Добірка наукової літератури з теми "Geodesic distances"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geodesic distances".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Geodesic distances"
Li, Yue, Logan Numerow, Bernhard Thomaszewski, and Stelian Coros. "Differentiable Geodesic Distance for Intrinsic Minimization on Triangle Meshes." ACM Transactions on Graphics 43, no. 4 (July 19, 2024): 1–14. http://dx.doi.org/10.1145/3658122.
Повний текст джерелаGuzmán Naranjo, Matías, and Gerhard Jäger. "Euclide, the crow, the wolf and the pedestrian: distance metrics for linguistic typology." Open Research Europe 3 (June 21, 2023): 104. http://dx.doi.org/10.12688/openreseurope.16141.1.
Повний текст джерелаMejia-Parra, Daniel, Jairo R. Sánchez, Jorge Posada, Oscar Ruiz-Salguero, and Carlos Cadavid. "Quasi-Isometric Mesh Parameterization Using Heat-Based Geodesics and Poisson Surface Fills." Mathematics 7, no. 8 (August 17, 2019): 753. http://dx.doi.org/10.3390/math7080753.
Повний текст джерелаWANG, SONGJING, ZHOUYU YU, and LIFENG XI. "AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS." Fractals 25, no. 05 (September 4, 2017): 1750044. http://dx.doi.org/10.1142/s0218348x1750044x.
Повний текст джерелаJenčová, Anna. "Geodesic distances on density matrices." Journal of Mathematical Physics 45, no. 5 (May 2004): 1787–94. http://dx.doi.org/10.1063/1.1689000.
Повний текст джерелаGuzmán Naranjo, Matías, and Gerhard Jäger. "Euclide, the crow, the wolf and the pedestrian: distance metrics for linguistic typology." Open Research Europe 3 (July 2, 2024): 104. http://dx.doi.org/10.12688/openreseurope.16141.2.
Повний текст джерелаBORGELT, MAGDALENE G., MARC VAN KREVELD, and JUN LUO. "GEODESIC DISKS AND CLUSTERING IN A SIMPLE POLYGON." International Journal of Computational Geometry & Applications 21, no. 06 (December 2011): 595–608. http://dx.doi.org/10.1142/s0218195911003822.
Повний текст джерелаHino, Masanori. "Geodesic Distances and Intrinsic Distances on Some Fractal Sets." Publications of the Research Institute for Mathematical Sciences 50, no. 2 (2014): 181–205. http://dx.doi.org/10.4171/prims/129.
Повний текст джерелаMahdi, Hussein Alwan. "A MODIFIED METHOD FOR DETERMINATION OF SCALE FACTOR OF THE PROJECTED GEODESIC." Journal of Engineering 12, no. 03 (September 1, 2006): 882–95. http://dx.doi.org/10.31026/j.eng.2006.03.31.
Повний текст джерелаNoyel, Guillaume, Jesús Angulo, and Dominique Jeulin. "FAST COMPUTATION OF ALL PAIRS OF GEODESIC DISTANCES." Image Analysis & Stereology 30, no. 2 (June 30, 2011): 101. http://dx.doi.org/10.5566/ias.v30.p101-109.
Повний текст джерелаДисертації з теми "Geodesic distances"
Oliveira, Guilherme do Nascimento. "Procedural textures mapping using geodesic distances." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/34767.
Повний текст джерелаTexture mapping is an important technique to add detail to geometric models. Imagebased texture mapping is the preferred approach but employs pre-computed images, which are better suited for static patterns. On the other hand, procedural-based texture mapping offers an alternative that rely on functions to describe texturing patterns. This allows more flexibility to define patterns in dynamic scenes, while also having a more compact representation and more control for parametric adjustments on the texture visual appearance. When mapped with 3D coordinates, the procedural textures do not consider the model surface, and with 2D mapping the coordinates must be defined in a coherent way, which for complex models is not an easy task. In this work we give a introduction to procedural texturing and texture mapping, and introduce GeoTextures, an original approach that uses geodesic distance defined from multiple sources at different locations over the surface of the model. The geodesic distance is passed as a parameter that allows the shape of the model to be considered in the definition of the procedural texture. We validate the proposal using procedural textures that are applied in real-time to complex surfaces, and show examples that change both the shading of the models, as well as their shape using hardware-based tessellation.
Bertrand, Théo. "Méthodes géodésiques et apprentissage pour l’imagerie de microscopie par localisation ultrasonore." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD024.
Повний текст джерелаUltrasound Localization Microscopy is a new method in super-resolved Medical Imaging that allow us to overcome compromise between precision and penetration distance in the tissues for the imaging of the vascular network. This new type of images raises new mathematical questions, especially for the segmentaton and analysis, necessary steps to achieve medical diagnostic of patients. Our work is positioned at the intersection of geodesic and Machine Learning methods. In this thesis, we make three contributions. The first of these is centered on the constraints linked to ULM images and proposes the tracking of the entire vascular tree through the detection of key points of blood vessels appearing on the image. The second contribution of this thesis deals with learning to define Riemannian metrics to handle segmentation tasks on brain MRI data and eye fundus images. The final part of our work focuses on an inverse problem for reconstructing contrast agent trajectories in medical images in the context of grid-free super-resolution
Nilsson, Ola. "Level-set methods and geodesic distance functions /." Norrköping : Department of Science and Technology, Linköping University, 2009. http://www.bibl.liu.se/liupubl/disp/disp2009/tek1275s.pdf.
Повний текст джерелаWang, Rui, and 王睿. "Medial axis simplification based on global geodesic slope and accumulated hyperbolic distance." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48330139.
Повний текст джерелаpublished_or_final_version
Computer Science
Master
Master of Philosophy
Lu, Shi-Jian. "The significance of atmospheric effects in electronic distance measurement." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278369.
Повний текст джерелаBrandão, Artur Caldas. "Possibilidade de emprego de um campo de pontos planimetrico como definidor de um comparador de distancias colineares." reponame:Repositório Institucional da UFPR, 1996. http://hdl.handle.net/1884/48609.
Повний текст джерелаCo-orientador: Tarcisio Ferreira Silva
Dissertação (mestrado) - Universidade Federal do Paraná
Resumo: O procedimento clássico usado para determinar as distâncias interpilares de uma linha base multipilar para calibração de distanciômetros, consiste em avaliar essas distâncias diretamente, usando equipamentos de alta precisão. Nesse caso, a precisão final das distâncias interpilares fica limitada à precisão do próprio equipamento usado. Neste trabalho, foi desenvolvido um procedimento metodológico para definir as distâncias interpilares de uma linha base a partir de um campo de pontos planimétrico, em que os pontos da linha base foram incluídos. Para tanto, a configuração geométrica do campo de pontos foi adequadamente otimizada através de procedimentos de simulação. Garantiu-se assim que os resultados esperados para a precisão final dos pontos da rede fossem obtidos antes mesmo do trabalho de campo ser conduzido. O programa "NETZ2D" de análise e ajustamento de redes 2D foi usado como ferramenta computacional. Os experimentos realizados no processo de simulação e de medição do campo de pontos, foram conduzidos sobre a linha base da UFPE. Na medição do campo de pontos otimizado, garantiu-se o controle do processo de medição em termos de escolha adequada do período de medição e dos equipamentos. Verificou-se que a metodologia proposta, quando comparado ao procedimento clássico, apresentou vantagens em termos de facilidades de implementação bem como nos resultados obtidos. No experimento realizado, as distâncias interpilares da linha base da UFPE foram definidas com uma precisão cinco vezes maior que a precisão das medidas de distâncias avaliadas no campo de pontos. Por outro lado, resultado final equivalente foi obtido para os pontos da linha base simulando um campo de pontos com um único padrão metrológico de distância.
Abstract: The used classic proceeding to determine the interpillares distancies of one multipillar base line to calibration of eletronic distancies measuring (EDM), consist in to evaluate this distancies directing using equipmenty of high precision. In this case, the finish precision of the interpillares distancies stay limited the precision of proper equipment used. In this work, was developed a metodologic proceeding to define the interpillares distancies of one base line until of the network 2D, in that the points of base line was incluids. To that effect, the geometric configuration of network 2D was adequatement optimized through of proceeding of simulation. Was guaranted that the hoped results to the finish precision of the points of the net have was obtain before the work of field to be conduzed. The program "NETZ2D" of analysis and adjustment of the nets was used how computation instrument. The experiments realized in the simulation and measure process of the network, was conduzed about the base line of UFPE. On the measuring of network optmized, was guaranty the control of the measuring process adequad choose of the time of the measuring and of the equipments. Was verified that the offered metodology, when compared to the classic proceeding, showed advantagies of easilies implementation, as in the results obtained. On the experiment realized, the interpillares distancies of base line of the UFPE was define with one precision five time bigger than the precision o f the measure of the distancies evaluated on network. On the other hand, the equivalent finish result was obtained to the points of the base line, simulating one network with only one standart metrologic of the distance.
Kohli, Mathieu. "De la notion de courbure géodésique en géométrie sous-Riemannienne." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX043/document.
Повний текст джерелаWe present a notion of geodesic curvature for smooth horizontal curves in a contact sub-Riemannian manifold, measuring how far a horizontal curve is from being a geodesic. This geodesic curvature consists in two functions that both vanish along a smooth horizontal curve if and only if this curve is a geodesic. The main result of this thesis is the metric interpretation of these geodesic curvature functions. This interpretation consists in seeing the geodesic curvature functions as the first corrective coefficients in the Taylor expansion of the sub-Riemannian distance between two close points on the curve
Arcostanzo, Marc. "Rigidité et prolongement au disque d'une distance sur le bord." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10216.
Повний текст джерелаMiller, Charles Miller. "THE EFFECT OF DISTANCE DECAY: A STUDY OF AUTOMOTIVE RETAILING." Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/439401.
Повний текст джерелаD.B.A.
Retail automotive literature that examines how the distance between a retail automotive facility and the prospective purchaser affects market performance is limited. Primary data for this study indicates that distance and purchase in the retail automotive sector move in opposite directions. This study examines similar goods that have high barriers of entry and proposes other methods of increasing market reach. This is a study of the conditions that affect the market performance for imported luxury vehicles. First, is the effect of distance on purchase decisions. Vehicular sales drop the further away a customer is from a car dealership. We call this phenomenon distance decay. Distance decay is defined as: the interaction between two locations declines as the distance between then increases. Secondly, when similar brands are viewed as substitutes, the consumer will choose the brand with the closest automotive service department to their residence or place of employment. Thirdly, door-to-door selling can decrease distance decay. Lastly, pick-up and delivery service can decrease distance decay. Data from 30,936 prospects and individuals who entered, phoned, or emailed a dealership inquiring about purchasing a new Audi were used in the study. These prospects will be categorized by who intended to buy and who actually purchased a car. In addition to the prospects, data from 6,153 individuals who purchased a new Audi from four Audi dealerships in the greater Philadelphia area and from the framed field experiment were used in the study. These categories will then be further labeled by ZIP code and city to determine the effects of distance. Then, possible solutions will be performed on test groups to determine what alternatives from other industries can be used to improve market performance involving long distances.
Temple University--Theses
Cruz, Barbosa Raúl. "Generative manifold learning for the exploration of partially labeled data." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/78053.
Повний текст джерелаResum de la tesi (màxim 4000 caràcters. Si se supera aquest límit, el resum es tallarà automàticament al caràcter 4000) En muchos problemas de aplicación del mundo real, la disponibilidad de etiquetas de datos para aprendizaje supervisado es bastante limitada. La existencia de conjuntos de datos etiquetados de manera incompleta es común en muchas de las bases de datos generadas en algunas de las áreas de investigación actualmente más activas. Es frecuente que un número limitado de casos etiquetados venga acompañado de un número mucho mayor de datos no etiquetados. Éste es el contexto en el que opera el aprendizaje semi-supervisado, en el cual enfoques no-supervisados prestan ayuda a problemas supervisados y vice versa. Un modelo de aprendizaje de variaciones (manifold learning, en inglés), llamado Mapeo Topográfico Generativo (GTM, en acrónimo de su nombre en inglés), es la base de los métodos desarrollados en esta tesis. La no-linealidad del mapeo que GTM genera hace que éste sea propenso a errores de fiabilidad y continuidad, los cuales pueden reducir la fidelidad de la representación de los datos, especialmente para conjuntos de datos de geometría intrincada. En esta tesis, una extensión de GTM que utiliza una aproximación vía grafos a la métrica geodésica es definida en primer lugar. Este modelo es capaz de representar datos con geometrías intrincadas. En él, el GTM estándar es modificado para priorizar relaciones de vecindad a lo largo de la variación generada. Esto se logra penalizando las divergencias existentes entre las distancias Euclideanas de los datos a los prototipos del modelo y las correspondientes distancias geodésicas a lo largo de la variación. Se muestra que el modelo Geo-GTM resultante mejora la continuidad y fiabilidad de la representación generada y que se comporta de manera robusta en presencia de ruido. Más adelante, la tesis nos lleva a la definición y desarrollo de versiones semi-supervisadas de GTM para la exploración de conjuntos de datos parcialmente etiquetados. Como un primer paso en esta dirección, se presenta un procedimiento de agrupamiento en dos etapas que utiliza información de pertenencia a clase. Una extensión de GTM enriquecida con información de pertenencia a clase, llamada class-GTM, produce una primera descripción de grupos de los datos. El número de grupos definidos por GTM es normalmente grande para propósitos de visualización y no corresponde necesariamente con la estructura de clases global. Por ello, en una segunda etapa, los grupos son aglomerados usando el algoritmo K-means con diferentes estrategias de inicialización novedosas las cuales se benefician de la definición probabilística de GTM. Evaluamos si el uso de información de clase influye en la separabilidad de clase por grupos. Una extensión robusta de GTM que detecta datos atípicos a un tiempo que minimiza de forma efectiva su impacto negativo en el proceso de agrupamiento es evaluada también en este contexto. Se procede después a la definición de un nuevo modelo semi-supervisado, SS-Geo-GTM, que extiende Geo-GTM para ocuparse de problemas semi-supervisados. En SS-Geo-GTM, los prototipos del modelo son vinculados al vecino más cercano a la variación construída por Geo-GTM. El grafo de proximidad resultante es utilizado como base para un algoritmo de propagación de etiquetas de clase. El rendimiento de SS-Geo-GTM es valorado experimentalmente, comparando positivamente tanto con la contraparte de este modelo basada en la distancia Euclideana como con el método alternativo Laplacian Eigenmaps. Finalmente, los modelos desarrollados (el procedimiento de agrupamiento en dos etapas y los modelos semi-supervisados) son aplicados al análisis de un conjunto de datos de tumores cerebrales humanos (obtenidos mediante Espectroscopia de Resonancia Magnética Nuclear), donde las tareas a realizar son el agrupamiento de datos y el modelado de pronóstico de supervivencia.
Книги з теми "Geodesic distances"
Kravchenko, Yuriy. Surveying. ru: INFRA-M Academic Publishing LLC., 2017. http://dx.doi.org/10.12737/textbook_5900a29b032774.83960082.
Повний текст джерелаRüeger, J. M. Electronic distance measurement: An introduction. 3rd ed. Berlin: Springer-Verlag, 1990.
Знайти повний текст джерелаRüeger, J. M. Electronic distance measurement: An introduction. 3rd ed. Berlin: Springer-Verlag, 1990.
Знайти повний текст джерелаRüeger, J. M. Electronic distance measurement: An introduction. 3rd ed. Berlin: Springer-Verlag, 1990.
Знайти повний текст джерелаRüeger, J. M. Electronic distance measurement: An introduction. 4th ed. Berlin: Springer, 1996.
Знайти повний текст джерелаGuoqiang, Tang. Studies of extragalactic radio source structure and its effect on geodetic VLBI measurement. Göteborg, Sweden: School of Electrical and Computer Engineering, Chalmers University of Technology, 1988.
Знайти повний текст джерелаElements of Plane and Spherical Trigonometry: With Their Applications to Heights and Distances Projections of the Sphere, Dialling, Astronomy, the Solution of Equations, and Geodesic Operations. Creative Media Partners, LLC, 2023.
Знайти повний текст джерелаRüeger, Jean M. Electronic Distance Measurement: An Introduction. Springer London, Limited, 2012.
Знайти повний текст джерелаRüeger, Jean M. Electronic Distance Measurement: An Introduction. 4th ed. Springer, 1996.
Знайти повний текст джерелаRueger, Jean M. Electronic Distance Measurement: An Introduction. Springer-Verlag, 1991.
Знайти повний текст джерелаЧастини книг з теми "Geodesic distances"
Aiello, Rosario, Francesco Banterle, Nico Pietroni, Luigi Malomo, Paolo Cignoni, and Roberto Scopigno. "Compression and Querying of Arbitrary Geodesic Distances." In Image Analysis and Processing — ICIAP 2015, 282–93. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23231-7_26.
Повний текст джерелаAflalo, Yonathan, and Ron Kimmel. "Measuring Geodesic Distances via the Uniformization Theorem." In Lecture Notes in Computer Science, 471–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24785-9_40.
Повний текст джерелаBerretti, S., A. Del Bimbo, P. Pala, and F. J. Silva Mata. "Face Recognition by Matching 2D and 3D Geodesic Distances." In Multimedia Content Analysis and Mining, 444–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73417-8_53.
Повний текст джерелаSoille, Pierre. "Generalized Geodesic Distances Applied to Interpolation and Shape Description." In Computational Imaging and Vision, 193–200. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1040-2_25.
Повний текст джерелаHandrich, Sebastian, and Ayoub Al-Hamadi. "Upper-Body Pose Estimation Using Geodesic Distances and Skin-Color." In Advanced Concepts for Intelligent Vision Systems, 150–61. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02895-8_14.
Повний текст джерелаEstévez, Pablo A., Andrés M. Chong, Claudio M. Held, and Claudio A. Perez. "Nonlinear Projection Using Geodesic Distances and the Neural Gas Network." In Artificial Neural Networks – ICANN 2006, 464–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11840817_49.
Повний текст джерелаDatar, Manasi, Ilwoo Lyu, SunHyung Kim, Joshua Cates, Martin A. Styner, and Ross Whitaker. "Geodesic Distances to Landmarks for Dense Correspondence on Ensembles of Complex Shapes." In Advanced Information Systems Engineering, 19–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40763-5_3.
Повний текст джерелаHandrich, Sebastian, and Ayoub Al-Hamadi. "Full-Body Human Pose Estimation by Combining Geodesic Distances and 3D-Point Cloud Registration." In Advanced Concepts for Intelligent Vision Systems, 287–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25903-1_25.
Повний текст джерелаBloch, Isabelle. "Fuzzy morphology and fuzzy distances: New definitions and links in both euclidean and geodesic cases." In Fuzzy Logic in Artificial Intelligence, 149–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0095076.
Повний текст джерелаHooijberg, Maarten. "Geodetic Arc Distances." In Practical Geodesy, 61–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60584-0_4.
Повний текст джерелаТези доповідей конференцій з теми "Geodesic distances"
Tekir, Selma, Florian Mansmann, and Daniel Keim. "Geodesic distances for web document clustering." In 2011 Ieee Symposium On Computational Intelligence And Data Mining - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/cidm.2011.5949449.
Повний текст джерелаLi Yang. "Sammon's nonlinear mapping using geodesic distances." In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334180.
Повний текст джерелаYu Cai, Yanjin Huang, and Shugong Zhang. "3D face recognition using weighted geodesic distances." In 2011 International Conference on Transportation and Mechanical & Electrical Engineering (TMEE). IEEE, 2011. http://dx.doi.org/10.1109/tmee.2011.6199695.
Повний текст джерелаMeng, Deyu, Zongben Xu, Nannan Gu, and Mingwei Dai. "Estimating geodesic distances on locally linear patches." In 2007 IEEE International Symposium on Signal Processing and Information Technology. IEEE, 2007. http://dx.doi.org/10.1109/isspit.2007.4458006.
Повний текст джерелаGóes, Daniel A., and Nelson D. A. Mascarenhas. "Low-Dose Computed Tomography Filtering Using Geodesic Distances." In Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/sibgrapi.est.2020.12983.
Повний текст джерелаEdelstein, Michal, Nestor Guillen, Justin Solomon, and Mirela Ben-Chen. "A Convex Optimization Framework for Regularized Geodesic Distances." In SIGGRAPH '23: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3588432.3591523.
Повний текст джерелаTwining, C., S. Marsland, and C. Taylor. "Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms." In British Machine Vision Conference 2002. British Machine Vision Association, 2002. http://dx.doi.org/10.5244/c.16.83.
Повний текст джерелаOda, Takuya, Yuichi Itoh, Wataru Nakai, Katsuhiro Nomura, Yoshifumi Kitamura, and Fumio Kishino. "Interactive skeleton extraction for 3D animation using geodesic distances." In ACM SIGGRAPH 2006 Research posters. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1179622.1179632.
Повний текст джерелаBerretti, Stefano, Alberto Del Bimbo, Pietro Pala, and Francisco J. Silva Mata. "Geodesic Distances for 3D-3D and 2D-3D Face Recognition." In Multimedia and Expo, 2007 IEEE International Conference on. IEEE, 2007. http://dx.doi.org/10.1109/icme.2007.4284950.
Повний текст джерелаRing, Dan, and François Pitie. "Feature-Assisted Sparse to Dense Motion Estimation Using Geodesic Distances." In 2009 13th International Machine Vision and Image Processing Conference. IEEE, 2009. http://dx.doi.org/10.1109/imvip.2009.9.
Повний текст джерелаЗвіти організацій з теми "Geodesic distances"
Memoli, Facundo, and Guillermo Sapiro. Distance Functions and Geodesics on Points Clouds. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada437158.
Повний текст джерелаJin, Zheming. A Study of Geodesic Distance Kernel on an Integrated GPU. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1576565.
Повний текст джерелаDudnikov, V. Yu. Electronic course for distance learning "Basics of geodesy and topography" (UGSN 21.00.00 "Applied geology, mining, oil and gas and geodesy"). Science and Innovation Center Publishing House, 2016. http://dx.doi.org/10.12731/dudnikov.11082016.22085.
Повний текст джерела