Добірка наукової літератури з теми "Genome spatial organization"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Genome spatial organization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Genome spatial organization":

1

Parada, L. "Spatial genome organization." Experimental Cell Research 296, no. 1 (May 15, 2004): 64–70. http://dx.doi.org/10.1016/j.yexcr.2004.03.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rajarajan, Prashanth, Sergio Espeso Gil, Kristen J. Brennand, and Schahram Akbarian. "Spatial genome organization and cognition." Nature Reviews Neuroscience 17, no. 11 (October 6, 2016): 681–91. http://dx.doi.org/10.1038/nrn.2016.124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brickner, Jason. "Genetic and epigenetic control of the spatial organization of the genome." Molecular Biology of the Cell 28, no. 3 (February 2017): 364–69. http://dx.doi.org/10.1091/mbc.e16-03-0149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Eukaryotic genomes are spatially organized within the nucleus by chromosome folding, interchromosomal contacts, and interaction with nuclear structures. This spatial organization is observed in diverse organisms and both reflects and contributes to gene expression and differentiation. This leads to the notion that the arrangement of the genome within the nucleus has been shaped and conserved through evolutionary processes and likely plays an adaptive function. Both DNA-binding proteins and changes in chromatin structure influence the positioning of genes and larger domains within the nucleus. This suggests that the spatial organization of the genome can be genetically encoded by binding sites for DNA-binding proteins and can also involve changes in chromatin structure, potentially through nongenetic mechanisms. Here I briefly discuss the results that support these ideas and their implications for how genomes encode spatial organization.
4

Finn, Elizabeth H., and Tom Misteli. "Molecular basis and biological function of variability in spatial genome organization." Science 365, no. 6457 (September 5, 2019): eaaw9498. http://dx.doi.org/10.1126/science.aaw9498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The complex three-dimensional organization of genomes in the cell nucleus arises from a wide range of architectural features including DNA loops, chromatin domains, and higher-order compartments. Although these features are universally present in most cell types and tissues, recent single-cell biochemistry and imaging approaches have demonstrated stochasticity in transcription and high variability of chromatin architecture in individual cells. We review the occurrence, mechanistic basis, and functional implications of stochasticity in genome organization. We summarize recent observations on cell- and allele-specific variability of genome architecture, discuss the nature of extrinsic and intrinsic sources of variability in genome organization, and highlight potential implications of structural heterogeneity for genome function.
5

Xie, Ting, Liang-Yu Fu, Qing-Yong Yang, Heng Xiong, Hongrui Xu, Bin-Guang Ma, and Hong-Yu Zhang. "Spatial features for Escherichia coli genome organization." BMC Genomics 16, no. 1 (2015): 37. http://dx.doi.org/10.1186/s12864-015-1258-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, S. H., P. G. McQueen, M. K. Lichtman, E. M. Shevach, L. A. Parada, and T. Misteli. "Spatial genome organization during T-cell differentiation." Cytogenetic and Genome Research 105, no. 2-4 (2004): 292–301. http://dx.doi.org/10.1159/000078201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ramani, Vijay, Jay Shendure, and Zhijun Duan. "Understanding Spatial Genome Organization: Methods and Insights." Genomics, Proteomics & Bioinformatics 14, no. 1 (February 2016): 7–20. http://dx.doi.org/10.1016/j.gpb.2016.01.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bickmore, Wendy A. "The Spatial Organization of the Human Genome." Annual Review of Genomics and Human Genetics 14, no. 1 (August 31, 2013): 67–84. http://dx.doi.org/10.1146/annurev-genom-091212-153515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Purugganan, Michael D. "Scale-invariant spatial patterns in genome organization." Physics Letters A 175, no. 3-4 (April 1993): 252–56. http://dx.doi.org/10.1016/0375-9601(93)90836-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Llorens-Giralt, Palmira, Carlos Camilleri-Robles, Montserrat Corominas, and Paula Climent-Cantó. "Chromatin Organization and Function in Drosophila." Cells 10, no. 9 (September 8, 2021): 2362. http://dx.doi.org/10.3390/cells10092362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Eukaryotic genomes are packaged into high-order chromatin structures organized in discrete territories inside the cell nucleus, which is surrounded by the nuclear envelope acting as a barrier. This chromatin organization is complex and dynamic and, thus, determining the spatial and temporal distribution and folding of chromosomes within the nucleus is critical for understanding the role of chromatin topology in genome function. Primarily focusing on the regulation of gene expression, we review here how the genome of Drosophila melanogaster is organized into the cell nucleus, from small scale histone–DNA interactions to chromosome and lamina interactions in the nuclear space.

Дисертації з теми "Genome spatial organization":

1

Ben, Zouari Yousra. "The functional and spatial organization of chromatin during Thymocyte development." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Malgré les vastes études démontrant le rôle de la conformation génomique dans le contrôle transcriptionnel, de nombreuses questions restent en suspens, et en particulier, comment ces structures chromatiniennes sont formées et maintenues. Pour mieux comprendre les liens entre l’état de la chromatine au niveau des éléments régulateurs, la topologie de la chromatine et la régulation de la transcription, nous utilisons la technique CHi-C basée sur la technologie de capture de la conformation chromosomique (3C). En utilisant deux stratégies de capture ciblant deux différentes structure chromatiniennes (les boucles chromatiniennes et les domaines topologiques), nous avons pu décrypter la structure chromatinienne associée à la différenciation des thymocytes et mettre en évidence des mécanismes de contrôle transcriptionnel de certains gènes. Les expériences futures de l’équipe vont consister à examiner les facteurs (hors transcription) qui peuvent influencer l'architecture de la chromatine, comme la liaison différentielle des CTCF, et comment ces facteurs peuvent être coordonnés par le contrôle de transcription
Chromosome folding takes place at different hierarchical levels, with various topologies correlated with control of gene expression. Despite the large number of recent studies describing chromatin topologies and their correlations with gene activity, many questions remain, in particular how these topologies are formed and maintained. To understand better the link between epigenetic marks, chromatin topology and transcriptional control, we use CHi-C technique based on the chromosome conformation capture (3C) method. By using two capture strategies targeting two different chromatin structures (chromatin loops and topological domains), we have been able to decipher the chromatin structure associated with thymocyte differentiation and to highlight mechanisms for the transcriptional control of certain genes. Future experiments of the lab will examine mechanisms other than transcription which may influence chromatin architecture, such as differential binding of CTCF, and how these may interplay with transcriptional control and chromatin architecture
2

Lapendry, Audrey. "Les biais de composition des gènes et de leurs produits établissent un lien entre l'organisation spatiale du génome et celle de la cellule." Electronic Thesis or Diss., Lyon, École normale supérieure, 2023. http://www.theses.fr/2023ENSL0109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les gènes ne sont pas répartis de manière aléatoire dans l’espace du noyau, mais sont organisés au sein de clusters spatiaux plus ou moins dynamiques. Cette organisation spatiale du génome joue un rôle majeur dans la régulation de l’expression des gènes. En utilisant différents types de données expérimentales, il est montré que les gènes à proximité spatiale les uns des autres partagent les mêmes biais de composition nucléotidique, ce qui pourrait expliquer en partie l’auto-organisation spatiale du génome. De plus, les gènes co-localisés avec des biais similaires ont une plus grande probabilité d’être co-régulés par les mêmes facteurs de transcription. Ils produisent également des ARN qui partagent les mêmes biais de composition nucléotidique, qui sont co-régulés par les mêmes protéines de liaison à l’ARN. Enfin, les ARNm produits par des gènes qui co-localisent génèrent des protéines partageant les mêmes biais de composition en acides aminés. En conséquence, les protéines produites par des gènes co-localisés partagent les mêmes propriétés physico-chimiques et ont une plus grande probabilité d’appartenir aux mêmes sous-compartiments cellulaires et d’avoir des fonctions biologiques similaires. Ainsi, en analysant les biais de composition, en tant que proxy des propriétés physico-chimiques des gènes et de leurs produits, il est mis en évidence un lien entre l’organisation spatiale des gènes dans le noyau et l’organisation spatiale de leurs produits (c’est-à-dire les protéines) dans la cellule
Genes are not randomly distributed in the nucleus space, but are organized within more or less dynamical spatial clusters. This genome spatial organization plays a major role in gene expression regulation. Using different types of experimental data, it is shown that genes in spatial proximity to each other share the same nucleotide composition biases, which could in part explain the spatial genome self-organization. In addition, co-localized genes with similar biases have a higher probability of being co-regulated by the same transcription factors. They also produce RNAs that share the same nucleotide composition biases, that are co-regulated by the same RNA-binding proteins. Finally, mRNAs produced by genes that co-localize generate proteins that share the same amino acid composition biases. As a consequence, proteins produced by co-localized genes share the same physicochemical properties and have a higher probability of belonging to the same cellular sub-compartments and to have similar biological functions. Thus, by analyzing compositional biases, as a proxy of the physicochemical properties of genes and their products, it is highlighted a link between the spatial organization of genes in the nucleus and the spatial organization of their products (i.e. proteins) in the cell
3

Carron, Léopold. "Analyse à haute résolution de la structure spatiale des chromosomes eucaryotes Boost-HiC : Computational enhancement of long-range contacts in chromosomal contact maps Genome supranucleosomal organization and genetic susceptibility to disease." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’information génétique est portée par la molécule d’ADN, un polymère de nucléotides de très grande taille. Afin de mieux comprendre les mécanismes impactant le repliement de l’ADN, on peut exploiter une technique de génomique qui permet de quantifier les contacts entre régions distales du génome. Cette technique expérimentale appelée ’capture de conformation de chromosome’ (Hi-C) donne des informations quantitatives sur l’architecture et le repliement tridimensionnel des chromosomes dans le noyau. Largement utilisée chez l’Homme, la souris et la drosophile, cette technique a grandement évolué durant ces dernières années, produisant ainsi des données de qualité variable. Jusque-là étudiées à des résolutions assez grossières, notre objectif est d’étudier les données Hi-C déjà publiées à des résolutions plus fines. Pour cela, j’ai développé un outil bioinformatique, Boost-HiC, pour améliorer l’analyse des contacts chromosomiques. Fort de cette expertise, je proposerai alors une analyse comparative des structures spatiales des génomes eucaryotes, permettant de clarifier comment extraire les compartiments génomiques de manière optimale. Cette expertise sera utilisée également pour décrire le lien entre les bordures des domaines topologiques de la chromatine et la position dans le génome humain des mutations ponctuelles prédisposant au cancer
Genetic information is encoded in DNA, a huge-size nucleotidic polymer. In order to understand DNA folding mechanisms, an experimental technique is today available that quantifies distal genomic contacts. This high-throughput chromosome conformation capture technique, called Hi-C, reveals 3D chromosome folding in the nucleus. In the recent years, the Hi-C experimental protocol received many improvements through numerous studies for Human, mouse and drosophila genomes. Because most of these studies are performed at poor resolution, I propose bioinformatic methods to analyze these datasets at fine resolution. In order to do this, I present Boost-HiC, a tool that enhanced long-range contacts in Hi-C data. I will then used our extended knowledge to compare 3D folding in different species. This result provides the basis to determine the best method for obtaining genomic compartements from a chromosomal contact map. Finally, I present some other applications of our methodology to study the link between the borders of topologically associating domains and the genomic location of single-nucleotide mutations associated to cancer
4

Mardaryev, Andrei N., and Michael Y. Fessing. "3D-FISH analysis of the spatial genome organization in skin cells in situ." 2020. http://hdl.handle.net/10454/18511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
No
Spatial genome organization in the cell nucleus plays a crucial role in the control of genome functions. Our knowledge about spatial genome organization is relying on the advances in gene imaging technologies and the biochemical approaches based on the spatial dependent ligation of the genomic regions. Fluorescent in situ hybridization using specific fluorescent DNA and RNA probes in cells and tissues with the spatially preserved nuclear and genome architecture (3D-FISH) provides a powerful tool for the further advancement of our knowledge about genome structure and functions. Here we describe the 3D-FISH protocols allowing for such an analysis in mammalian tissue in situ including in the skin. These protocols include DNA probe amplification and labeling; tissue fixation; preservation and preparation for hybridization; hybridization of the DNA probes with genomic DNA in the tissue; and post-hybridization tissue sample processing.
5

Bohn, Manfred [Verfasser]. "Modelling of interphase chromosomes : from genome function to spatial organization / put forward by Manfred Bohn." 2010. http://d-nb.info/1002270839/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matala, Ilunga Benjamin. "Une correction à l’échelle et progressive des données Hi-C révèlent des principes fondamentaux de l’organisation tridimensionnelle et fonctionnelle du génome." Thèse, 2016. http://hdl.handle.net/1866/18662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Au cours des dernières années, de nouvelles évidences semblent indiquer que, tout autant que sa séquence, l’organisation d’un génome dans l’espace et le temps est importante pour comprendre la fonction de celui-ci. Une des avancées fonda- mentales sur le sujet a été de présenter à l’échelle du génome la carte des inter- actions ADN-ADN. Ces interactions sont essentiellement de 2 types, soit entre chromosomes ou entre régions du même chromosome. Par la suite, la modélisa- tion a permis de visualiser et appréhender la structure tridimensionnelle (3D) du génome à partir des données 3C, ou d’une modélisation purement théorique. Une question importante et centrale demeure, soit de résoudre les mécanismes res- ponsables de l’organisation spatiale et fonctionnelle du génome. Notamment, une question est de savoir comment des processus nucléaires tels que la transcription affectent la structure du génome. Cependant, l’idée selon laquelle les données de types 3C capturent cette information dans la levure est remise en question par le fait que les modèles théoriques du génome récapitulent les caractéristiques mar- quantes soulignées par 3C. Pour répondre à cette question, nous avons conçu une approche qui, pour évaluer l’importance d’une interaction, se base sur la distri- bution d’interactions entre les 2 régions d’ADN mises en contacts. Nos résultats supportent l’hypothèse selon laquelle les éléments fonctionnels et propres aux données expérimentales de la structure 3D du génome se forment d’une manière spécifique à l’échelle de l’interaction et au type d’interactions. Par ailleurs, nos résultats indiquent qu’un grand nombre de facteurs de transcription induisent la proximité spatiale des gènes dont ils régulent l’expression.
Over the last decade, accumulating empirical evidence suggest that, as much as its sequence, a genome spatiotemporal organization is essential to understand it’s biological function. One of the major breakthroughs has been chromosome conformation capture (3C) experiments presenting DNA-DNA contact for whole genomes at unprecedented resolution (5-10kb). Along with genome-wide maps of DNA contacts came genome 3D modelling from experimental 3C data, and even from purely theoretical and biophysical basis. However, the mechanisms underlying the regulation of the genome spatial functional organization are still not well understood. Among other questions, how the regulation and event of nuclear processes such as transcription modulate genome structure or how genome structure affect these in turn is still not fully resolved. Moreover, computational models of S.cerevisae genome have recapitulated the hallmarks at larger scale of its 3D features. In order to contrast genome structural features arising from the event of biochemical and molecular activity, we have develop a method assessing the significance of structural features. The underlying principle is to consider for a given interaction, the two DNA regions put in contact and the distribution of existing interactions between these before assigning significance to the selected interaction. Using this method, we demonstrate that structural features resulting from potential biochemically active processes occur at precise scale on the genome. Our results also highlight that exact nature of the interaction (between vs across chromosomes) is crucial to such events. Finally, we have also found that a large portion of transcription factors have their targeted genes in spatial proximity.

Книги з теми "Genome spatial organization":

1

Sexton, Tom, ed. Spatial Genome Organization. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mekhail, Karim, and Evi Soutoglou, eds. Spatial Genome Organization. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-504-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sexton, Tom. Spatial Genome Organization: Methods and Protocols. Springer, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Xiangyang. Woman, Generic Aesthetics, and the Vernacular. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252036613.003.0013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter examines the hybrid origins of Hong Kong's Huangmei opera film. It shows how the Chinese Communist Party's demand for a cinema showcasing the national cultural past paradoxically facilitated the cross-border circulation of an indigenous, vernacular operatic tradition—featuring feisty rural women, female voice-over chanting, and frequent cross-dressing—into the modernizing idioms of Hong Kong's film industry. Under colonial suppression of local nationalist objectives, the resulting hybridized genre carried a vital female imaginary in nostalgic Chinese wrappings. In contrast to Indian cinema's culture of emotion, female performativity contests Chinese conventions of restraint, opening up imaginary female power. This is supported by the impact of the female voice on point-of-view shooting, spatial organization, and narrative structure, foregrounding, against Western feminism's focus on the male gaze, a female counter-gaze within a patriarchal drama of conflicting desires.

Частини книг з теми "Genome spatial organization":

1

Zhang, Liguo, Yu Chen, and Andrew S. Belmont. "Measuring Cytological Proximity of Chromosomal Loci to Defined Nuclear Compartments with TSA-seq." In Spatial Genome Organization, 145–86. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rebouissou, Cosette, Séphora Sallis, and Thierry Forné. "Quantitative Chromosome Conformation Capture (3C-qPCR)." In Spatial Genome Organization, 3–13. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Finn, Elizabeth, Tom Misteli, and Gianluca Pegoraro. "High-Throughput DNA FISH (hiFISH)." In Spatial Genome Organization, 245–74. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Miranda, Mélanie, Daan Noordermeer, and Benoit Moindrot. "Detection of Allele-Specific 3D Chromatin Interactions Using High-Resolution In-Nucleus 4C-seq." In Spatial Genome Organization, 15–33. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhigulev, Artemy, and Pelin Sahlén. "Targeted Chromosome Conformation Capture (HiCap)." In Spatial Genome Organization, 75–94. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grob, Stefan. "Tough Tissue Hi-C." In Spatial Genome Organization, 35–50. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Seow, Wei Qiang, Poonam Agarwal, and Kevin C. Wang. "CLOuD9: CRISPR-Cas9-Mediated Technique for Reversible Manipulation of Chromatin Architecture." In Spatial Genome Organization, 293–309. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oudelaar, A. Marieke, Damien J. Downes, and Jim R. Hughes. "Assessment of Multiway Interactions with Tri-C." In Spatial Genome Organization, 95–112. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sabate, Thomas, Christophe Zimmer, and Edouard Bertrand. "Versatile CRISPR-Based Method for Site-Specific Insertion of Repeat Arrays to Visualize Chromatin Loci in Living Cells." In Spatial Genome Organization, 275–90. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maresca, Michela, Ning Qing Liu, and Elzo de Wit. "Acute Protein Depletion Strategies to Functionally Dissect the 3D Genome." In Spatial Genome Organization, 311–31. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2497-5_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Genome spatial organization":

1

"Search of new type of spatial organization of nucleic acids in human genome." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Finan, John D., and Farshid Guilak. "Osmotic Stress Affects Nuclear Morphology and Genome Architecture." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The spatial organization of the genome influences its function [1]. Therefore, physical signals that deform the nucleus and the genome within may directly affect gene transcription and translation. In articular chondrocytes, nuclear deformation in response to osmotic stress is not sensitive to actin organization [2]. However, articular chondrocytes differ from most mammalian cells in that they remain round with cortically organized actin in monolayer culture. Adherent cells such as adipose stem cells (ASCs) spread in monolayer culture, forming a more typical, highly bundled actin cytoskeleton. These actin bundles exert tensile stress on the nucleus so we hypothesized that the osmotic sensitivity of the cell nucleus would be modulated by actin organization in ASCs. The osmotic sensitivity of the nucleus was quantified by measuring changes in the size and shape of the nucleus and the spatial arrangement of the chromatin within using 3D confocal microscopy.
3

"Chromatin loops are involved in spatial organization of replication in budding yeast." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Akdemir, Kadir C., and Andrew Futreal. "Abstract 5361: Spatial genome organization as a framework for somatic alterations in human cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Search for a new type of spatial organization of nucleic acids in human genome." In SYSTEMS BIOLOGY AND BIOINFORMATICS (SBB-2020). Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences., 2020. http://dx.doi.org/10.18699/sbb-2020-40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Supper, Jochen, Claas aufm Kampe, Dierk Wanke, Kenneth W. Berendzen, Klaus Harter, Richard Bonneau, and Andreas Zell. "Modeling gene regulation and spatial organization of sequence based motifs." In 2008 8th IEEE International Conference on Bioinformatics and BioEngineering (BIBE). IEEE, 2008. http://dx.doi.org/10.1109/bibe.2008.4696696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wen, Shin-Min, and Pen-hsiu Grace Chao. "Spatial Actin Structure Does Not Correlate With Nuclear Organization." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cells in situ exhibit a great variety of morphologies that intimately relates to phenotypic controls. Cell morphology regulates cytoskeletal organization, which in turn influences nuclear shape and organization [1–4]. The actomyosin cytoskeleton is connected to a structure known as the linker of nucleoskeleton and cytoskeleton (LINC) complex located on the nuclear membrane. LINC is believed to transmit deformation of the actin cytoskeleton into the nucleus and nucleoskeleton, change nuclear shape as well as chromatin conformation, and modulate gene expression [5, 6]. Khatau and coworkers reported a structure of apical actin dome, called the actin cap, that controls nuclear deformation through LINC [7]. In addition, actin stress fibers hves been shown to compress the nucleus laterally and increase chromatin condensation [4]. Based on these findings, we hypothesize that there is a spatial correlation between the actin cytoskeleton and chromatin density. In the current study, we investigated the role of actin cytoskeleton in nuclear deformation with respect to the z-axis. We found no spatial relationships between actin structure and nuclear deformation or chromatin condensation, suggesting that the actomyosin cytoskeleton acts globally to influence nuclear structure and additional structural components may contribute to the actin-nucleus mechanical coupling.

Звіти організацій з теми "Genome spatial organization":

1

Misteli, Thomas, and Karen Meaburn. Breast Cancer Diagnostics Based on Spatial Genome Organization. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada567356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Applebaum, Shalom W., Lawrence I. Gilbert, and Daniel Segal. Biochemical and Molecular Analysis of Juvenile Hormone Synthesis and its Regulation in the Mediterranean Fruit Fly (Ceratitis capitata). United States Department of Agriculture, 1995. http://dx.doi.org/10.32747/1995.7570564.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Original Objectives and revisions: (1) "To determine the biosynthetic pathway of JHB3 in the adult C. capitata CA in order to establish parameters for the future choice and synthesis of suitable inhibitors". Modified: to determine the pattern of FR-7 biosynthesis during normal reproductive maturation, and identify enzymes potentially involved in its synthesis. (2) "To correlate allatal epoxidase activity to the biosynthesis of JHB3 at different stages of reproductive maturation/vitellogenesis and evaluate the hypothesis that a specific JH-epoxidase may be rate limiting". Modified: to study the effects of epoxidase inhibitors on the pattern of allatal JH biosynthesis in vitro and on female reproduction in vive. (3) "To probe and clone the gene homologous to ap from C. capitata, determine its exon-intron organization, sequence it and demonstrate its spatial and temporal expression in larvae, pupae and adults." The "Medfly" (Ceratitis capitata) is a serious polyphagous fruit pest, widely distributed in subtropical regions. Damage is caused by oviposition and subsequent development of larvae. JH's are dominant gonadotropic factors in insects. In the higher Diptera, to which the Medfly belongs, JHB3 is a major homolog. It comprises 95% of the total JH produced in vitro in D. melanogaster, with JH-III found as a minor component. The biosynthesis of both JH-III and JHB3 is dependent on epoxidation of double bonds in the JH molecule. The specificity of such epoxidases is unknown. The male accessory gland D. melanogaster produces a Sex Peptide, transferred to the female during copulation. SP reduces female receptivity while activating specific JH biosynthesis in vitro and inducing oviposition in vive. It also reduces pheromone production and activates CA of the moth Helicoverpa armigera. In a previous study, mutants of the apterous (ap) gene of D. melanogaster were analyzed. This gene induces previteilogenic arrest which can be rescued by external application of JH. Considerable progress has been made in recombinant DNA technology of the Medfly. When fully operative, it might be possible to effectively transfer D. melanogaster endocrine gene-lesions into the Medfly as a strategy for their genetic control. A marked heterogeneity in the pattern of JH homologs produced by Medfly CA was observed. Contrary to the anticipated biosynthesis of JHB;, significant amounts of an unknown JH-like compound, of unknown structure and provisionally termed FR-7, were produced, in addition to significant amounts of JH-III and JHB3. Inhibitors of monooxygenases, devised for their effects on ecdysteroid biosynthesis, affect Medfly JH biosynthesis but do not reduce egg deposition. FR-7 was isolated from incubation media of Medfly CA and examined by various MS procedures, but its structure is not yet resolved. MS analysis is being done in collaboration with Professor R.R.W. Rickards of the Australian National University in Canberra, Australia. A homologue of the ap gene of D. melanogaster exists in the Medfly. LIM domains and the homeo-domain, important for the function of the D. melanogaster ap gene, are conserved here too. Attempts to clone the complete gene were unsuccessful. Due to the complexity of JH homologs, presence of related FR-7 in the biosynthetic products of Medfly CA and lack of reduction in eggs deposited in the presence of monooxygenase inhibitors, inhibition of epoxidases is not a feasible alternative to control Medfly reproduction, and raises questions which cannot be resolved within the current dogma of hormonal control of reproduction in Diptera. The Medfly ap gene has similar domains to the D. melanogaster ap gene. Although mutant ap genes are involved in JH deficiency, ap is a questionable candidate for an endocrine lesion, especially since the D. melanogoster gene functions is a transcription factor.

До бібліографії