Добірка наукової літератури з теми "Geometric finiteness"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geometric finiteness".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Geometric finiteness"
Lück, Wolfgang. "The Geometric Finiteness Obstruction." Proceedings of the London Mathematical Society s3-54, no. 2 (March 1987): 367–84. http://dx.doi.org/10.1112/plms/s3-54.2.367.
Повний текст джерелаSwarup, G. A. "Geometric finiteness and rationality." Journal of Pure and Applied Algebra 86, no. 3 (May 1993): 327–33. http://dx.doi.org/10.1016/0022-4049(93)90107-5.
Повний текст джерелаTuschmann, Wilderich. "Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness." Mathematische Annalen 322, no. 2 (February 2002): 413–20. http://dx.doi.org/10.1007/s002080100281.
Повний текст джерелаScott, G. P., and G. A. Swarup. "Geometric finiteness of certain Kleinian groups." Proceedings of the American Mathematical Society 109, no. 3 (March 1, 1990): 765. http://dx.doi.org/10.1090/s0002-9939-1990-1013981-6.
Повний текст джерелаGrove, Karsten, Peter Petersen, and Jyh-Yang Wu. "Geometric finiteness theorems via controlled topology." Inventiones Mathematicae 99, no. 1 (December 1990): 205–13. http://dx.doi.org/10.1007/bf01234417.
Повний текст джерелаKapovich, Michael, and Beibei Liu. "Geometric finiteness in negatively pinched Hadamard manifolds." Annales Academiae Scientiarum Fennicae Mathematica 44, no. 2 (June 2019): 841–75. http://dx.doi.org/10.5186/aasfm.2019.4444.
Повний текст джерелаTorroba, Gonzalo. "Finiteness of flux vacua from geometric transitions." Journal of High Energy Physics 2007, no. 02 (February 21, 2007): 061. http://dx.doi.org/10.1088/1126-6708/2007/02/061.
Повний текст джерелаProctor, Emily. "Orbifold homeomorphism finiteness based on geometric constraints." Annals of Global Analysis and Geometry 41, no. 1 (May 24, 2011): 47–59. http://dx.doi.org/10.1007/s10455-011-9270-4.
Повний текст джерелаDurumeric, Oguz C. "Geometric finiteness in large families in dimension 3." Topology 40, no. 4 (July 2001): 727–37. http://dx.doi.org/10.1016/s0040-9383(99)00080-4.
Повний текст джерелаGrove, Karsten, Peter Petersen V, and Jyh-Yang Wu. "Erratum to Geometric finiteness theorems via controlled topology." Inventiones mathematicae 104, no. 1 (December 1991): 221–22. http://dx.doi.org/10.1007/bf01245073.
Повний текст джерелаДисертації з теми "Geometric finiteness"
Fléchelles, Balthazar. "Geometric finiteness in convex projective geometry." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Повний текст джерелаThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Kuckuck, Benno. "Finiteness properties of fibre products." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a9624d17-9d11-4bd0-8c46-78cbba73469c.
Повний текст джерелаBowditch, B. H. "Geometrical finiteness for hyperbolic groups." Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/99188/.
Повний текст джерелаPassaro, Davide. "Finiteness of Complete Intersection Calabi Yau Threefolds." Thesis, Uppsala universitet, Teoretisk fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.
Повний текст джерелаMarseglia, Stéphane. "Variétés projectives convexes de volume fini." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD019/document.
Повний текст джерелаIn this thesis, we study strictly convex projective manifolds of finite volume. Such a manifold is the quotient G\U of a properly convex open subset U of the real projective space RP^(n-1) by a discrete torsionfree subgroup G of SLn(R) preserving U. We study the Zariski closure of holonomies of convex projective manifolds of finite volume. For such manifolds G\U, we show that either the Zariski closure of G is SLn(R) or it is a conjugate of SO(1,n-1).We also focuss on the moduli space of strictly convex projective structures of finite volume. We show that this moduli space is a closed set of the representation space
Hung, Min Kai, and 洪旻楷. "On the finiteness of geometric knots." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/14407283257393717053.
Повний текст джерела國立臺灣師範大學
數學系
98
In these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.
"Survey on the finiteness results in geometric analysis on complete manifolds." 2010. http://library.cuhk.edu.hk/record=b5894429.
Повний текст джерелаThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 102-105).
Abstracts in English and Chinese.
Chapter 0 --- Introduction --- p.6
Chapter 1 --- Background knowledge --- p.9
Chapter 1.1 --- Comparison theorems --- p.9
Chapter 1.2 --- Bochner techniques --- p.13
Chapter 1.3 --- Eigenvalue estimates for Laplacian operator --- p.14
Chapter 1.4 --- Spectral theory for Schrodinger operator on Rieman- nian manifolds --- p.16
Chapter 2 --- Vanishing theorems --- p.20
Chapter 2.1 --- Liouville type theorem for Lp subharmonic functions --- p.20
Chapter 2.2 --- Generalized type of vanishing theorem --- p.21
Chapter 3 --- Finite dimensionality results --- p.28
Chapter 3.1 --- Three types of integral inequalities --- p.28
Chapter 3.2 --- Weak Harnack inequality --- p.34
Chapter 3.3 --- Li's abstract finite dimensionality theorem --- p.37
Chapter 3.4 --- Applications of the finite dimensionality theorem --- p.42
Chapter 4 --- Ends of Riemannian manifolds --- p.48
Chapter 4.1 --- Green's function --- p.48
Chapter 4.2 --- Ends and harmonic functions --- p.53
Chapter 4.3 --- Some topological applications --- p.72
Chapter 5 --- Splitting theorems --- p.79
Chapter 5.1 --- Splitting theorems for manifolds with non-negative Ricci curvature --- p.79
Chapter 5.2 --- Splitting theorems for manifolds of Ricci curvature with a negative lower bound --- p.83
Chapter 5.3 --- Manifolds with the maximal possible eigenvalue --- p.93
Bibliography --- p.102
Книги з теми "Geometric finiteness"
Marco, Rigoli, and Setti Alberto G. 1960-, eds. Vanishing and finiteness results in geometric analysis: A generalization of the Bochner technique. Basel: Birkhauser, 2008.
Знайти повний текст джерелаSession, Ring Theory. Ring theory and its applications: Ring Theory Session in honor of T.Y. Lam on his 70th birthday at the 31st Ohio State-Denison Mathematics Conference, May 25-27, 2012, The Ohio State University, Columbus, OH. Edited by Lam, T. Y. (Tsit-Yuen), 1942- honouree, Huynh, Dinh Van, 1947- editor of compilation, and Ohio State-Denison Mathematics Conference. Providence, Rhode Island: American Mathematical Society, 2014.
Знайти повний текст джерелаVanishing and Finiteness Results in Geometric Analysis. Basel: Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8642-9.
Повний текст джерелаPigola, Stefano, Marco Rigoli, and Alberto G. Setti. Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Springer London, Limited, 2008.
Знайти повний текст джерелаWitzel, Stefan. Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer London, Limited, 2014.
Знайти повний текст джерелаFiniteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer, 2014.
Знайти повний текст джерелаHrushovski, Ehud, and François Loeser. Non-Archimedean Tame Topology and Stably Dominated Types (AM-192). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.001.0001.
Повний текст джерелаAbbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. Global aspects. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0003.
Повний текст джерелаRings with Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society, 2020.
Знайти повний текст джерелаЧастини книг з теми "Geometric finiteness"
Katz, Nicholas M., Serge Lang, and Kenneth A. Ribet. "Finiteness Theorems in Geometric Classfield Theory." In Collected Papers Volume III, 101–35. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2116-6_9.
Повний текст джерелаLang, Serge. "Finiteness Theorems in Geometric Classfield Theory." In Springer Collected Works in Mathematics, 101–35. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4614-6324-5_9.
Повний текст джерелаSuciu, Alexander I. "Geometric and homological finiteness in free abelian covers." In Configuration Spaces, 461–501. Pisa: Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-431-1_21.
Повний текст джерелаAndrzejewski, Pawel. "Equivariant finiteness obstruction and its geometric applications - A survey." In Lecture Notes in Mathematics, 20–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0084735.
Повний текст джерелаSchlomiuk, Dana. "Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric." In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, 471–509. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1025-2_13.
Повний текст джерелаGörtz, Ulrich, and Torsten Wedhorn. "Finiteness Conditions." In Algebraic Geometry I, 241–85. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9722-0_11.
Повний текст джерелаFaltings, Gerd. "Finiteness Theorems for Abelian Varieties over Number Fields." In Arithmetic Geometry, 9–26. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_2.
Повний текст джерелаZarhin, Yuri G. "Finiteness theorems for dimensions of irreducible λ-adic representations." In Arithmetic Algebraic Geometry, 431–44. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0457-2_20.
Повний текст джерелаBesson, Gérard, and Gilles Courtois. "Compactness and Finiteness Results for Gromov-Hyperbolic Spaces." In Surveys in Geometry I, 205–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86695-2_6.
Повний текст джерелаOllivier, François. "Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms." In Effective Methods in Algebraic Geometry, 379–400. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0441-1_25.
Повний текст джерелаТези доповідей конференцій з теми "Geometric finiteness"
Koike, Satoshi. "Finiteness theorems on Blow-Nash triviality for real algebraic singularities." In Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-10.
Повний текст джерелаBejan, Adrian, and Sylvie Lorente. "A Course on Flow-System Configuration and Multi-Scale Design." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59203.
Повний текст джерелаMartinez, Rudolph, Brent S. Paul, Morgan Eash, and Carina Ting. "A Three-Dimensional Wiener-Hopf Technique for General Bodies of Revolution: Part 1—Theory." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13344.
Повний текст джерела