Добірка наукової літератури з теми "Geometrical constraints"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geometrical constraints".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Geometrical constraints"

1

TROMBETTONI, GILLES, and MARTA WILCZKOWIAK. "GPDOF — A FAST ALGORITHM TO DECOMPOSE UNDER-CONSTRAINED GEOMETRIC CONSTRAINT SYSTEMS: APPLICATION TO 3D MODELING." International Journal of Computational Geometry & Applications 16, no. 05n06 (December 2006): 479–511. http://dx.doi.org/10.1142/s0218195906002154.

Повний текст джерела
Анотація:
Our approach exploits a general-purpose decomposition algorithm, called GPDOF, and a dictionary of very efficient solving procedures, called r-methods, based on theorems of geometry. GPDOF decomposes an equation system into a sequence of small subsystems solved by r-methods, and produces a set of input parameters.1. Recursive assembly methods (decomposition-recombination), maximum matching based algorithms, and other famous propagation schema are not well-suited or cannot be easily extended to tackle geometric constraint systems that are under-constrained. In this paper, we show experimentally that, provided that redundant constraints have been removed from the system, GPDOF can quickly decompose large under-constrained systems of geometrical constraints. We have validated our approach by reconstructing, from images, 3D models of buildings using interactively introduced geometrical constraints. Models satisfying the set of linear, bilinear and quadratic geometric constraints are optimized to fit the image information. Our models contain several hundreds of equations. The constraint system is decomposed in a few seconds, and can then be solved in hundredths of seconds.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Suzuki, H., T. Ito, H. Ando, K. Kikkawa, and F. Kimura. "Solving regional constraints in components layout design based on geometric gadgets." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11, no. 4 (September 1997): 343–53. http://dx.doi.org/10.1017/s0890060400003267.

Повний текст джерела
Анотація:
AbstractThis paper proposes a new method for dealing with geometrical layout constraints. Geometrical layout constraints are classified into three classes of dimensional, regional, and interference constraints. Dimensional constraints are handled by using an existing methodology. A method is proposed to translate the other two classes of constraints into dimensional constraints. Thus, it is possible to uniformly deal with all of those geometrical layout constraints. The method is twofold. First, it converts regional, interference constraints into a set of simple inequalities. Then each inequality is solved by a geometric gadget, which is a structured set of dimensional constraints. A prototype system is developed and applied to some layout design examples.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hördt, Andreas, Katharina Bairlein, Matthias Bücker, and Hermann Stebner. "Geometrical constraints for membrane polarization." Near Surface Geophysics 15, no. 6 (October 1, 2017): 579–92. http://dx.doi.org/10.3997/1873-0604.2017053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pauly, Daniel. "Geometrical constraints on body size." Trends in Ecology & Evolution 12, no. 11 (November 1997): 442. http://dx.doi.org/10.1016/s0169-5347(97)85745-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Evans, A. K. D., I. K. Wehus, Ø. Grøn, and Ø. Elgarøy. "Geometrical constraints on dark energy." Astronomy & Astrophysics 430, no. 2 (January 20, 2005): 399–410. http://dx.doi.org/10.1051/0004-6361:20041590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

de Luis-García, Rodrigo, Carl-Fredrik Westin, and Carlos Alberola-López. "Geometrical constraints for robust tractography selection." NeuroImage 81 (November 2013): 26–48. http://dx.doi.org/10.1016/j.neuroimage.2013.04.096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maia, M. D., and G. S. Silva. "Geometrical constraints on the cosmological constant." Physical Review D 50, no. 12 (December 15, 1994): 7233–38. http://dx.doi.org/10.1103/physrevd.50.7233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Peng, Heping, and Zhuoqun Peng. "Concurrent design and process tolerances determination in consideration of geometrical tolerances." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 19-20 (August 1, 2019): 6727–40. http://dx.doi.org/10.1177/0954406219866866.

Повний текст джерела
Анотація:
Concurrent design and process tolerances determination may ensure the manufacturability of products, improve the design efficiency, lower the overall production cost, reduce the quantity of unqualified products, and shorten product development cycle. Yet most of the current concurrent tolerancing models focus on the concurrent design of dimensional tolerances without taking into consideration geometrical tolerances. The objective of this study is to extend the concurrent tolerancing model to consider geometrical tolerance requirements. Firstly, the geometrical tolerances are either converted into equivalent dimensional tolerances or only treated as additional machining constraints based on their respective characteristics. Then, a concurrent tolerancing model is established based on ensuring the fulfillment of the product's functional requirements, taking the combination of expected quality loss and manufacturing cost as target function, and taking the functional constraints, geometrical tolerance constraints and process bound constraints as the constraint conditions. After having established the concurrent tolerancing model, the nonlinear programming technique is employed to solve this model to gain the optimal design and process tolerances. Finally, an example of wheel assembly is given to illustrate the validity of the suggested method.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SATO, Yuki, Takayuki YAMADA, Kazuhiro IZUI, and Shinji NISHIWAKI. "Topology optimization with geometrical constraints based on fictitious physical models (The geometrical constraint for molding and milling)." Transactions of the JSME (in Japanese) 83, no. 851 (2017): 17–00081. http://dx.doi.org/10.1299/transjsme.17-00081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dong, Yan, and Mei Li. "The Geometrical Feature Recognition Method of Part Drawing." Advanced Materials Research 415-417 (December 2011): 523–26. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.523.

Повний текст джерела
Анотація:
This paper put forward a geometry feature recognition method of part drawing based on graph matching. Describe the constraints structure of geometric feature in geometric elements and those constraint relationships. Match sub-graph in contour closure graphics and those combination. Using linear symbol notation of chemical compounds in chemical database for reference, encode to constraint structure of geometry graphics, establish recognition mechanism of geometric characteristics by structure codes. Taking the fine-tune screw and fork parts for example, this method has been proved to be effective.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Geometrical constraints"

1

Nestoras, Konstantinos Nav E. Massachusetts Institute of Technology. "A tool to create hydrodynamically optimized hull-forms with geometrical constraints from internal arrangements." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81587.

Повний текст джерела
Анотація:
Thesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 145-146).
Internal arrangements and bulky equipment like machinery have been treated for many years as a secondary aspect of the ship design. Traditionally, in the design process, the centerpiece of the effort is the hull and its hydrodynamic performance. Once the hull of a ship has been selected, all the other systems, like propulsion and electric plants, are selected and fitted in the ship. Due to the fact that the hull is considered as the most important system of the ship, any compromises and systems trade-offs that need to be done in the design process are focused mainly on all the systems apart from the hull-form. This inherent prioritization in the traditional design process, might lead to the selection of suboptimal solutions for the other systems like the propulsion and electric plants, which in turns might lead to a global suboptimal solution for the whole ship design. Unfortunately, these decisions bound the designed ship for lifetime and, down the road, might lead to excess operational costs. The tool developed in this thesis treats the internal arrangements and the hull-form of the ship as two systems that need to be optimized together and not on a decoupled manner. Thus, the selection of the propulsion and electric plants or even large weapon systems like VLCs becomes as important as the hull during the design process. Propulsion and electric systems can be preselected in the early stage design, based on their efficiency and then a hull can be wrapped around them. The optimization of the hull can be done either with the use of the Holtrop method or a potential flow panel method, which provides higher fidelity. The designer has the ability to utilize this tool in order to easily conduct trade-off studies between the internal arrangements and the hull-form or save time from their integration and allocate it in other important problems of the design. This could aid the decision-making process in the early stage of the design, where information is scarce, decisions are crucial and uncertainty is high.
by Konstantinos Nestoras.
S.M.
Nav.E.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nesselroth, Susan Marian. "I Substituent effects on carbanion photophysics An application of the energy gap law : II Solvent and geometrical constraints on excited state proton transfer." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/30331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Bihao. "Geometrical and contextual scene analysis for object detection and tracking in intelligent vehicles." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2197/document.

Повний текст джерела
Анотація:
Pour les véhicules intelligents autonomes ou semi-autonomes, la perception constitue la première tâche fondamentale à accomplir avant la décision et l’action. Grâce à l’analyse des données vidéo, Lidar et radar, elle fournit une représentation spécifique de l’environnement et de son état, à travers l’extraction de propriétés clés issues des données des capteurs. Comparé à d’autres modalités de perception telles que le GPS, les capteurs inertiels ou les capteurs de distance (Lidar, radar, ultrasons), les caméras offrent la plus grande quantité d’informations. Grâce à leur polyvalence, les caméras permettent aux systèmes intelligents d’extraire à la fois des informations contextuelles de haut niveau et de reconstruire des informations géométriques de la scène observée et ce, à haute vitesse et à faible coût. De plus, la technologie de détection passive des caméras permet une faible consommation d’énergie et facilite leur miniaturisation. L’utilisation des caméras n’est toutefois pas triviale et pose un certain nombre de questions théoriques liées à la façon dont ce capteur perçoit son environnement. Dans cette thèse, nous proposons un système de détection d’objets mobiles basé seule- ment sur l’analyse d’images. En effet, dans les environnements observés par un véhicule intelligent, les objets en mouvement représentent des obstacles avec un risque de collision élevé, et ils doivent être détectés de manière fiable et robuste. Nous abordons le problème de la détection d’objets mobiles à partir de l’extraction du contexte local reposant sur une segmentation de la route. Après transformation de l’image couleur en une image invariante à l’illumination, les ombres peuvent alors être supprimées réduisant ainsi leur influence négative sur la détection d’obstacles. Ainsi, à partir d’une sélection automatique de pixels appartenant à la route, une région d’intérêt où les objets en mouvement peuvent apparaître avec un risque de collision élevé, est extraite. Dans cette zone, les pixels appartenant à des objets mobiles sont ensuite identifiés à l’aide d’une approche plan+parallaxe. À cette fin, les pixels potentiellement mobiles et liés à l’effet de parallaxe sont détectés par une méthode de soustraction du fond de l’image; puis trois contraintes géométriques différentes: la contrainte épipolaire, la contrainte de cohérence structurelle et le tenseur trifocal, sont appliquées à ces pixels pour filtrer ceux issus de l’effet de parallaxe. Des équations de vraisemblance sont aussi proposées afin de combiner les différents contraintes d’une manière complémentaire et efficace. Lorsque la stéréovision est disponible, la segmentation de la route et la détection d’obstacles peuvent être affinées en utilisant une segmentation spécifique de la carte de disparité. De plus, dans ce cas, un algorithme de suivi robuste combinant les informations de l’image et la profondeur des pixels a été proposé. Ainsi, si l’une des deux caméras ne fonctionne plus, le système peut donc revenir dans un mode de fonctionnement monoculaire ce qui constitue une propriété importante pour la fiabilité et l’intégrité du système de perception. Les différents algorithmes proposés ont été testés sur des bases de données d’images publiques en réalisant une évaluation par rapport aux approches de l’état de l’art et en se comparant à des données de vérité terrain. Les résultats obtenus sont prometteurs et montrent que les méthodes proposées sont efficaces et robustes pour différents scénarios routiers et les détections s’avèrent fiables notamment dans des situations ambiguës
For autonomous or semi-autonomous intelligent vehicles, perception constitutes the first fundamental task to be performed before decision and action/control. Through the analysis of video, Lidar and radar data, it provides a specific representation of the environment and of its state, by extracting key properties from sensor data with time integration of sensor information. Compared to other perception modalities such as GPS, inertial or range sensors (Lidar, radar, ultrasonic), the cameras offer the greatest amount of information. Thanks to their versatility, cameras allow intelligent systems to achieve both high-level contextual and low-level geometrical information about the observed scene, and this is at high speed and low cost. Furthermore, the passive sensing technology of cameras enables low energy consumption and facilitates small size system integration. The use of cameras is however, not trivial and poses a number of theoretical issues related to how this sensor perceives its environmen. In this thesis, we propose a vision-only system for moving object detection. Indeed,within natural and constrained environments observed by an intelligent vehicle, moving objects represent high risk collision obstacles, and have to be handled robustly. We approach the problem of detecting moving objects by first extracting the local contextusing a color-based road segmentation. After transforming the color image into illuminant invariant image, shadows as well as their negative influence on the detection process can be removed. Hence, according to the feature automatically selected onthe road, a region of interest (ROI), where the moving objects can appear with a high collision risk, is extracted. Within this area, the moving pixels are then identified usin ga plane+parallax approach. To this end, the potential moving and parallax pixels a redetected using a background subtraction method; then three different geometrical constraints : the epipolar constraint, the structural consistency constraint and the trifocaltensor are applied to such potential pixels to filter out parallax ones. Likelihood equations are also introduced to combine the constraints in a complementary and effectiveway. When stereo vision is available, the road segmentation and on-road obstacles detection can be refined by means of the disparity map with geometrical cues. Moreover, in this case, a robust tracking algorithm combining image and depth information has been proposed. If one of the two cameras fails, the system can therefore come back to a monocular operation mode, which is an important feature for perception system reliability and integrity. The different proposed algorithms have been tested on public images data set with anevaluation against state-of-the-art approaches and ground-truth data. The obtained results are promising and show that the proposed methods are effective and robust on the different traffic scenarios and can achieve reliable detections in ambiguous situations
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rohmer, Damien. "Géométrie active pour l'animation et la modélisation." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00635079.

Повний текст джерела
Анотація:
Engendrer en temps-réel des déformations visuellement réalistes d'objets 3D, comme par exemple le corps et les vêtements de personnages, est un point crucial en animation, que ce pour des applications au jeu vidéo ou à la production cinématographique. Les méthodes de déformations géométriques actuelles rapides telles que le "skinning" ou l'animation physique à basse résolution ne capturent cependant pas certains comportements naturels essentiels. En particulier les déformations à volume constant du corps, le gonflement des muscles pour un personnage, ou la génération de plis sur ses vêtements dus au fait que leurs surfaces doivent rester développable. Cette thèse présente une série de méthodes rendant les modèles géométriques "actifs", c'est à dire capables de maintenir un certain nombre de contraintes intrinsèques de la surface portant sur le volume englobé ou sur le caractère développable de celle-ci. Nous étudions trois exemples: - l'ajout de contraintes locales de volumes lors de l'animation d'une créature virtuelle par skinning. - l'ajout de plis de vêtements modélisant une surface quasi-inextensible à partir d'une animation à basse résolution donnée en entrée. - la génération d'une surface de type papier froissé, basée sur la préservation de l'isométrie vis-à-vis d'un patron planaire. Dans tous ces modèles, notre approche est procédurale. Elle se base sur la déformation progressive et, potentiellement, le raffinement dynamique de la géométrie juste avant l'étape de rendu.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Seth, Abhishek. "Combining physical constraints with geometric constraint-based modeling for virtual assembly." [Ames, Iowa : Iowa State University], 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lie, Chin Cheong Patrick. "Geometrically constrained matching schemes." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39316.

Повний текст джерела
Анотація:
We present an effective method for solving different types of noisy pattern matching problems in Euclidean space. The matching is performed in either a least-squares or a mixed-norm sense under the constraint that a transformation matrix $ Theta$ is restricted to belong to the orthogonal group. Matching problems of this type can be recast as function optimization problems which can be solved by representing the orthogonal group to which $ Theta$ belongs as a Lie group and then investigating the gradient vector field associated with the function to be optimized. The projection of the gradient field onto the tangent space of the Lie group at $ Theta$, i.e., the Lie algebra, results in a descent/ascent equation for the function. The descent/ascent equation so obtained is used in a classical steepest-descent/ascent algorithm and a singular value decomposition-based recursive method in order to determine the maximum or minimum point of the function under consideration. Since $ Theta$ belongs to the orthogonal group which includes the group of permutations as a subgroup, the proposed procedure works not only for patterns consisting of ordered feature points, but also for the combinatorial problem involving patterns having unordered feature points. Generalizations of the matching problem are also formulated and include the matching of patterns from Euclidean spaces of different dimensions and the matching of patterns having unequal numbers of feature points from the same Euclidean space. Simulations are performed which demonstrate the effectiveness and the efficiency of the proposed approach in solving some practical matching problems which arise in computer vision and pattern analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baltsavias, Emmanuel P. Baltsavias Emmanuel P. Baltsavias Emmanuel P. "Multiphoto geometrically constrained matching /." Zürich, 1991. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coulter, Stewart. "Representation of geometric constraints in parametric synthesis." Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/17982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Phipps, Richard L. "Some Geometric Constraints on Ring-Width Trend." Tree-Ring Society, 2005. http://hdl.handle.net/10150/262639.

Повний текст джерела
Анотація:
Simulations of tree rings from trees of undisturbed forest sites are used to describe natural, long-term width trends. Ring-width trends of canopy-sized white oak are simulated from regressions of BAI (ring area) data of real trees. Examples are given of a tree from a typical re-growth forest in Illinois and of a more slowly growing tree from an old-growth forest in Kentucky. The long-term width trend was simulated as being toward constant ring width regardless of growth rate of the tree. Conditions by which either increasing or decreasing ring-width trends could be simulated from the same linear BAI trend are examined. I conclude that curvilinear width trends, either increasing or decreasing, represent width adjustments to changes in growth rate (BAI trend) after which the width trend stabilizes to a near-constant value. Interpretation of ring-width trends of trees from undisturbed stands may be useful in assessing stand disturbance history.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ma'ani-Hessari, Nason J. "Design of quadruplex DNA through geometric constraints." Thesis, University of Ulster, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551558.

Повний текст джерела
Анотація:
This thesis is concerned with the rational design of a group of DNA higher order architectures known as quadruplex DNA. Quadruplex DNA is comprised of a stem of stacking guanine tetrads linked by loops comprised of single stranded DNA. Due to the different combinations of loop types possible, it has great structural diversity and has potential nanotechnological and biological applications. Currently, only a few loop combinations, or topologies are known. Those that have been determined experimentally were not explicitly designed. Using a geometric formalism, the sum of currently available knowledge on quadruplex folding was used to create a set of parameters for the design of novel quadruplex architectures. We present the proof of principle for rational design of said structures, through making the novel topology (-pd+l) and the (G:C:G:C) tetrad- containing topology -(Ppp). We apply this principle to interpret thermal difference spectra signatures of a number of designed quadruplexes. Finally, we show that such novel quadruplexes can be used as building blocks for nanowires. This thesis therefore describes the proof of principle of design, means to expediate design, and an example application of design, of quadruplex nucleic acids. Through achieving these three aims, we present the feasibility of designing novel quadruplexes to be used as nanotechnological or medical devices.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Geometrical constraints"

1

International Workshop on Shock Wave Focusing Phenomena in Combustible Mixtures: Ignition and Transition to Detonation of Reactive Media under Geometrical Constraints (1998 Aachen, Germany). Proceedings of the International Workshop on Shock Wave Focusing Phenomena in Combustible Mixtures: Ignition and Transition to Detonation of Reactive Media under Geometrical Constraints, December 15-16, 1998. Aachen: Shaker, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

International Workshop on Shock Wave Focusing Phenomena in Combustible Mixtures (1998 Aachen, Germany). Proceedings of the International Workshop on Shock Wave Focusing Phenomena in Combustible Mixtures: Ignition and transition to detonation of reactive media under geometrical constraints : December 15 to 16, 1998. Aachen, Germany: Shock Wave Laboratory, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Govaerts, Jan. Hamiltonian quantisation and constrained dynamics. Leuven (Belgium): Leuven University Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mann, Peter. Constrained Hamiltonian Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0021.

Повний текст джерела
Анотація:
This chapter focuses on autonomous geometrical mechanics, using the language of symplectic geometry. It discusses manifolds (including Kähler manifolds, Riemannian manifolds and Poisson manifolds), tangent bundles, cotangent bundles, vector fields, the Poincaré–Cartan 1-form and Darboux’s theorem. It covers symplectic transforms, the Marsden–Weinstein symplectic quotient, presymplectic and symplectic 2-forms, almost symplectic structures, symplectic leaves and foliation. It also discusses contact structures, musical isomorphisms and Arnold’s theorem, as well as integral invariants, Nambu structures, the Nambu bracket and the Lagrange bracket. It describes Poisson bi-vector fields, Poisson structures, the Lie–Poisson bracket and the Lie–Poisson reduction, as well as Lie algebra, the Lie bracket and Lie algebra homomorphisms. Other topics include Casimir functions, momentum maps, the Euler–Poincaré equation, fibre derivatives and the geodesic equation. The chapter concludes by looking at deformation quantisation of the Poisson algebra, using the Moyal bracket and C*-algebras to develop a quantum physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Succi, Sauro. Out of Legoland: Geoflexible Lattice Boltzmann Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0023.

Повний текст джерела
Анотація:
The LBEs discussed to this point lag behind “best in class” Computational Fluid Dynamics (CFD) methods for the simulation of fluid flows in realistically complicated geometries, such as those presented by most industrial devices. This traces back to the constraint of working along the light-cones of a uniform spacetime. Various methods have been proposed to remedy this unsatisfactory state of affairs. Among others, a natural strategy is to acquire geometrical flexibility from well-established techniques which can afford it, namely Finite Volumes (FV), Finite Differences (FD) and Finite Elements (FE). Alternatively, one can stick to the cartesian geometry of standard LB, and work at progressive levels of local grid refinement. This Chapter presents the general ideas being both strategies.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Andersson, Nils. Gravitational-Wave Astronomy. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198568032.001.0001.

Повний текст джерела
Анотація:
This book provides an introduction to gravitational-wave astronomy and a survey of the physics required to understand recent breakthrough discoveries and the potential of future experiments. The material is aimed at advanced undergraduates or postgraduate students. It works as an introduction to the relevant issues and brings the reader to the level where it connects with current research. The book provides interested astronomers with an understanding of this new window to the Universe, including a relatively self-contained summary of Einstein’s geometric theory of gravity. It introduces gravitational-wave data analysts to the range of physics issues that impact on the modelling of different sources. The material also connects with fundamental physics, which is natural since gravitational-wave signals from neutron stars may help constrain our understanding of matter at extreme densities, helping nuclear and particle physicists appreciate how their models fit into the bigger picture.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Geometrical constraints"

1

Helwani, Karim. "Geometrical Constraints." In T-Labs Series in Telecommunication Services, 67–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08954-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rozvany, G. I. N., and M. Zhou. "COC Methods for Additional Geometrical Constraints." In Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods, 41–56. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-2788-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nigam, Aditya, and Phalguni Gupta. "Palmprint Recognition Using Geometrical and Statistical Constraints." In Advances in Intelligent Systems and Computing, 1303–15. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1602-5_136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Giorgi, G., P. J. G. Teunissen, S. Verhagen, and P. J. Buist. "Integer Ambiguity Resolution with Nonlinear Geometrical Constraints." In International Association of Geodesy Symposia, 39–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22078-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cooper, David H., Christopher J. Taylor, Jim Graham, and Tim F. Cootes. "Locating Overlapping Flexible Shapes Using Geometrical Constraints." In BMVC91, 185–92. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-1921-0_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liégeois, Alain. "Structure of robots: geometrical and mechanical constraints." In Performance and Computer-Aided Design, 81–135. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-6852-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schöllhorn, R. "Geometrical and Electronic Constraints in Redox Intercalation Systems." In Chemical Reactions in Organic and Inorganic Constrained Systems, 323–40. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4582-1_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bank, Bernd, Teresa Krick, Reinhard Mandel, and Pablo Solernó. "A geometrical bound for integer programming with polynomial constraints." In Fundamentals of Computation Theory, 121–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54458-5_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Higashi, Masatake, Hiroki Senga, Atsuhide Nakamura, and Mamoru Hosaka. "Parametric Design Method Based on Topological and Geometrical Constraints." In From Geometric Modeling to Shape Modeling, 165–80. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-0-387-35495-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Damme, H., P. Levitz, and L. Gatineau. "Energetical and Geometrical Constraints on Adsorption and Reaction Kinetics on Clay Surfaces." In Chemical Reactions in Organic and Inorganic Constrained Systems, 283–304. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4582-1_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Geometrical constraints"

1

"GEOMETRICAL CONSTRAINTS FOR LIGAND POSITIONING." In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003166002040209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lazkoz, Ruth, Mauricio Carbajal, Luis Manuel Montaño, Oscar Rosas-Ortiz, Sergio A. Tomas Velazquez, and Omar Miranda. "Geometrical Constraints on Dark Energy Models." In Advanced Summer School in Physics 2007. AIP, 2007. http://dx.doi.org/10.1063/1.2825127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cooper, David H., Christopher J. Taylor, Jim Graham, and Tim F. Cootes. "Locating Overlapping Flexible Shapes Using Geometrical Constraints." In British Machine Vision Conference 1991. Springer-Verlag London Limited, 1991. http://dx.doi.org/10.5244/c.5.24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Morgera, S. D. "On noisy pattern matching under geometrical constraints." In [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1992. http://dx.doi.org/10.1109/icassp.1992.226226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Hanchao, and Jinhua Xu. "Supervised sparse coding with local geometrical constraints." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gruen, Armin W., and Emmanuel P. Baltsavias. "Adaptive Least Squares Correlation With Geometrical Constraints." In 1985 International Technical Symposium/Europe, edited by Olivier D. Faugeras and Robert B. Kelley. SPIE, 1986. http://dx.doi.org/10.1117/12.952246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Plateaux, Régis, Olivia Penas, Faïda Mhenni, Jean-Yves Choley, and Alain Riviere. "Introduction of the 3D Geometrical Constraints in Modelica." In The 7 International Modelica Conference, Como, Italy. Linköping University Electronic Press, 2009. http://dx.doi.org/10.3384/ecp09430038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Wei, Xiaochun Cao, Zhiyong Feng, Jiawan Zhang, and Ping Wang. "Detecting photographic composites using two-view geometrical constraints." In 2009 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2009. http://dx.doi.org/10.1109/icme.2009.5202685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hagita, Katsumi, and Hiroshi Takano. "Dynamics of a polymer chain under geometrical constraints." In The 8th tohwa university international symposium on slow dynamics in complex systems. AIP, 1999. http://dx.doi.org/10.1063/1.58567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Le, Van-Hung, Hai Vu, Thuy Thi Nguyen, Thi-Lan Le, Thi-Thanh-Hai Tran, Michiel Vlaminck, Wilfried Philips, and Peter Veelaert. "3D Object Finding Using Geometrical Constraints on Depth Images." In 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE). IEEE, 2015. http://dx.doi.org/10.1109/kse.2015.17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Geometrical constraints"

1

Toroker, Z., V. M. Malkin, G. M. Fraiman, A. A. Balakin, and N. J. Fisch. Geometrical Constraints on Plasma Couplers for Raman Compression. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1056829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ogawa, Naohisa. Diffusion Under Geometrical Constraint. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-34-2014-35-49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ogawa, Naohisa. Diffusion Under Geometrical Constraint. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-204-217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Theiler, J., and B. G. Henderson. A geometrical constraint on shadowing in rough surfaces. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/532451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Parikh, Jo A., and Anne Werkheiser. Incorporating Geometric Constraints into Rule-Based Systems Using Nonlinear Optimization. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada275093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

GENERAL ELECTRIC CO SCHENECTADY NY. Representation and Recognition with Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada263235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada282926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada271395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.

Повний текст джерела
Анотація:
Recent advances in visual sensing technology have gained much attention in the field of bridge inspection and management. Coupled with advanced robotic systems, state-of-the-art visual sensors can be used to obtain accurate documentation of bridges without the need for any special equipment or traffic closure. The captured visual sensor data can be post-processed to gather meaningful information for the bridge structures and hence to support bridge inspection and management. However, state-of-the-practice data postprocessing approaches require substantial manual operations, which can be time-consuming and expensive. The main objective of this study is to develop methods and algorithms to automate the post-processing of the visual sensor data towards the extraction of three main categories of information: 1) object information such as object identity, shapes, and spatial relationships - a novel heuristic-based method is proposed to automate the detection and recognition of main structural elements of steel girder bridges in both terrestrial and unmanned aerial vehicle (UAV)-based laser scanning data. Domain knowledge on the geometric and topological constraints of the structural elements is modeled and utilized as heuristics to guide the search as well as to reject erroneous detection results. 2) structural damage information, such as damage locations and quantities - to support the assessment of damage associated with small deformations, an advanced crack assessment method is proposed to enable automated detection and quantification of concrete cracks in critical structural elements based on UAV-based visual sensor data. In terms of damage associated with large deformations, based on the surface normal-based method proposed in Guldur et al. (2014), a new algorithm is developed to enhance the robustness of damage assessment for structural elements with curved surfaces. 3) three-dimensional volumetric models - the object information extracted from the laser scanning data is exploited to create a complete geometric representation for each structural element. In addition, mesh generation algorithms are developed to automatically convert the geometric representations into conformal all-hexahedron finite element meshes, which can be finally assembled to create a finite element model of the entire bridge. To validate the effectiveness of the developed methods and algorithms, several field data collections have been conducted to collect both the visual sensor data and the physical measurements from experimental specimens and in-service bridges. The data were collected using both terrestrial laser scanners combined with images, and laser scanners and cameras mounted to unmanned aerial vehicles.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії