Добірка наукової літератури з теми "Ghrelin signaling"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ghrelin signaling".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ghrelin signaling"
Hougland, James L. "Ghrelin octanoylation by ghrelin O-acyltransferase: Unique protein biochemistry underlying metabolic signaling." Biochemical Society Transactions 47, no. 1 (January 9, 2019): 169–78. http://dx.doi.org/10.1042/bst20180436.
Повний текст джерелаHolliday, Nicholas D., Birgitte Holst, Elena A. Rodionova, Thue W. Schwartz, and Helen M. Cox. "Importance of Constitutive Activity and Arrestin-Independent Mechanisms for Intracellular Trafficking of the Ghrelin Receptor." Molecular Endocrinology 21, no. 12 (December 1, 2007): 3100–3112. http://dx.doi.org/10.1210/me.2007-0254.
Повний текст джерелаHolst, Birgitte, Erik Brandt, Anders Bach, Anders Heding, and Thue W. Schwartz. "Nonpeptide and Peptide Growth Hormone Secretagogues Act Both as Ghrelin Receptor Agonist and as Positive or Negative Allosteric Modulators of Ghrelin Signaling." Molecular Endocrinology 19, no. 9 (September 1, 2005): 2400–2411. http://dx.doi.org/10.1210/me.2005-0059.
Повний текст джерелаHeldsinger, Andrea, Gintautas Grabauskas, Xiaoyin Wu, ShiYi Zhou, Yuanxu Lu, Il Song, and Chung Owyang. "Ghrelin Induces Leptin Resistance by Activation of Suppressor of Cytokine Signaling 3 Expression in Male Rats: Implications in Satiety Regulation." Endocrinology 155, no. 10 (October 1, 2014): 3956–69. http://dx.doi.org/10.1210/en.2013-2095.
Повний текст джерелаWu, Chia-Shan, Jiyeon Noh, Ellie Tuchaai, Jennifer A. DeLuca, Kimberly F. Allred, Clinton D. Allred, and Yuxiang Sun. "SUPPRESSION OF GHRELIN SIGNALING EXACERBATES ULCERATIVE COLITIS IN OLDER MICE." Innovation in Aging 3, Supplement_1 (November 2019): S87. http://dx.doi.org/10.1093/geroni/igz038.334.
Повний текст джерелаLin, Tsung-Chieh, Yuan-Ming Yeh, Wen-Lang Fan, Yu-Chan Chang, Wei-Ming Lin, Tse-Yen Yang, and Michael Hsiao. "Ghrelin Upregulates Oncogenic Aurora A to Promote Renal Cell Carcinoma Invasion." Cancers 11, no. 3 (March 4, 2019): 303. http://dx.doi.org/10.3390/cancers11030303.
Повний текст джерелаMadison, Lisa D., Jarrad M. Scarlett, Peter Levasseur, XinXia Zhu, Kenneth Newcomb, Ayesha Batra, Darren Bowe, and Daniel L. Marks. "Prostacyclin signaling regulates circulating ghrelin during acute inflammation." Journal of Endocrinology 196, no. 2 (November 19, 2007): 263–73. http://dx.doi.org/10.1677/joe-07-0478.
Повний текст джерелаXu, Geyang, Yin Li, Wenjiao An, Shenduo Li, Youfei Guan, Nanping Wang, Chaoshu Tang, et al. "Gastric Mammalian Target of Rapamycin Signaling Regulates Ghrelin Production and Food Intake." Endocrinology 150, no. 8 (April 30, 2009): 3637–44. http://dx.doi.org/10.1210/en.2009-0372.
Повний текст джерелаSuzuki, Hajime, Akihiro Asakawa, Namiko Kawamura, Takakazu Yagi, and Akio Inui. "Hesperidin Potentiates Ghrelin Signaling." Recent Patents on Food, Nutrition & Agriculture 6, no. 1 (December 10, 2014): 60–63. http://dx.doi.org/10.2174/2212798406666140825120623.
Повний текст джерелаGluck, Elizabeth F., Natalie Stephens, and Steven J. Swoap. "Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 291, no. 5 (November 2006): R1303—R1309. http://dx.doi.org/10.1152/ajpregu.00232.2006.
Повний текст джерелаДисертації з теми "Ghrelin signaling"
Marion, Candice. "Novel insights on ghrelin receptor signaling in energy homeostasis and feeding behavior using the GhsrQ343X mutant rat model." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB109.
Повний текст джерелаThe stomach-derived hormone acyl ghrelin promotes body weight gain, mostly in the form of fat mass, by means of several central and peripheral mechanisms mediated by the growth hormone secretagogue receptor (GHSR). The GHSR is a G protein-coupled receptor that, in addition to respond to acyl ghrelin, displays agonist-independent signaling through high constitutive activity and possibly heteromerization with dopamine receptors. Despite the potent biological properties of exogenous acyl ghrelin, the lack of animal models able to apprehend the complexity of the acyl ghrelin-GHSR system in vivo has been hampering the elucidation of its physiological roles. Indeed, genetic mouse models generated so far lack specificity either at the level of the hormone (not able to discriminate between acyl ghrelin versus desacyl ghrelin) and/or at the level of the GHSR (not able to discriminate between GHSR signaling modes). In this context, new models differentially affecting GHSR signaling pathways would represent valuable tools to decipher the acyl ghrelin-GHSR system in vivo. We therefore aimed at characterizing a new rat model carrying a point mutation in Ghsr that predicts truncation of a regulatory domain in the C-terminus, the GhsrQ343X mutation. In cellular models, this mutation was found to uncouple the GHSR from agonist-dependent receptor internalization and β-arrestin recruitment, while enhancing GHSR responsiveness in the G protein pathway. Accordingly, homozygous mutant GhsrM/M rats show enhanced responsiveness to exogenous GHSR agonists in terms of growth hormone release, food intake and locomotor activity. Physiological and behavioral exploration of GhsrM/M rats supports that the GhsrQ343X mutation is associated with increased body weight gain and adiposity independently of calorie intake, reduced whole-body fat oxidation, metabolic flexibility and glucose tolerance, without any critical impact on homeostatic feeding behavior. Moreover, given that circulating ghrelin levels are not increased by the GhsrQ343X mutation, the overall metabolic phenotype of GhsrM/M rats is consistent with enhanced GHSR sensitivity to the endogenous tone of acyl ghrelin. Furthermore, preliminary results suggest that the GhsrQ343X mutation could be associated with behavioral alterations related to reward and memory functions, through mechanisms that remain to be elucidated. Altogether, we propose the GhsrQ343X mutant rat model as a novel tool, more specific than knockout mouse models in its mechanism-of-action, to explore GHSR signaling across biological functions in vivo, and ultimately help in the design of efficient GHSR-targeting drugs
de, Amorim Laura Miranda. "The roles of the preproghrelin-derived peptides - ghrelin, desacyl ghrelin and obestatin - in prostate cancer." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/53260/1/Laura_de_Amorim_thesis.pdf.
Повний текст джерелаLassman, Daniel James. "Gut-Brain Signalling in Man: The Roles of Lipid, Cholecystokinin and Ghrelin." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492929.
Повний текст джерелаQu, Mengdi. "Molecular mechanism underlying CaMK1D-dependent function in AgRP neurons." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ029.
Повний текст джерелаDisruption of stress response mechanisms in organisms can lead to cellular dysfunction and diseases like metabolic syndrome. Energy balance is mainly regulated by the central nervous system (CNS), which integrates hormonal, neuronal, and dietary signals from various tissues. Dysfunction in this system is linked to obesity and metabolic syndrome, both precursors to type 2 diabetes (T2D). Our laboratory discovered that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a gene associated with T2D, promotes ghrelin-mediated food intake in mice. However, CaMK1D signaling in NPY/AgRP neurons still remains questions. In this work, we proformed RNA sequencing using the GT1-7 hypothalamic cell line. To this end, we found that CalHM6 is a downstream target of CaMK1D signaling. CalHM6 mRNA levels were significantly upregulated in CaMK1D-/- cells and downregulated when CaMK1D was re-expressed. This was confirmed in vivo in the hypothalamus of CaMK1D-/- mice. CalHM6, likely a voltage-gated calcium channel, showed increased intracellular Ca2+ levels in response to ghrelin in CaMK1D-/- cells compared to CaMK1D+/+ cells using jGCamps method. Altogether, our work showed CalHM6 is a novel target of CaMK1D. High CaMK1D, leading to low CalHM6 expression, may enhance food intake and obesity by modulating calcium-dependent signaling in NPY/AgRP neuron
Walpole, Carina Maree. "The function and mechanisms of action of ghrelin and obestatin in ovarian cancer." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/63497/1/Carina_Walpole_Thesis.pdf.
Повний текст джерелаKaiser, Julia Marion [Verfasser]. "Ghrelin beeinflusst die pankreatische Betazelle durch Modulation von KATP-Kanälen über den cAMP/PKA Signalweg / Julia Marion Kaiser." Tübingen : Universitätsbibliothek Tübingen, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-968490.
Повний текст джерелаCunningham, Peter Stephen. "The ghrelin receptor isoforms (GHS-R1a and GHS-R1b) and GPR39 : an investigation into receptor dimerisation." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/39443/1/Peter_Cunningham_Thesis.pdf.
Повний текст джерелаBörner, Sabina. "Untersuchungen zum Zusammenhang zwischen Fettmobilisierung und futteraufnahmesteigernden Signalen bei der Milchkuh im peripartalen Zeitraum." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-144728.
Повний текст джерелаRibeiro, Luís Filipe da Silva. "A Link Between Metabolic Signaling and Cognition: The Hippocampal Function of Ghrelin." Doctoral thesis, 2013. http://hdl.handle.net/10316/24357.
Повний текст джерелаPeptide hormones such as insulin, leptin and ghrelin are well known for their role in the regulation of appetite. Recent evidence suggests that these peptides, in addition to acting on the hypothalamus to modulate food intake, may play wider roles in modulating brain functions. Ghrelin, a 28 amino acids peptide, is a regulator of growth hormone release, and an appetite-stimulating hormone, secreted from the empty stomach. Recent data show that ghrelin enters the hippocampus, enhancing hippocampal-dependent memory processes. Thus, ghrelin may represent the molecular link between learning capabilities associated to feeding behavior and energy metabolism, ensuring the ability to locate food sources, remember those locations, and recall whether all available food has been consumed, which are evolutionarily important skills for survival. However the molecular mechanisms that underlie the effects of ghrelin as a hippocampal cognitive enhancer are still not completely understood. Immunocytochemistry analysis showed that the ghrelin receptor presents a punctate distribution in hippocampal cultured neurons, with a significant population of ghrelin receptors localized to glutamatergic synapses. Moreover, the ghrelin receptor was found in synaptic fractions obtained from adult rat hippocampi. This synaptic localization of the ghrelin receptor suggests a possible involvement of ghrelin in modulating excitatory synaptic transmission. To start testing this hypothesis hippocampal cultured neurons were treated with a ghrelin receptor agonist (MK-0677) and quantitative immunofluorescence analysis was performed to analyze the synaptic cell surface expression of GluA1, a subunit of the AMPA-type glutamate receptors (AMPARs). Treatment with MK-0677 led to an increase in cell surface GluA1 levels colocalized with an excitatory synaptic marker. To directly determine whether ghrelin induces the delivery of new AMPARs into synapses, the GFP-tagged GluA1 subunit (GluA1-GFP) was expressed in CA1 neurons in organotypic hippocampal slice cultures. Slice treatment with ghrelin or with the ghrelin receptor agonist increased the synaptic delivery of homomeric GluA1-GFP AMPARs in activitydependent manner. These data strongly suggest that activation of the orexigenic ghrelin hormone receptor induces synaptic delivery of GluA1-containing AMPARs. To test whether ghrelin receptor activation produces a functional change at excitatory CA3-CA1 synapse, organotypic hippocampal slices were treated with the ghrelin receptor agonist and electrophysiological recordings were performed. Synaptic responses were evoked, and the ratios between AMPA/NMDA and NMDA/GABA currents recorded from CA1 neurons were calculated. The AMPA/NMDA ratio of synaptic responses significantly increased after MK-0677 treatment, while the NMDA/GABA ratio was found to be unaltered. Altogether, these results suggest that the ghrelin receptor activation increases AMPARs-mediated synaptic transmission in the hippocampus, by inducing delivery of GluA1-containing AMPARs receptors into synapses. Moreover, we found that MK-0677 treatment dramatically enhanced NMDARsdependent long-term potentiation (LTP) expression in the hippocampal CA3-CA1 synapse. Agonist application also increased the synaptic trafficking of endogenous GluA1-containing AMPARs in hippocampal cultured neurons upon chemical LTP induction (a model for LTP in hippocampal cultures). These findings suggest that ghrelin receptor activation increases the AMPARs delivery to synapses, facilitating the expression of LTP-like events. Given that changes in synaptic strength are considered the cellular substrate for memory storage in the brain, the effect of ghrelin receptor activation on hippocampal synaptic plasticity may underlie the cognition enhancing properties of ghrelin. The changes in AMPARs trafficking, and consequent functional alterations in hippocampal excitatory synaptic transmission and LTP expression, triggered by ghrelin receptor activation, were accompanied by increases in the phosphorylation of GluA1, as well as in the AMPARs-associated protein stargazin. Moreover, we observed an increase in the activation of the signalling pathways responsible for the phosphorylation of these molecular targets, which are known to be required for the induction of AMPARs synaptic trafficking, and for LTP expression. Finally, we obtained evidence for a developmentally regulated function of ghrelin receptor activation on AMPARs-mediated synaptic transmission. Whereas in young hippocampal slices the action of the ghrelin receptor is dependent on ligand-dependent activation, in more mature hippocampal slices the constitutive activity of the ghrelin receptor regulates AMPAR-mediated transmission. In conclusion, these findings point to a scenario in which the cognitive enhancing properties of ghrelin are likely mediated by its potential to increase the synaptic trafficking of GluA1-containing AMPARs, one of the most well characterized cellular processes required for the long lasting changes in synaptic strength underlying learning and memory formation.
Hormonas peptídicas como a insulina, leptina e grelina são sobretudo conhecidas pela sua função na regulação do apetite. No entanto evidências experimentais recentes têm sugerido que estes peptídeos, para além da sua função no hipotálamo como moduladores do apetite, podem também desempenhar amplos papéis na modulação das funções cerebrais. A grelina, um peptídeo de 28 aminoácidos, é um regulador da libertação da hormona de crescimento, e um estimulador do apetite secretado a partir do estômago vazio. Observações experimentais recentes demonstram que a grelina entra no hipocampo, melhorando processos de memória dependentes desta estrutura cerebral. Deste modo, a grelina pode representar a associação molecular entre capacidades de aprendizagem e o comportamento alimentar e metabolismo energético. Esta associação poderá ser importante no sentido de assegurar a capacidade de localizar fontes de alimento, de recordar tais locais e se todo o alimento disponível foi consumido. Estas capacidades constituem importantes aptidões evolutivas que permitem a sobrevivência. Contudo, os mecanismos moleculares que estão na base dos efeitos da grelina como agente potenciador das capacidades cognitivas relacionadas com o hipocampo não se encontram ainda completamente esclarecidos. Estudos de imunocitoquímica demonstraram que o receptor da grelina apresenta uma distribuição ponteada em neurónios do hipocampo em cultura, com uma fracção significativa do receptor a localizar-se em sinapses glutamatérgicas. Além disso, o receptor da grelina foi identificado em fracções sinápticas purificadas a partir de hipocampo de ratos adultos. Este padrão de localização sináptica do receptor da grelina sugere uma possível função da grelina na modulação da transmissão sináptica excitatória. Para testar esta hipótese começámos por tratar culturas de neurónios do hipocampo com um agonista do receptor da grelina (MK-0677), e realizámos uma análise de imunofluorescência quantitativa com o objectivo de avaliar a expressão superficial sináptica de GluA1, uma subunidade dos receptores de glutamato do tipo AMPA (AMPARs). Recorrendo a esta abordagem experimental observámos que o tratamento com MK-0677 levou a um aumento dos níveis de GluA1 à superfície dos neurónios e na sinapse. Com o objectivo de determinar directamente se a grelina induz a inserção de novos AMPARs na sinapse, a subunidade GluA1 ligada a GFP (GluA1-GFP) foi expressa em neurónios da região CA1 em fatias organotípicas do hipocampo. Observámos que o tratamento com grelina, ou com o agonista do receptor da grelina, aumentam a inserção sináptica de AMPARs homoméricos contendo GluA1-GFP. Estes resultados sugerem fortemente que a activação do receptor da grelina induz a inserção sináptica de AMPARs que contêm a subunidade GluA1. Com o objectivo de verificar se a activação do receptor da grelina produz uma alteração funcional na sinapse CA3-CA1 do hipocampo, fatias organotípicas foram incubadas com o agonista, e em seguida foram realizados registos electrofisiológicos. Após a indução de respostas sinápticas a partir de neurónios da região CA1, os rácios entre as correntes mediadas por receptores do tipo AMPA/NMDA e NMDA/GABA foram calculados. Observámos que o rácio entre as correntes AMPA/NMDA aumentou após o tratamento com MK-0677, enquanto o rácio entre as correntes NMDA/GABA não se alterou. No seu conjunto, estes resultados demonstram que a activação do receptor da grelina aumenta a transmissão sináptica mediada por receptores do tipo AMPA no hipocampo, através da inserção sináptica de AMPARs que contêm GluA1. Observámos também que o tratamento com MK-0677 aumenta dramaticamente a expressão da potenciação de longa duração (LTP) dependente de receptores de glutamato do tipo NMDA na sinapse CA3-CA1 do hipocampo. Além disso, verificámos que após indução de LTP químico (um modelo de LTP para neurónios do hipocampo em cultura), em neurónios previamente sujeitos ao agonista, existe um aumento do endereçamento sináptico de receptores endógenos do tipo AMPA contendo a subunidade GluA1. Este resultado experimental demonstra que a activação do receptor da grelina aumenta a inserção sináptica de AMPARs, o que leva à facilitação da expressão de eventos relacionados com LTP. Uma vez que alterações na força sináptica são consideradas como sendo o alvo celular para o armazenamento de memória no cérebro, o efeito da activação do receptor da grelina na plasticidade sináptica do hipocampo poderá justificar a acção da grelina como um agente potenciador da cognição. As alterações causadas pela activação do receptor da grelina, no tráfego de receptores do tipo AMPA e que alteram as características funcionais da transmissão sináptica excitatória e a expressão de LTP, foram acompanhadas por aumentos quer na fosforilação de GluA1, quer na fosforilação de uma proteína associada aos receptores do tipo AMPA, designada por stargazina. Além disso, observámos também a activação das vias de sinalização responsáveis pela fosforilação destes alvos moleculares, os quais se sabe serem necessários para a indução de inserção sináptica de AMPARs e expressão de LTP. Finalmente, obtivemos evidências que indicam que a função do receptor da grelina na regulação da transmissão sináptica mediada por receptores do tipo AMPA no hipocampo é regulada ao longo do desenvolvimento. Enquanto em fatias organotípicas do hipocampo mais jovens as acções mediadas pelo receptor são dependentes do ligando, em fatias mais velhas é a actividade constitutiva do receptor da grelina que regula a transmissão mediada por AMPARs. Em conclusão as observações experimentais aqui descritas sugerem que as propriedades da grelina como agente potenciador da cognição são mediadas pela sua capacidade de aumentar a inserção sináptica de receptores do tipo AMPA que contêm GluA1 no hipocampo. Este processo celular é um dos mais bem caracterizados como sendo necessário para as alterações de longa duração na força sináptica que estão na base da formação de memória e aprendizagem.
Shah, Samiksha. "A hunger hormone that attenuates conditioned fear?: investigating the role of ghrelin receptor signaling in the acquisition and consolidation of fear memory." Thesis, 2017. https://hdl.handle.net/2144/23989.
Повний текст джерелаКниги з теми "Ghrelin signaling"
Beninger, Richard J. Dopamine receptor subtypes and incentive learning. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824091.003.0007.
Повний текст джерелаЧастини книг з теми "Ghrelin signaling"
Fang, Chuo, Hang Xu, Shaodong Guo, Susanne U. Mertens-Talcott, and Yuxiang Sun. "Ghrelin Signaling in Immunometabolism and Inflamm-Aging." In Advances in Experimental Medicine and Biology, 165–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1286-1_9.
Повний текст джерелаDezaki, Katsuya, Boldbaatar Damdindorj, Tomoyuki Kurashina, and Toshihiko Yada. "Ghrelin’s Novel Signaling in Islet β-Cells to Inhibit Insulin Secretion and Its Blockade As a Promising Strategy to Treat Type 2 Diabetes." In Ghrelin in Health and Disease, 51–71. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-903-7_3.
Повний текст джерела"Ghrelin Receptor." In Encyclopedia of Signaling Molecules, 2062. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101438.
Повний текст джерелаMendiratta, Meenal Shewale, Shivam Manilal Patel, and Jose Manuel Garcia. "Ghrelin: Effects and Mechanisms of Action in Tumor-Induced Cachexia." In BASIC/TRANSLATIONAL - Growth Factors, Cytokines & Intracellular Signaling, P2–90—P2–90. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part2.p24.p2-90.
Повний текст джерелаDezaki, Katsuya, and Toshihiko Yada. "Islet β-Cell Ghrelin Signaling for Inhibition of Insulin Secretion." In Methods in Enzymology, 317–31. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-381272-8.00020-9.
Повний текст джерелаEvron, Tama, Nikhil M. Urs, Laurie Sutton, Yushi Bai, Marc G. Caron, and Larry S. Barak. "β-arrestin Regulation of Ghrelin Signaling in modulating Addictive Behavior." In Catecholamine Research in the 21st Century, 184. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-800044-1.00167-7.
Повний текст джерелаAndrade, Sara, Marcos Couselo Carreira, Andreia Ribeiro, Luzia Teixeira, Duarte Monteiro, Mary Lage, Felipe Casanueva, and Mariana P. Monteiro. "Development of an Anti-Ghrelin Vaccine for Obesity Treatment." In BASIC/TRANSLATIONAL - Hypothalamic Signaling in Feeding Behavior & Metabolic Regulation, P2–305—P2–305. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part2.p34.p2-305.
Повний текст джерелаNass, Ralf, Jianhua Liu, Suzan Pezzoli, Leon Farhi, Bruce Gaylinn, and Michael Thorner. "Inhibition of Acyl-Ghrelin Release in Healthy Young Adults during Euglycemic Hyperinsulinemic Clamp." In BASIC/TRANSLATIONAL - Hypothalamic Signaling in Feeding Behavior & Metabolic Regulation, P2–308—P2–308. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part2.p34.p2-308.
Повний текст джерелаLambert, Charles. "Attenuating Cancer Cachexia-Prolonging Life." In Frailty and Sarcopenia - Recent Evidence and New Perspectives. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101250.
Повний текст джерелаPiper, Paul K., Ichiro Sakata, Jen-Chieh Chuang, Sherry Rovinsky, Sherri Osborne-Lawrence, Chelsea Clemens, and Jeffrey Zigman. "Studying Physiologic Signals for Ghrelin Secretion Using a Novel Genetic Mouse Model of Hyperghrelinemia." In BASIC/TRANSLATIONAL - Hypothalamic Signaling in Feeding Behavior & Metabolic Regulation, P2–292—P2–292. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part2.p34.p2-292.
Повний текст джерелаТези доповідей конференцій з теми "Ghrelin signaling"
Pinheiro, Amanda Pereira Sindeaux, Pedro Vitor Ferreira Rodrigues, Raoni de Oliveira da Silva Domingues, and Leonardo José Rodrigues Araújo Melo. "Gastrointestinal dysmotility associated with Parkinson’s disease’s mechanism." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.461.
Повний текст джерелаPatil, Rashmi, Urmila M. Aswar, and Nishant Vyas. "Pterostilbene alleviates Cafeteria diet-induced Obesity and underlying Depression in Adolescent mice through SIRT1 mediated Leptin-Ghrelin signalling pathway." In ASPET 2024 Annual Meeting Abstract. American Society for Pharmacology and Experimental Therapeutics, 2024. http://dx.doi.org/10.1124/jpet.305.934770.
Повний текст джерела