Добірка наукової літератури з теми "Géométrie riemannienne et barycentrique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Géométrie riemannienne et barycentrique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Géométrie riemannienne et barycentrique"
Cordero-Erausquin, Dario. "Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne." Séminaire de théorie spectrale et géométrie 22 (2004): 125–52. http://dx.doi.org/10.5802/tsg.349.
Повний текст джерелаBonnard, Bernard, and Monique Chyba. "Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 245–334. http://dx.doi.org/10.1051/cocv:1999111.
Повний текст джерелаДисертації з теми "Géométrie riemannienne et barycentrique"
Maignant, Elodie. "Plongements barycentriques pour l'apprentissage géométrique de variétés : application aux formes et graphes." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4096.
Повний текст джерелаAn MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches.A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model.Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning.In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one.The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work
Niang, Athoumane. "Sur quelques problèmes en géométrie équiaffine et en géométrie semi-riemannienne." Montpellier 2, 2005. http://www.theses.fr/2005MON20043.
Повний текст джерелаCharuel, Xavier. "Courbes et hypersurfaces nulles en géométrie pseudo-Riemannienne." Nancy 1, 2003. http://docnum.univ-lorraine.fr/public/SCD_T_2003_0005_CHARUEL.pdf.
Повний текст джерелаIn this thesis, we study "degenerate" (or "null") submanifolds of pseudo-riemannian manifolds, for which the restriction of the pseudo-riemannian structure of the ambiant manifold degenerate on the submanifold. In the first part, we build a generalized Frénet 's frame in pseudo-riemannian manifolds. In the second part, we generalize our construction to other situations, such as symplectic manifolds, or pseudo-kaehlerian manifolds. Finally, in the last part of this thesis, we study totally geodesic degenerate hypersurfaces in pseudo-riemannian manifolds. We find invariants relative to the induced structure on the hypersurface, and use them to build local coordinate systems adapted to the geometry of the hypersurface
Charlot, Grégoire. "Géométrie sous-riemannienne de contact et de quasi-contact." Dijon, 2001. http://www.theses.fr/2001DIJOS030.
Повний текст джерелаHumbert, Emmanuel. "Inégalités optimales de types Nash et Sobolev en géométrie riemannienne." Paris 6, 2000. http://www.theses.fr/2000PA066218.
Повний текст джерелаRoth, Julien. "Rigidité des hypersurfaces en géométrie riemannienne et spinorielle : Aspect extrinsèque et intrinsèque." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00120756.
Повний текст джерелаJanin, Gabriel. "Contrôle optimal et applications au transfert d'orbite et à la géométrie presque-riemannienne." Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00633197.
Повний текст джерелаFrancoeur, Dominik. "Géométrie de Cartan et pré-géodésiques de type lumière." Mémoire, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5297.
Повний текст джерелаArguillere, Sylvain. "Géométrie sous-riemannienne en dimension infinie et applications à l'analyse mathématique des formes." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066144/document.
Повний текст джерелаThis manuscript is dedicated to the study of infinite dimensional sub-Riemannian geometry and its applications to shape analysis using dieomorphic deformations. The first part is a detailed summary of our work, while the second part combines the articles we wrote during the last three years. We first extend the framework of sub- Riemannian geometry to infinite dimensions, establishing conditions that ensure the existence of a Hamiltonian geodesic flow. We then apply these results to strong right- invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold. We then define rigorously the abstract concept shape spaces. A shape space is a Banach manifold on which the group of diffeomorphisms of a manifold acts in a way that satisfy certain properties. We then define several sub-Riemannian structures on these shape spaces using this action, and study these. Finally, we add constraints to the possible deformations, and formulate shape analysis problems in an infinite dimensional control theoritic framework. We prove a Pontryagin maximum principle adapted to this context, establishing the constrained geodesic equations. Algorithms for fin- ding optimal deformations are then developped, supported by numerical simulations. These algorithms extend and unify previously established methods in shape analysis
Choné, Philippe. "Étude de quelques problèmes variationnels intervenant en géométrie riemannienne et en économie mathématique." Toulouse 1, 1999. http://www.theses.fr/1999TOU10020.
Повний текст джерелаIn the first part of this thesis, we consider a critical point u of a conformally invariant functional on a two-dimensional domain. We show that if u is a priori assumed to be bounded, then u is smooth up to the boundary of the domain. As an application, we establish a regularity result for weak solutions to the equation of surfaces of prescribed mean curvature in a three dimensional compact Riemannian manifold. The variational problems studied in the second part are motivated by economic issues, namely non-linear pricing by a monopolist or a duopolist. The problem consists in maximizing a functional over the cone of convex functions. We give a sufficient condition for the convexity constraint to be active. This condition does hold in many common situations in economics. Typically, in a two-dimensional problem, there exists an area where the rank of the hessian of the solution is 1. We write the Euler equation of the problem and derive the + sweeping conditions. We explain how to use these conditions to compute the solution. This method, however, requires some prior knowledge of the solution. We therefore study the numerical approximation of the problem. We show how to apply some simple finite-elements methods to the problem. There is, however, a strong theoretical obstruction to the convergence of these methods (in dimension greater than 2). Finally we consider duopoly models that involve non-concave and non-coercive functionals. We study best reply maps and Nash equilibria in these models
Частини книг з теми "Géométrie riemannienne et barycentrique"
Jedrzejewski, Franck. "Deleuze et la Géométrie Riemannienne: Une Topologie des Multiplicités." In From Riemann to Differential Geometry and Relativity, 311–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60039-0_10.
Повний текст джерела"8 Géométrie riemannienne." In Variétés différentielles, physique et invariants topologiques, 175–210. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3143-2.c009.
Повний текст джерела"3 La géométrie riemannienne et les variétés différentielles." In Le temps des neurones, 71–80. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2271-3-004.
Повний текст джерела"3 La géométrie riemannienne et les variétés différentielles." In Le temps des neurones, 71–80. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2271-3.c004.
Повний текст джерела