Статті в журналах з теми "Geology of Indonesia"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Geology of Indonesia.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Geology of Indonesia".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Budiono, Kris, and Godwin Latuputty. "SUBSURFACE GEOLOGICAL CONDITION OF SEVERAL LAND COASTAL ZONE IN INDONESIA BASED ON THE GSSI GROUND PROBING RADAR (GPR) RECORD INTERPRETATION." BULLETIN OF THE MARINE GEOLOGY 23, no. 1 (February 15, 2016): 9. http://dx.doi.org/10.32693/bomg.23.1.2008.6.

Повний текст джерела
Анотація:
The GSSI Ground Penetrating radar have been used to profile the shallow depth of subsurface geology of several area of Land Coastal zone in Indonesia Analysis of a large data base of GPR profile from natural subsurface geological condition along the land coast line have allowed identification of reflection configuration that characterize this type of sub surface geological environment. In many contamination problem, the geological information of coastal area is sparse and drill-core description only gives a limited picture of the geometry of inhomogeneties. The Ground-Probing Radar (GPR) method is a promising tool for resolving changes of physical properties in subsurface geological condition at the scale of natural inhomogeneties arising from changing lithology composition. The objective of present work are to examine whether and to what extent the characteristic lithofacies of subsurface lithology can be recognised as mapable reflection pattern on ground probing radar (GPR) reflection profiles in order to gain information about the subsurface geometry of subsurface geology in coastal area. Key word: Subsurface geology, coastal zone, Ground Probing Radar Ground probing radar produksi GSSI telah dipergunakan untuk membuat penampang geologi bawah permukaan dangkal di beberapa kawasan pantai Indonesia. Analisa data dasar penampang GPR dari geologi bawah permukaan di kawasan pantai dapat memperlihatkan konfigurasi reflector yang mencerminkan jenis lingkungan geologi bawah permukaan. Dalam masalah kontaminasi, informasi geologi di daerah pantai yang dihasilkan dari pemboran inti hanya dapat memperlihatkan gambaran yang sederhana tentang geometri ketidakseragaman. Metoda ground probing radar merupakan alat bantu yang menjanjikan untuk menanggulangi masalah sifat fisik kondisi geologi bawah permukaan pada skala ketidak seragaman yang sebenarnya dari perubahan komposisi litologi. Tujuan utama dari penelitian ini adalah untuk menguji sampai sejauh mana karakteristik litofasies dari litologi bawah permukaan dapat dilihat sebagai pola refleksi yang dapat dipetakan dalam penampang GPR dengan maksud untuk mendapatkan informasi geometri geologi bawah permukaan di daerah pantai. Kata kunci: Geologi bawah permukaan, zona pantai, “Ground probing radar”
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Anjarwati, R., A. Idrus, and L. D. Setijadji. "Geology at Beruang Kanan, Central Kalimantan, Indonesia." IOP Conference Series: Earth and Environmental Science 212 (December 31, 2018): 012017. http://dx.doi.org/10.1088/1755-1315/212/1/012017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BAKER, SIMON, ROBERT HALL, and EMILY FORDE. "Geology and jungle fieldwork in eastern Indonesia." Geology Today 10, no. 1 (January 1994): 18–23. http://dx.doi.org/10.1111/j.1365-2451.1994.tb00853.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Budiono, Kris, and Yogi Noviadi. "INVESTIGATION OF GROUND PENETRATING RADAR FOR DETECTION OF ROAD SUBSIDENCE NORTHCOAST OF JAKARTA, INDONESIA." BULLETIN OF THE MARINE GEOLOGY 27, no. 2 (February 15, 2016): 87. http://dx.doi.org/10.32693/bomg.27.2.2012.48.

Повний текст джерела
Анотація:
A survey of Ground Penetrating Radar (GPR) was conducted in the coastal zone of northern part of Jakarta, Indonesia. The purpose of this survey was to provide the subsurface of coastal Quaternary sedimentary features and stratigraphy disturbances associated with induce post road subsidence 2009. The possibility of subsurface lithology disturbance shown by the GPR record. This record resulted from GPR methods using SIR system 20 GSSI, 270 MHz and 400 MHz and MLF 3200 transducer. The method is a promising tool for resolving changes of physical properties in subsurface lithology condition at the natural scale due to composition changes of physical properties.The reflection data resulted that GPR can distinguish between image the basic geometry forms such as lithology , structure geology , soil and subsurface utilities condition Keywords: Quaternary geology, Jakarta subsidence northern road 2009, Ground Penetrating Radar Penyelidikan “Ground Penerating Radar” (GPR) telah dilaksanakan di kawasan pantai utara Jakarta Utara, Indonesia. Tujuan dari penyelidikan GPR ini adalah untuk melihat kondisi sedimen Kuarter bawah permukaan dan gangguan stratigrafi sehubungan dengan penurunan jalan raya pada tahun 2009. Kemungkinan gangguan terhadap litologi bawah permukaan terlihat pada rekaman GPR. Hasil rekaman metoda GPR mempergunakan model SIR 20 GSSI, transduser 270MHz, 400 MHz dan MLF 3200.Metoda GPR merupakan alat bantu yang cukup menjanjikan untuk melihat perubahan sifat fisik litologi bawah permukaan pada skala sebenarnya yang disebabkan oleh perubahan komposisi sifat fisiknya. Hasil refleksi data GPR dapat membedakan bentuk dasar geometri seperti litologi, struktur geologi, kondisi utilitas bawah permukaan. Kata kunci : Geologi Kuarter, Penurunan jalan utara Jakarta 2009, Ground Penetrating Radar
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yoshino, Hiroatsu, Tetsuo Tanaka, and Hitoshi Yamaguchi. "Petroleum geology in Bintuni Basin in East Indonesia." Journal of the Japanese Association for Petroleum Technology 68, no. 2-3 (2003): 200–210. http://dx.doi.org/10.3720/japt.68.2-3_200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ratri, Diyaning, and I. Gde Budi Indrawan. "Engineering Geology of Sidosari Area, Magelang, Central Java, Indonesia." Journal of Applied Geology 2, no. 1 (November 13, 2017): 15. http://dx.doi.org/10.22146/jag.30254.

Повний текст джерела
Анотація:
Development of settlement area in Sidosari area and the surroundings requires complete understanding of the engineering geological conditions, including susceptibility to landslides, to prevent damaged properties and loss of lives. Surface engineering geological mapping at a 1:25000 scale was conducted to develop a detailed landslide susceptibility map for spatial planning and to identify most controlling factor of landslides in the research area based on conditions of geomorphology, rock and soil, geological structure, groundwater seepage, and land use. The engineering geological mapping showed that landslides commonly occurred in the moderate slopes of the denudational hill landform having slope inclination ranging from 9 to 17°, in the areas covered by residual soils of the vitric tuff 2 unit, in the areas of no groundwater seepage, and in the settlement areas, including in Kranjang Lor area where soil creeping occurred. The high susceptibility zone covered 55.5 % of the research area and was characterized by having slope inclinations ranging from 9 to 35°, engineering geological units of vitric tuff 2 and tuff breccia, and land uses of rice and dry fields and settlement. The low cohesion and very high swelling potential of the residual soils of the vitric tuff 2 unit were considered to be the main controlling factor of landslides in the research area.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Daryono, Mudrik R., Danny H. Natawidjaja, Benjamin Sapiie, and Phil Cummins. "Earthquake Geology of the Lembang Fault, West Java, Indonesia." Tectonophysics 751 (January 2019): 180–91. http://dx.doi.org/10.1016/j.tecto.2018.12.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

U, Ko Ko. "Preliminary synthesis of the geology of Bangka Island, Indonesia." Bulletin of the Geological Society of Malaysia 20 (August 30, 1986): 81–90. http://dx.doi.org/10.7186/bgsm20198606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SMITH, RANDALL B., and ELI A. SILVER. "Geology of a Miocene collision complex, Buton, eastern Indonesia." Geological Society of America Bulletin 103, no. 5 (May 1991): 660–78. http://dx.doi.org/10.1130/0016-7606(1991)103<0660:goamcc>2.3.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Naufal, M. H., and H. Setiawan. "Characteristics of Engineering Geology in Talegong Road, Talegong, Garut, West Java, Indonesia." IOP Conference Series: Earth and Environmental Science 1071, no. 1 (August 1, 2022): 012036. http://dx.doi.org/10.1088/1755-1315/1071/1/012036.

Повний текст джерела
Анотація:
Abstract Talegong road, Garut, West Java, is provincial road with a length of 7 kilometers that connects Garut and Bandung. The road segment KM 2.3 – KM 7 is located between the steep slope of high hills and has potential for landslide. To find out the landslide potential, determining the characteristics of geology and engineering geology at this road segment are needed. The methods used in this research are engineering geology mapping (geomorphology, lithology, structural geology and rock mass quality) and laboratory analyses of soil and rock properties index, shear strength test, petrographic analysis and uniaxial compressive strength test. The results of geological mapping show the aspect geomorphological in the area consists of high hills with rather steep to very steep slopes. Lithological, the area consists of aphanitic andesite and porphyritic andesite. The area is dominated by Northeast – Southeast stress regime. In term of rock mass quality, the study area consists of three class with value in Rock Mass Rating classification, which are good rock, fair rock, poor rock and no value rock (soil). The study area is divided into three units in the engineering geological map: (1) unit A has fair – good rock (II – III) with rather steep - very steep slope with low landslide potential, (2) unit B has fair rock (III) with steep – very steep slope with medium landslide potential, and (3) unit C has poor – no value rock or soil (IV – 0) with a very steep slope with high landslide potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nurseto, Sapto Trianggo, Muhammad Tajul Arifin, Graniko Reza Pratama, Vivi Dewi Nusantara, Mochamad Husni Thamrin, and Suryantini. "Structural Geology and Volcanism in Hululais Geothermal Area, Bengkulu, Indonesia." IOP Conference Series: Earth and Environmental Science 732, no. 1 (April 1, 2021): 012004. http://dx.doi.org/10.1088/1755-1315/732/1/012004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Boedihardi, Mochamad, Agus Mulyono, Alimin Ginting, Mark D. Mosby, and Vincent T. Radja. "Geology, energy potential and development of Indonesia\'s geothermal prospects." Bulletin of the Geological Society of Malaysia 33 (November 30, 1993): 369–85. http://dx.doi.org/10.7186/bgsm33199326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Charlton, T. R., R. Hall, and E. Partoyo. "The geology and tectonic evolution of Waigeo Island, NE Indonesia." Journal of Southeast Asian Earth Sciences 6, no. 3-4 (October 1991): 289–97. http://dx.doi.org/10.1016/0743-9547(91)90074-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Doust, Harry, and Ron A. Noble. "Petroleum systems of Indonesia." Marine and Petroleum Geology 25, no. 2 (February 2008): 103–29. http://dx.doi.org/10.1016/j.marpetgeo.2007.05.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Van Leeuwen, Theo M., Richard P. Taylor, and Jordan Hutagalung. "The geology of the Tangse porphyry copper-molybdenum prospect, Aceh, Indonesia." Economic Geology 82, no. 1 (February 1, 1987): 27–42. http://dx.doi.org/10.2113/gsecongeo.82.1.27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Malaihollo, Jeffrey F. A., and Robert Hall. "The geology and tectonic evolution of the Bacan region, east Indonesia." Geological Society, London, Special Publications 106, no. 1 (1996): 483–97. http://dx.doi.org/10.1144/gsl.sp.1996.106.01.30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Vukadinovic, Danilo, and Igan Sutawidjaja. "Geology, mineralogy and magma evolution of Gunung Slamet Volcano, Java, Indonesia." Journal of Southeast Asian Earth Sciences 11, no. 2 (February 1995): 135–64. http://dx.doi.org/10.1016/0743-9547(94)00043-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Verdiansyah, Okki. "A Desktop Study to Determine Mineralization Using Lineament Density Analysis at Kulon Progo Mountains, Yogyakarta and Central Java Province, Indonesia." Indonesian Journal of Geography 51, no. 1 (April 30, 2019): 31. http://dx.doi.org/10.22146/ijg.37442.

Повний текст джерела
Анотація:
A geological study was conducted in Kulon Progo and its surrounding areas (Kulon Progo and Purworejo Regency). It focused on regional geology, tectonic configuration, geodynamics and magmatism, lithology and volcanology, and mineralization. Although there has been considerable research of mineralization in the area—particularly in Kokap (Kulon Progo Regency), Bagelen (Purworejo Regency) and Gupit (Magelang Regency), the potential of precious metals has not been determined due to data limitations. The study combined qualitative and semi-quantitative methods using a desktop geologic analysis, which facilitates lithology interpretation, volcanic boundary system, and lineament density assessment. The geology of the region is composed of an ancient volcanic complex of the Old Andesite Formation formed during the Late Oligocene-Miocene, and the mineralization in Kokap, Bagelen, and Gupit is epithermal. Based on the analysis results, the mineralization occurs in the central to proximal facies of the paleo-volcano, and the system ranges from 2.2 to 3.8 km in diameter. The manual analysis of the lineament density showed that the main direction of the lineaments was SE-NW with a maximum density of 2025.9 m/km2 and an anomaly limit of >1800 m/km2. In the combined semi-automatic analysis, the maximum density was 8.3 km/km2. The target area of mineralization included four anomalous areas, namely Bagelen-Kokap, Salaman, Kaligesing, and Loano, associated with the central and proximal facies of each small paleo-volcano.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Pigram, C. J., and Surono J. B. Supandjono. "Origin of the Sula Platform, eastern Indonesia." Geology 13, no. 4 (1985): 246. http://dx.doi.org/10.1130/0091-7613(1985)13<246:ootspe>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Devy, Shalaho Dina. "Hydrogeology of Karang Mumus Watershed in Samarinda, East Kalimantan Province, Indonesia." Forum Geografi 32, no. 1 (April 24, 2018): 12–23. http://dx.doi.org/10.23917/forgeo.v32i1.5229.

Повний текст джерела
Анотація:
Samarinda is part of an anticlinorium, which is marked by the existence of many anticlines. In addition, various types of rock and aquifer can be found in the city due to the uniqueness of geological structure of the area. Nevertheless, the literature are lacking attention of hydrogeological condition of this area. This research aims to determine the hydrogeology of the Karang Mumus watershed, particularly in relation to its geology and land use conditions. The research uses an inductive method, with an analytical approach consisting of a study of the land use, hydrological conditions, geology, geomorphology and hydrogeology. The Karang Mumus watershed can be divided into three hydrogeological layers: (1) an aquitard layer, the top layer, which has a hydraulic conductivity of 4.3 × 10-6 m/sec, and is dominated by siltstone; (2) an aquifer layer in the middle, with a hydraulic conductivity of 2.6 × 10-4 m/sec, dominated by sand and sandstone; and (3) an aquiclude layer occupying the lower layer, with a hydraulic conductivity of 1.6 × 10-11 m/sec, and which is dominated by claystone.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Roberts, H. H., C. V. Phipps, and L. Effendi. "Halimeda bioherms of the eastern Java Sea, Indonesia." Geology 15, no. 4 (1987): 371. http://dx.doi.org/10.1130/0091-7613(1987)15<371:hbotej>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Syahputra, Reza, Felix Muria Hasudungan Sihombing, and Octria Adi Prasojo. "Correlation Between Fracture Azimuth, Surface Lineaments and Regional Tectonics: A case study from Belik District, Central Java, Indonesia." Journal of Geoscience, Engineering, Environment, and Technology 4, no. 1 (March 1, 2019): 22. http://dx.doi.org/10.25299/jgeet.2019.4.1.2294.

Повний текст джерела
Анотація:
Two major strike-slip faults with northeast-southwest and northwest-southeast orientation have shifted the southern Central Java, including Belik District. Consequently, many smaller faults that have the same direction as the major faults and west-east direction folding systems were emerged. The orientation of these geologic structures could be observed from morphological features such as ridge and river. A quantitative approach was carried out to unravel the impacts of those geologic structures on the geomorphology of the study area, which is located between Slamet Mountain and Sindoro Mountain, Central Java province. The method used in this research was the structural geology analysis, including the interpretation of ridge and river lineament, the distribution of fractures, and statistical analysis. The research location is divided into four different segments based on its lineament and morphology. The lineament that has similar characteristics was tested using normality test of Kolmogorov-Smirnov. The Spearman test was used to obtain the correlation between surface lineament and fracture azimuth. All fracture azimuth, ridges and rivers tend to have northwest-southeast and northeast-southwest direction. These results show similar direction with strike-slip regional structural pattern. The statistical calculation and field observation indicate the influence of external factor on the change of the study area’s landform.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Satya, Drestanta Yudha, Suryantini, and Doddy Astra. "Geology Assessment of Permeability Distribution in Silangkitang Geothermal Field, North Sumatra, Indonesia." IOP Conference Series: Earth and Environmental Science 732, no. 1 (April 1, 2021): 012003. http://dx.doi.org/10.1088/1755-1315/732/1/012003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

ITO, Yuichi, and Tetsuji TAGUCHI. "Petroleum geology and hydrocarbon source rocks in Mahakam delta, east Kalimantan, Indonesia." Journal of the Japanese Association for Petroleum Technology 55, no. 1 (1990): 54–65. http://dx.doi.org/10.3720/japt.55.54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sirait, J., L. C. Prasetyo, and N. Prasetiyo. "Geology Controls Grade Variance at Grasberg Cu-Au Porphyry Deposit, Papua-Indonesia." Journal of Physics: Conference Series 1363 (November 2019): 012037. http://dx.doi.org/10.1088/1742-6596/1363/1/012037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Villeneuve, Michel, Wahyu Gunawan, Jean-Jacques Cornee, and Olivier Vidal. "Geology of the central Sulawesi belt (eastern Indonesia): constraints for geodynamic models." International Journal of Earth Sciences 91, no. 3 (September 25, 2001): 524–37. http://dx.doi.org/10.1007/s005310100228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Marcoux, Eric, and Jean-Pierre Milési. "Epithermal gold deposits in West Java, Indonesia: geology, age and crustal source." Journal of Geochemical Exploration 50, no. 1-3 (March 1994): 393–408. http://dx.doi.org/10.1016/0375-6742(94)90033-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Tingay, Mark. "Initial pore pressures under the Lusi mud volcano, Indonesia." Interpretation 3, no. 1 (February 1, 2015): SE33—SE49. http://dx.doi.org/10.1190/int-2014-0092.1.

Повний текст джерела
Анотація:
The Lusi mud volcano of East Java, Indonesia, remains one of the most unusual geologic disasters of modern times. Since its sudden birth in 2006, Lusi has erupted continuously, expelling more than 90 million cubic meters of mud that has displaced approximately 40,000 people. This study undertakes the first detailed analysis of the pore pressures immediately prior to the Lusi mud volcano eruption by compiling data from the adjacent (150 m away) Banjar Panji-1 wellbore and undertaking pore pressure prediction from carefully compiled petrophysical data. Wellbore fluid influxes indicate that sequences under Lusi are overpressured from only 350 m depth and follow an approximately lithostat-parallel pore pressure increase through Pleistocene clastic sequences (to 1870 m depth) with pore pressure gradients up to [Formula: see text]. Most unusually, fluid influxes, a major kick, connection gases, elevated background gases, and offset well data confirm that high-magnitude overpressures also exist in the Plio-Pleistocene volcanic sequences (1870 to approximately 2833 m depth) and Miocene (Tuban Formation) carbonates, with pore pressure gradients of [Formula: see text]. The varying geology under the Lusi mud volcano poses a number of challenges for determining overpressure origin and undertaking pore pressure prediction. Overpressures in the fine-grained and rapidly deposited Pleistocene clastics have a petrophysical signature typical of disequilibrium compaction and can be reliably predicted from sonic, resistivity, and drilling exponent data. However, it is difficult to establish the overpressure origin in the low-porosity volcanic sequences and Miocene carbonates. Similarly, the volcanics do not have any clear porosity anomaly, and thus pore pressures in these sequences are greatly underestimated by standard prediction methods. The analysis of preeruption pore pressures underneath the Lusi mud volcano is important for understanding the mechanics, triggering, and longevity of the eruption, as well as providing a valuable example of the unknowns and challenges associated with overpressures in nonclastic rocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

O'Sullivan, Paul B., Mike Morwood, Douglas Hobbs, Fachroel Aziz Suminto, Mangatas Situmorang, Asaf Raza, and Roland Maas. "Archaeological implications of the geology and chronology of the Soa basin, Flores, Indonesia." Geology 29, no. 7 (2001): 607. http://dx.doi.org/10.1130/0091-7613(2001)029<0607:aiotga>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Soeparyono, N., and P. Lennox. "Structural styles, Cepu oil fields, Java, Indonesia." Exploration Geophysics 22, no. 2 (June 1991): 369–74. http://dx.doi.org/10.1071/eg991369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wilson, Moyra E. J., Dan W. J. Bosence, and Alexander Limbong. "Tertiary syntectonic carbonate platform development in Indonesia." Sedimentology 47, no. 2 (April 21, 2002): 395–419. http://dx.doi.org/10.1046/j.1365-3091.2000.00299.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

OTAKE, Masami, Hiroshi TAKAHASHI, Takehiro KOSEKI, and Hiroo YOSHIYAMA. "Geology, geochemistry and geochronology of the Bajawa area, central Flores, Indonesia: Geologic structure and evolution of the Bajawa depression." BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN 53, no. 2-3 (2002): 161–73. http://dx.doi.org/10.9795/bullgsj.53.161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Manalu, Pinantun. "Geothermal development in Indonesia." Geothermics 17, no. 2-3 (January 1988): 415–20. http://dx.doi.org/10.1016/0375-6505(88)90070-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hall, R., and M. E. J. Wilson. "Neogene sutures in eastern Indonesia." Journal of Asian Earth Sciences 18, no. 6 (December 2000): 781–808. http://dx.doi.org/10.1016/s1367-9120(00)00040-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Fahlevi, Iwan, Agus Sutanto, Andiani Andiani, Saut Aritua Hasiholan Sagala, and Sulamith Kastl. "Education and Training on Introduction of Geology for Spatial Planning." Indonesian Journal of Planning and Development 3, no. 1 (February 28, 2018): 1. http://dx.doi.org/10.14710/ijpd.3.1.1-9.

Повний текст джерела
Анотація:
In 2015 and 2016, the Education and Training Center of Geology, Mineral, and Coal (Pusdiklat Geologi, Mineral dan Batubara) developed training of Introduction to Geology for Spatial Planning based on a new standard curriculum. The objective of this training is to prepare the participants in dealing with basic environmental geology data and its analysis for spatial planning, including data and information management and generation, basic knowledge in the geographic information system (GIS) as well as the data interpretation and obstacles within spatial planning regarding the geological factors. Furthermore, the training is meant to introduce participants to basic methods in spatial planning processes, such as participatory planning, scenario building, and conflict analysis for geologically-induced conflicts in spatial planning. One focus of the training is the issue of disaster prevention via spatial planning. For this topic, the training refers to the Guideline for the Implementation of Geological Hazard Information in Spatial Planning (Pedoman Penyusunan Informasi Bahaya Geologi untuk Penataan Ruang) developed by the Geological Agency of Indonesia in 2015, supported by the German Development Cooperation. The approach of the new training differs from the previous standard curriculum which focused on operational and more technical procedures and scoring of geological analysis. One problem of passed training is the effectiveness of the training due to different knowledge levels of the participants, outsourced training parts and the often-passive didactic method implemented during the training. The new training is using a blended learning system, combining between e-learning in the introductory phase of the training to harmonize the participant's background and a highly interactive approach with practical elements to encourage the participants to apply theoretical knowledge directly. Moreover, the training aims to improve the participants’ capabilities to implement their knowledge to real case studies, from which they are likely to become more competent to fulfill their office tasks for sure. The new curriculum and training setup is adaptive to the current development process, using methods of gap analysis and SWOT analysis, determined contents, didactical needs, and limitations. These methods help to compare the expected performance of the new curriculum, both internally and externally, with the performance of the previous curriculum. Furthermore, the whole process is accompanied by focus group discussions to acquire feedback, reviews, and considerations for the setup and content of the changes applied to the curriculum.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Li, Xi-Yao, Zheng-Wei Zhang, Cheng-Quan Wu, Jin-Hong Xu, and Zi-Ru Jin. "Geology and geochemistry of Gunung Subang gold deposit, Tanggeung, Cianjur, West Java, Indonesia." Ore Geology Reviews 113 (October 2019): 103060. http://dx.doi.org/10.1016/j.oregeorev.2019.103060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

HALL, R., M. G. AUDLEY-CHARLES, F. T. BANNER, S. HIDAYAT, and S. L. TOBING. "Late Palaeogene–Quaternary geology of Halmahera, Eastern Indonesia: initiation of a volcanic island arc." Journal of the Geological Society 145, no. 4 (July 1988): 577–90. http://dx.doi.org/10.1144/gsjgs.145.4.0577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

MURAOKA, Hirofumi, Asnawir NASUTION, Minoru URAI, Masaaki TAKAHASHI, Isao TAKASHIMA, Janes SIMANJUNTAK, Herry SUNDHORO, et al. "Tectonic, volcanic and stratigraphic geology of the Bajawa geothermal field, central Flores, Indonesia." BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN 53, no. 2-3 (2002): 109–38. http://dx.doi.org/10.9795/bullgsj.53.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Angeles, Ciceron A., Sukmandaru Prihatmoko, and James S. Walker. "Geology and Alteration-Mineralization Characteristics of the Cibaliung Epithermal Gold Deposit, Banten, Indonesia." Resource Geology 52, no. 4 (December 2002): 329–39. http://dx.doi.org/10.1111/j.1751-3928.2002.tb00143.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

K., Sampurno. "Geology of Bandung (Indonesia) and its significance for the development of Bandung City." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 29, no. 3 (May 1992): A140. http://dx.doi.org/10.1016/0148-9062(92)93673-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Han, Jin-Kyun, and Sang-Hoon Choi. "Ore Geology of Skarn Ore Bodies in the Kasihan Area, East Java, Indonesia." Economic and Environmental Geology 45, no. 1 (February 28, 2012): 1–8. http://dx.doi.org/10.9719/eeg.2012.45.1.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Delinom, Robert M. "Structural geology controls on groundwater flow: Lembang Fault case study, West Java, Indonesia." Hydrogeology Journal 17, no. 4 (April 7, 2009): 1011–23. http://dx.doi.org/10.1007/s10040-009-0453-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Permana, Haryadi, and L. Handayani. "STUDI AWAL POLA STRUKTUR BUSUR MUKA ACEH, SUMATRA BAGIAN UTARA (INDONESIA): Penafsiran dan Analisis Peta Batimetri." JURNAL GEOLOGI KELAUTAN 8, no. 3 (February 16, 2016): 105. http://dx.doi.org/10.32693/jgk.8.3.2010.191.

Повний текст джерела
Анотація:
Analisis morfostruktur daerah penelitian menunjukan tiga unit struktur geologi yang berbeda, antara lain zona penunjaman, zona deformasi aktif dan busur muka termasuk didalamnya tinggian busur muka dan cekungan busur muka. Struktur geologi zona penunjaman lempeng teramati sepanjang Palung Sunda paralel dengan zona deformasi aktif. Struktur geologi pada Tinggian Busur Muka membentuk sistim prisma akresi yang disusun oleh sesar anjak, sesar geser, perlipatan dan perlipatan naik. Pola kelurusan struktur umumnya berarah berarah utara baratlaut-selatan tenggara di sebelah utara lintang 5°U, arah baratlaut-tenggara pada posisi 3°-5°U, kelurusan kemudian berbelok hampir barat-timur di sekitar 2°-3°U. Perubahan arah pola kelurusan struktur tersebut ditafsirkan sebagai jawaban terhadap naiknya tingkat kemiringan penunjaman lempeng dari daerah Simeulue ke arah Lintang 5°U -7°U atau secara umum dari selatan Sumatra ke arah utara Sumatra. Di bagian tengah daerah telitian berkembang kelurusan patahan berarah utara-selatan yang memotong kelurusan berarah baratlaut-tenggara. Kelurusan tersebut ditafsirkan sebagai patahan geser dekstral dan kemungkinan masih aktif. Kata Kunci: Analisis morfostruktur, zona penunjaman, zona deformasi aktif, busur muka, kelurusan, sesar anjak, sesar geser, perlipatan, perlipatan naik, kemiringan penunjaman lempeng Morphostructure analyses of study area demonstrate three different units of geological structures: subduction zone, active deformation zone and fore-arc region, which include Fore Arc High and Fore Arc Basin. The plate subduction zone observes along Sunda Trench parallel with active deformation zone. Structure geology in Fore Arc High builds an accretionary prism system. It was composed by thrust fault, strike slip fault, folding and thrust fold. General trend of structural pattern is NNE-SSE at the north of 5°N, NW-SE direction at around 3°-5°N and changed in direction relative to E-W at about 2°-3°N. This direction variation of structural pattern trend was interpreted as a response to increase of obliquity degree of subducted plate from Simeulue area to 5° -7°N, or in general, from southern of Sumatra to north of Sumatra. NS trend lineament has developed in the middle part of study area that also sliced the NW-SE main structural direction. These structural lineaments interpreted as dextral strike slip fault and it is possibly still active. Keywords: morphostructure analyses, subduction zone, active deformation zone, fore-arc lineament, thrust fault, strike slip, folding, thrust fold, plat, plate subduction obliquity
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Miyazaki, K., J. Sopaheluwakan, I. Zulkarnain, and K. Wakita. "A jadeite-quartz-glaucophane rock from Karangsambung, central Java, Indonesia." Island Arc 7, no. 1-2 (April 1998): 223–30. http://dx.doi.org/10.1046/j.1440-1738.1998.00164.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Sukmono, Sigit, Djoko Santoso, Ari Samodra, Wally Waluyo, and Sardjito Tjiptoharsono. "Integrating seismic attributes for reservoir characterization in Melandong Field, Indonesia." Leading Edge 25, no. 5 (May 2006): 532–38. http://dx.doi.org/10.1190/1.2202653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Charlton, T. R., A. J. Barber, and S. T. Barkham. "The structural evolution of the Timor collision complex, eastern Indonesia." Journal of Structural Geology 13, no. 5 (January 1991): 489–500. http://dx.doi.org/10.1016/0191-8141(91)90039-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Verdiansyah, Okki, Damas Muharif, and I. Gde Sukadana. "Indikasi Mineralisasi Tipe Porfiri di Daerah Sumbersari, Kompleks Pengunungan Kulon Progo, Purworejo, Indonesia." EKSPLORIUM 41, no. 2 (November 30, 2020): 115. http://dx.doi.org/10.17146/eksplorium.2020.41.2.5959.

Повний текст джерела
Анотація:
ABSTRAK Pegunungan Kulon Progo merupakan produk magmatisme Busur Sunda-Banda tersusun atas formasi andesit tua. Daerah Sumbersari merupakan bagian dari gunung api Gajah, batuan gunung api tertua Kulon Progo. Indikasi mineralisasi tipe porfiri ditemukan di daerah ini sehingga menarik untuk diteliti lebih lanjut. Penelitian ini bertujuan untuk mengetahui potensi keterdapatan mineral logam berharga (Cu-Au). Metode penelitian yang digunakan adalah pemetaan geologi, analisis petrografi dan mikroskopi bijih, serta analisis geokimia menggunakan XRF dan ICP-MS. Geologi daerah penelitian terletak pada fasies sentral-proksimal Khuluk Gajah, terususun atas intrusi mikrodiorit, mikrodiorit kuarsa, andesit, andesit basaltik-diorit, dan batugamping. Alterasi hidrotermal berkembang pada batuan beku diorit, mikrodiorit, dan sebagian pada andesit. Alterasi hidrotermal dibagi menjadi beberapa kelompok, yaitu ilit-serisit±biotit sekunder, epidot-aktinolit-kalsit±ilit, epidot-kalsit±ilit, dan ilit-serisit±kuarsa. Beberapa fase mineralisasi berkembang, antara lain fase epidot-aktinolit yang diikuti mineralisasi magnetit-kalkopirit, fase biotit-magnetit-kalkopirit-bornit, dan fase akhir serisit-mineral lempung-pirit menggantikan keseluruhan sistem. Analisis geokimia pada batuan teralterasi menunjukan indikasi mineralisasi Cu-Au dengan kadar 491–1447 ppm (0,14%) Cu dan 0,02–0,3 ppm Au dengan rasio elemen Cu:Au adalah 1,01. Karakter geokimia menunjukkan adanya korelasi kuat Cu terhadap Au.ABSTRACT Kulon Progo Mountain is Sunda-Banda Arc magmatism product composed of an old andesite formation. Sumbersari Area is part of the Gajah volcanic, which is the oldest rock of Kulon Progo volcanics. Indication of porphyry type mineralisation has been found in the area which makes the area interested for further research. The research methodologies are geological mapping, petrography and ore microscopy, and geochemical analysis using XRF and ICP-MS. Geology of the area located in central-proximal facies of Khuluk Gajah, consist of microdiorite, quartz-microdiorite, andesite, basaltic-dioritic andesite intrusions, and limestone. Hydrotermal alteration is developing into certain groups like illite-sericite ± secondary biotite, epidote-actinolite-calcite ± illite, epidot-calcite ± illite, and illite-sericite ± quartz. Some mineralisation phases are developed like epidote-actinolite followed by magnetite-chalcopyrite mineralisation, biotite-magnetite-chalcopyrite-bornite phase and the late phase of sericite-clay-pyrite replacing the entire system. Geochemical analysis on altered rocks show Cu-Au mineralisation indication ranging from 491-1,447 ppm (0.14%) and 0.02-0.3 ppm respectively, with Cu:Au ratio is 1.01. Geochemical characteristic shows strong correlation of Cu to Au.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kealy, Shimona, Lucas Wattimena, and Sue O'Connor. "A Geological and Spatial Approach to Prehistoric Archaeological Surveys on Small Islands: Case Studies from Maluku Barat Daya, Indonesia." Kapata Arkeologi 14, no. 1 (July 30, 2018): 1. http://dx.doi.org/10.24832/kapata.v13i2.458.

Повний текст джерела
Анотація:
Survei arkeologi sangat penting untuk penemuan dan interpretasi sisa-sisa yang ditinggalkan oleh aktivitas manusia prasejarah. Saat ini penginderaan jarak jauh dan model prediktif telah meningkatkan jangkauan dan keberhasilan survei arkeologi, namun survei pejalan kaki untuk mengembangkan parameter model dan prediksi kebenaran dasar masih penting untuk keberhasilan suatu penemuan. Penelitian ini merupakan hasil survei arkeologi tahun 2017 di Pulau Babar Besar dan Pulau Wetang yang termasuk dalam bagian dari kelompok Kepulauan Babar, Maluku Barat Daya, Indonesia. Tercatat sebanyak 62 situs arkeologi ditemukan di kedua pulau tersebut, tujuh diantaranya merupakan situs lukisan cadas baru yang ditemukan di Pulau Wetang. Hasil survei ini menunjukkan keberhasilan penggunaan peta geologi dan topografi di samping citra satelit dalam mendeteksi daerah prospektif untuk survei. Hasil penelitian ini juga menunjukkan bahwa pemahaman karakteristik geologi daerah yang lebih rinci dan komparatif diperlukan sebelum dilakukan survei jarak jauh yang lebih lanjut di wilayah Maluku Barat Daya, Indonesia.Archaeological surveys are essential to the discovery and interpretation of remains left by past human activities. While remote sensing and predictive models have greatly improved the reach and success of archaeological survey, pedestrian surveys to develop model parameters and ground-truth predictions is still imperative for successful discoveries. Here we present the results of the 2017 archaeological survey of islands Babar Besar and Wetang in the Babar Island Group, Maluku Barat Daya, Indonesia. A total of 62 archaeological sites were recorded between the two islands; seven of which represent new rock art sites on Wetang island. Our survey results indicate the successful use of geological and topographic maps alongside satellite images in detecting prospective regions for survey. Results also indicate however that a more detailed and comparative understanding of the regions geology is required before more advanced forms of remote survey are conducted in the Maluku Barat Daya region.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kempe, Stephan, and Józef Kaźmierczak. "Satonda Crater Lake, Indonesia: Hydrogeochemistry and biocarbonates." Facies 28, no. 1 (December 1993): 1–31. http://dx.doi.org/10.1007/bf02539726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Aswin, Azwar, Madya Putra Yaumil Ahad, Metha Claudia Agatha Silitonga, and Rori Gusparirin. "Bibliometric Analysis of Public Policy Research in Indonesia 2011-2021." Journal of Local Government Issues 5, no. 2 (September 22, 2022): 80–96. http://dx.doi.org/10.22219/logos.v5i2.21704.

Повний текст джерела
Анотація:
The aim of this study was to analyze the bibliometric characteristics of research works on public policy in Indonesia during the last ten years (2011-2021) by foreign and Indonesian authors. This study utilized Scopus database and retrieved 128 scientific publications from international authors focusing on public policy in Indonesia. The publications are examined based on several indicators including: publication trends, contribution of countries, journals, institutions, authors, top cited articles, and keyword analysis. The results show that during the last decade, there has been significant growth in the number of publications, with Indonesia as the country with the most published research works. Meanwhile, the influential institution affiliations publishing works about public policy in Indonesia are University of New South Wales, Australia and Vanderbilt University from the United States. Besides that, the top influential journal publishers are Development in Practices (UK) and Forest Policy and Economics (Netherlands). Based on the number of publications, Indonesian authors hold the top position, meanwhile, foreign authors were identified as the writers with the largest number of article citations. The most-cited article in public policy research in Indonesia focuses on education policy and published in International Journal of Educational Development. However, four of the top ten articles with the most citations are published in Forest Policy and Economics.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії