 μm, σadg = 15 MPa) and electrophoretic (H = 6, 72 GPa, K1C = 3.0 MPa·m1/2, Ra = 2.86 μm, σadg = 17 MPa) with microbiological testing techniques. Practically confirmed the possibility of using the developed bioactive glass-ceramic coatings on titanium as a member of implants for dental endoprosthetics with a shortened period of fusion of about one month.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hong, Feng. "Interactions between glass-ceramic coatings and metals." Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/108319/.

Повний текст джерела
Анотація:
A study of glass-ceramic coatings on metal substrates was carried out in order to understand how the coatings and substrates interact and how these interactions affect coating microstructures and properties. There are two systems involved. One is a lithium-silicate glass-ceramic coating on Ni/Cr/Co alloy and the other is a lithium-aluminosilicate glass-ceramic coatings (with some other optional compositions) on titanium metal. Simple techniques such as screen printing or the "droplet” method were used to coat the substrates with a layer of fine glass powder, and then a firing procedure followed to create a vitreous enamel layer on the metals. Heat treatment was usually applied to convert the vitreous coating into a highly crystallized, glass- ceramic coating since this generally results in superior properties. Because both the Ni/Cr/Co alloy and titanium metal are active metals, complicated interactions were observed at the coating/metal interface. In the Ni/Cr/Co case. Cr from the substrate tends to diffuse into the coating very rapidly at the firing temperature. The rapid diffusion of mainly Cr++ ions and subsequent change into Cr+++ ions results in saturation of Cr+++ ions in the glass coating. The second oxidation step proceeds more rapidly at the coating surface and LiCr(Si03)2 crystals start to precipitate on the surface of the coating. Mismatch of TEC, thermol expansion coefficient, between LiCr(Si03)2 and the coating causes severe disruption. In addition, some components in the coating, for instance, P2O5, react with Cr to form Cr^Pî. As a result, in the reaction zone, consumption of the intended nucleating agent P2O5 leads to a poorly crystallized structure affecting coating properties. In the titanium system, though long range diffusion across the interface was not observed, the major problem is the reactivity of titanium with coating components including Si( > 2. Direct reaction between titanium and silica gives TisSia as an interfacial layer and the gaseous O2 produced may disrupt the molten glass structure during firing. Other interactions such as Ti/P2Os can also proceed to give other damaging effects. In general, the coating on titanium after firing is usually very porous if these interactions are not prevented. Preoxidation of Ni/Cr/Co alloy created an adherent Cr203 layer on the alloy surface, and this layer is very stable in the coating glass due to its low diffusivity and solubility. The existence of this layer prevented direct contact of alloy and coating at the firing temperature, minimizing interfacial reactions and leading to the desired coating structure. From a chemical point of view, preoxidation of titanium metal can create a barrier of Ti02 between the coating and metal to hinder the formation of Ti5Si3. However, the poor bonding strength of this layer meant that it was ineffective in forming a transition layer between the metal and coating. Furthermore, the Ti02 can be readily dissolved by the coating glass during firing. Addition of an adherence oxide, CoO, was successful in 1) producing Ti02 in situ at the interfacial area and Co/Ti dendrites, both of which are necessary in maintaining chemical as well as mechanical bonding across the interface 2) diverting and hence minimizing the damaging direct reaction between Ti and SiC > 2 because the reaction between Ti and CoO always takes place prior to the reaction between Ti and Si02 thermodynamically. In the systems of glass-ceramic coatings for reactive metal substrates, various complications may occur. In this study, interactions of lithium-silicate/Ni/Cr/Co alloy and a wide range of glass-ceramic coatings/titanium have been studied. Detailed observation has been given together with explanation. Further work has also been suggested so that better understanding and application may generate from what has been observed in this project.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Шадріна, Галина Миколаївна. "Склокристалічні покриття по сплавах титану в системі R₂O – RO – RO₂ – R₂O₃ – P₂O₅ – SіO₂ для кісткового ендопротезування". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21953.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2016 р. Дисертацію присвячено розробленню основ технології одержання склокристалічних покриттів по сплавах титану на основі системи R₂O – RO – RO₂ – R₂O₃ – P₂O₅ – SіO₂ для кісткового ендопротезування. Сформульовано наукові положення одержання кальційсилікофосфатних склокристалічних покриттів як біоактивних компонентів ендопротезів кульшового суглобу та нижньої шелепи. Обрано вихідну склоутворюючу систему та встановлено механізм структуро- і фазоутворення в модельних стеклах та особливості формування на їх основі покриттів по сплавах титану під час термічної обробки. Розроблено технологію одержання біоактивних склокристалічних покриттів з мікро-твердістю H = 6620 ÷ 7050 МПа, параметром тріщиностійкості K1C = 2,01 ÷ 2,73 МПа·м1/2, твердістю за Віккерсом HV = 5440 ÷ 5660 МПа, адгезійною міцністю σадг = 16 ÷ 17 МПа та підтверджено формування апатитоподібного шару на поверхні розроблених покриттів in vitro, що дозволяє використовувати їх в умовах змінних динамічних навантажень.
Thesis for the Candidate of Technical Sciences Degree n specialty 05.17.11 – Technology of refractory nonmetallic materials. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2016. The thesis is dedicated to development of technological bases of obtaining glass-ceramic coatings on titanium alloys in the R₂O – RO – RO₂ – R₂O₃ – P₂O₅ – SіO₂ system for bone endoprostheses. Scientific provisions of obtaining calcium silicophos-phate glass-ceramic coatings as bioactive components of endoprostheses of coxofemo-ral joint and lower jaw bone were defined. Initial glass-forming system was chosen, mechanism of structure- and phase-formation in model glasses and characteristics of coatings formation on their base on titanium alloys during thermal treatment has been established. Technology of bioactive glass-ceramic coatings with microhardness of H = 6620 ÷ 7050 MPa, crack toughness parameter K1C = 2,01 ÷ 2,73 MPa·м1/2, Vickers hardness HV = 5440 ÷ 5660 MPa, adhesive strength σadh 16 ÷ 17 MPa has been developed, formation of apatite-like layer on the surface of developed coatings in vitro has been confirmed which allows their use in conditions of conditions of variable dynamic loads.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kar, Jitendra Kumar. "New environmentally friendly rare earth based ceramic colours for the ceramic and glass industries." Thesis, University of Bath, 2002. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Шадріна, Галина Миколаївна. "Склокристалічні покриття по сплавах титану в системі R₂O – RO – RO₂ – R₂O₃ – P₂O₅ – SіO₂ для кісткового ендопротезування". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21952.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2016 р. Дисертацію присвячено розробленню основ технології одержання склокристалічних покриттів по сплавах титану на основі системи R₂O – RO – RO₂ – R₂O₃ – P₂O₅ – SіO₂ для кісткового ендопротезування. Сформульовано наукові положення одержання кальційсилікофосфатних склокристалічних покриттів як біоактивних компонентів ендопротезів кульшового суглобу та нижньої шелепи. Обрано вихідну склоутворюючу систему та встановлено механізм структуро- і фазоутворення в модельних стеклах та особливості формування на їх основі покриттів по сплавах титану під час термічної обробки. Розроблено технологію одержання біоактивних склокристалічних покриттів з мікро-твердістю H = 6620 ÷ 7050 МПа, параметром тріщиностійкості K1C = 2,01 ÷ 2,73 МПа·м1/2, твердістю за Віккерсом HV = 5440 ÷ 5660 МПа, адгезійною міцністю σадг = 16 ÷ 17 МПа та підтверджено формування апатитоподібного шару на поверхні розроблених покриттів in vitro, що дозволяє використовувати їх в умовах змінних динамічних навантажень.
Thesis for the Candidate of Technical Sciences Degree n specialty 05.17.11 – Technology of refractory nonmetallic materials. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2016. The thesis is dedicated to development of technological bases of obtaining glass-ceramic coatings on titanium alloys in the R₂O – RO – RO₂ – R₂O₃ – P₂O₅ – SіO₂ system for bone endoprostheses. Scientific provisions of obtaining calcium silicophos-phate glass-ceramic coatings as bioactive components of endoprostheses of coxofemo-ral joint and lower jaw bone were defined. Initial glass-forming system was chosen, mechanism of structure- and phase-formation in model glasses and characteristics of coatings formation on their base on titanium alloys during thermal treatment has been established. Technology of bioactive glass-ceramic coatings with microhardness of H = 6620 ÷ 7050 MPa, crack toughness parameter K1C = 2,01 ÷ 2,73 MPa·м1/2, Vickers hardness HV = 5440 ÷ 5660 MPa, adhesive strength σadh 16 ÷ 17 MPa has been developed, formation of apatite-like layer on the surface of developed coatings in vitro has been confirmed which allows their use in conditions of conditions of variable dynamic loads.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lin, Meng-shan, and 林孟姍. "Coating of high viscosity, low thermal expansion glass-ceramic on ceramic substrates." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/58626747364798344307.

Повний текст джерела
Анотація:
碩士
大同大學
材料工程學系(所)
98
Solar modules made from thin - film crystalline - silicon layers on low - manufacturing cost substrates could decrease the cost of photovoltaic electricity if sufficiently high efficiencies could be reached. The main factors that affect the efficiency of solar modules are grain size and the preferred orientation of c-Si thin-film, which depends on the surface roughness of substrates and methods of depositing silicon film. In this work, spinel glass-ceramic produced from compositions of SiO2-Al2O3-ZnO-MgO-TiO2-ZrO2 system is used as a buffer layer between ceramic substrate and silicon thin - film. The glass - ceramic possess thermal expansion coefficients (CTE) of 30-52 × 10-7 K-1, which matches the CTE of both silicon and ceramic substrate. As the results, the surface roughness (Rq=0.8 nm) of glass-ceramic made by a two-stage heat treatment is smaller than that made by a single stage (Rq=3.1 nm). Besides, The glass transition temperature (Tg) of residual glass could be up to 1037 °C by a two – stage heat treatment. The crystallization of amorphous silicon films deposited by RF magnetron sputtering on buffer layers is studied by thermal annealing in the temperature range between 750 °C and 1200 °C for epitaxial growth. The epitaxy was carried out using a tube conventional furnace. And X-ray diffraction technique was used to determine the preferential orientation and grain size of the c-Si thin-film. The preferential orientation is <220> for all heat treatment temperature. And the grain size is increased by the increment of annealing temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Glass-ceramic coating"

1

Sturgeon, Andrew John. Glass-ceramic coatings for metals. [s.l.]: typescript, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hong, Feng. Interactions between glass-ceramic coatings and metals. [s.l.]: typescript, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1941-, Boulos Edward N., Platts Dennis R, and International Conference on Processing Materials for Properties (1st : 1993 : Honolulu, Hawaii), eds. Glass and optical materials II: Optoelectronics, thin film coating, sol-gel processing. Westerville, Ohio: American Ceramic Society, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

International Conference on Processing Materials for Properties 1993 (Corporate Author), Edward N. Boulos (Editor), and Dennis R. Platts (Editor), eds. Glass and Optical Materials II: Optoelectronics, Thin Film Coating Sol-Gel Processing. American Ceramic Society, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Glass-ceramic coating"

1

Vargas-Bernal, Rafael, Ana María Arizmendi-Morquecho, Jose Martín Herrera-Ramírez, and Bárbara Bermúdez-Reyes. "Glass–Ceramic Protective Coating for Satellite System as a Thermal Insulator." In Southern Space Studies, 101–16. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97959-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zeiler, G., H. J. Pesch, and U. Gross. "Cement-Free Fixation of Cup-Prosthesis with Glass Ceramic Coating in Dogs." In Biomechanics: Current Interdisciplinary Research, 135–40. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-7432-9_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Ji Hua, Bin Zhang, Zhi Hao Jin, Ji Qiang Gao, and San Jun Zhao. "Effect of Surface Roughness on Matching Properties between Ceramic Framework and Coating-Glass for Dental Applications." In Key Engineering Materials, 1603–5. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Verné, Enrica. "Bioactive Glass and Glass-Ceramic Coatings." In Bio-Glasses, 107–19. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118346457.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gadow, R., A. Killinger, and C. Li. "Plasma Sprayed Ceramic Coatings on Glass and Glass Ceramic Substrates." In Ceramic Transactions Series, 15–30. 735 Ceramic Place, Westerville, Ohio 43081: The American Ceramic Society, 2012. http://dx.doi.org/10.1002/9781118370872.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gajek, Martin, Janusz Partyka, and Jerzy Lis. "Microstructure and High-Strength Glass-Ceramic Coatings." In Developments in Strategic Materials and Computational Design V, 169–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119040293.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stanton, Kenneth T., and Jean François Vanhumbeeck. "Bioactive Apatite-Mullite Glass-Ceramic Coatings on Titanium Substrates." In Advances in Science and Technology, 1275–80. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.1275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kobayashi, Akira, Toshio Kuroda, Hisamichi Kimura, and Akihisa Inoue. "Microstructure and Properties of a Ni-Based Metallic Glass Coating Produced by Gas Tunnel Type Plasma Spraying." In Ceramic Transactions Series, 37–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470917145.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Soontornworajit, Boonchoy, Thammarat Panyathanmaporn, Angkhana Jaroenworaluck, and Sitthisuntorn Supothina. "Preparation of TiO2 Coating on Glass Substrate by Non-Aqueous Sol and Comparison of Controled Atmosphere and Microwave Drying Technique." In Ceramic Transactions Series, 225–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144107.ch23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weiss, Charles A., Sean W. Morefield, Philip G. Malone, Karen S. Henry, Sean P. Harte, and Michael L. Koenigstein. "Use of Glass-Ceramic Coatings Containing Water-Reactive Components as a Bonding Layer Between Concrete and Metal." In Advanced Ceramic Coatings and Interfaces V, 187–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470943960.ch15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Glass-ceramic coating"

1

Kuznetsova, Marta, and Iryna Lutsyuk. "Corrosion Resistant Two-Layer Glass-Ceramic Coating." In Chemical technology and engineering. Lviv Polytechnic National University, 2019. http://dx.doi.org/10.23939/cte2019.01.178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gawne, D. T., Z. Qiu, T. Zhang, Y. Bao, and K. Zhang. "Abrasive Wear Resistance of Plasma-Sprayed Glass-Composite Coatings." In ITSC 2000, edited by Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0977.

Повний текст джерела
Анотація:
Abstract A ball-milled mixture of glass and alumina powders has been plasma sprayed to produce alumina-glass composite coatings. The coatings have the unique advantage of a melted ceramic secondary phase parallel to the surface in an aligned platelet composite structure. The alumina raises the hardness from 300HV for pure glass coatings to 900HV for a 60wt% alumina-glass composite coating. The scratch resistance increases by a factor of three and the wear resistance by a factor of five. The glass wears by the formation and intersection of cracks. The alumina wears by fine abrasion and supports most of the sliding load. The wear resistance reached a plateau at 40-50vol% alumina, which corresponds to the changeover from a glass to a ceramic matrix. Keywords: glass composite coatings, wear, thermal spraying
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bose, P. K., R. A. Beg, S. K. Saha, B. B. Ghosh, S. K. Das, and Amitava Majumdar. "Glass Ceramic Coating-an Alternative to Plasma Spray for Internal Combustion Engine Components." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-2918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gadow, R., A. Killinger, A. Voss, and C. Friedrich. "Combined Metallurgical and Ceramic Coating in the Development of Tubular Ozone Generators." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1083.

Повний текст джерела
Анотація:
Abstract This paper discusses the development of a metal-coated glass tube that produces ozone more economically than traditional methods. It describes the principle of ozone generation, provides information on ozonizer tubes, and presents the criteria for selecting thermal spray powders. It examines the properties of several multilayer coatings consisting of an oxide ceramic top layer, an Al/Si interlayer, and a borosilicate glass substrate. It was found that the porosity and surface roughness of the oxide layer have a significant impact on the dielectric strength of the composite and the efficiency of the ozone-producing tube.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Juoi, J. M., N. F. Ayoob, Z. M. Rosli, N. R. Rosli, and K. Husain. "The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition." In THE 2ND INTERNATIONAL CONFERENCE ON FUNCTIONAL MATERIALS AND METALLURGY (ICoFM 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4958752.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lippens, P., and C. Frei. "Comparison of ITO Coating Properties Obtained with Planar and Rotary Magnetrons on the Same Dynamic Glass Coating Line Using Sintered Ceramic Targets." In Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2014. http://dx.doi.org/10.14332/svc14.proc.1823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berreth, K., M. Buchmann, R. Gadow, and J. Tabellion. "Evaluation of Residual Stresses in Thermal Sprayed Coatings." In ITSC 1999, edited by E. Lugscheider and P. A. Kammer. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 1999. http://dx.doi.org/10.31399/asm.cp.itsc1999p0670.

Повний текст джерела
Анотація:
Abstract Thermal spraying offers the possibility of applying functional metal, ceramic or cermet coatings to components with different geometries and materials and significantly improving their thermal, mechanical, and chemical properties. The performance in operation as well as failure due to deformation, cracks, and delamination are mostly determined by the internal stress state within the coated components. This paper reviews coating developments on light metal and glass substrates, sprayed with different atmospheric plasma spray process spray parameters are reviewed. The results show that from the numerical and experimental residual stress analysis, the injection parameters can be influenced individually. This leads to optimized residual stress states in the coated components with regard to the expected operating loads. Paper includes a German-language abstract.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kotoka, R., S. Fialkova, S. Neralla, S. Yarmolenko, D. Pai, and J. Sankar. "Structural, Mechanical and Corrosion Properties of Mg/SiO2 and MgO/SiO2 Multilayer Coatings for Magnesium Implant Devices." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51767.

Повний текст джерела
Анотація:
In this study, Mg/SiO2 and MgO/SiO2 multilayer coatings with bilayer thicknesses (Λ) 10, 20, 40, 100, 200 and 1000 nm were deposited on glass substrates using DC and reactive pulsed DC magnetron sputtering processes. The aim of these coatings is to control the initial degradation and provide mechanical strength to magnesium implant during handling and installation. The initial thickness calibrations and deposition rates optimization were conducted using stylus profilometer. After deposition of the multilayer coatings, the values of their bilayer thicknesses (Λ) were obtained from X-ray reflectometery. The mechanical properties, surface morphology and roughness of multilayer coatings were studied using nanoindentation, SEM and AFM respectively. The nanoindentation results showed higher hardness of MgO/SiO2 multilayer coatings compared to single layer Mg. The roughness analyses showed improved roughness for bilayer thicknesses (Λ) less than 20 nm. It was observed from the SEM images that SiO2 coatings has pores. By adding Mg and/or MgO in the form of multilayers improves the pores significantly. The Mg/SiO2 multilayer coatings showed controlled degradation rate when immersed in saline solution compared to the monolithic SiO2 coating. In conclusion, conditions for depositing Mg/SiO2 and MgO/SiO2 multilayer coatings has been optimized. Alternating brittle SiO2 ceramic layers with soft and ductile Mg layers significantly improved the hardness of the Mg coating. Hardness of multilayer coatings can be fine-tuned by modifying bilayer thicknesses. Significant improvement in the corrosion and mechanical properties of the multilayer coatings can be used to protect surface of magnesium implant material during handling, storage and installation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berkovsky, E. "Protective glass coatings for circuits on ceramic substrates." In 8th Meeting in Israel on Optical Engineering, edited by Moshe Oron, Itzhak Shladov, and Yitzhak Weissman. SPIE, 1993. http://dx.doi.org/10.1117/12.151103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Van Roode, Mark, Jeffrey R. Price, and Christopher Stala. "Ceramic Oxide Coatings for the Corrosion Protection of Silicon Carbide." In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-038.

Повний текст джерела
Анотація:
Silicon carbide is currently used as a structural material for heat exchanger tubes and related applications because of its excellent thermal properties and oxidation resistance. Silicon carbide suffers corrosion degradation, however, in the aggressive furnace environments of industrial processes for aluminum remelting, advanced glass melting, and waste incineration. Adherent ceramic oxide coatings developed at Solar Turbines Incorporated with the support of the Gas Research Institute, have shown to afford corrosion protection to silicon carbide in a simulated aluminum remelt furnace environment as well as in laboratory type corrosion testing. The coatings are also protective to silicon carbide-based ceramic matrix composites.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії