Дисертації з теми "Genetic vectors"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Genetic vectors".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Theodorides, Kosmas. "Genetic and systematic studies on Cicadellidae vectors." Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368187.
Повний текст джерелаShareck, Julie. "Isolation and characterization of a cryptic plasmid from Lactobacillus plantarum." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84072.
Повний текст джерелаRobson, Julia. "The construction of an expression vector for the transformation of the grape chloroplast genome." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53621.
Повний текст джерелаENGLISH ABSTRACT: The genetic information of plants is found in the nucleus, the mitochondria, and the plastids. The DNA of plastids is comprised of multiple copies of a double-stranded, circular, prokaryoticallyderived genome of -150 kb. The genome equivalents of plastid organelles in higher plant cells are an attractive target for genetic engineering as high protein expression levels are readily obtained due to the high genome copy number per organelle. The resultant proteins are contained within the plastid organelle and the corresponding transgenes are inherited, in most crop plants, uniparentally, preventing pollen transmission of DNA. Plastid transformation involves the uniform modification of all the plastid genome copies, a process facilitated by homologous recombination and the non-Mendelian segregation of plastids upon cell division. The plastid genomes are in a continuous state of inter- and intra-molecular exchange due to their common genetic complement. This enables the site-specific integration of any piece of DNA flanked by plastid targeting sequences, via homologous recombination. The attainment of homoplasmy, where all genomes are transformed, requires the inclusion of a plastid-specific selectable marker. Selective pressure favouring the propagation of the transformed genome copies, as well as the random segregation of plastids upon cell division, make it feasible to acquire uniformity and hence genetic stability. From this, a complete transplastomie line is obtained where all plastid genome copies present are transgenic, having eliminated all wild-type genome copies. The prokaryotic nature of the chloroplast genetic system enables expression of multiple proteins from polycistronic mRNAs, allowing the introduction of entire operons in a single transformation. Expression cassettes in vectors thus include single regulatory elements of plastid origin, and harbour genes encoding selectable and screenable markers, as well as one or more genes of interest. Each coding region is preceded by an appropriate translation control region to ensure efficient translation from the polycistronic mRNA. The function of a plastid transformation vector is to enable transfer and stable integration of foreign genes into the chloroplast genomes of higher plants. The expression vector constructed in this research is specific for the transformation of the grape chloroplast genome. Vitis vinifera L., from the family, Vitaceae, is the choice species for the production of wine and therefore our target for plastid transformation. All chloroplast derived regulatory elements and sequences included in the vector thus originated from this species.
AFRIKAANSE OPSOMMING: Die genetiese inligting van plante word gevind in die kern, die mitochondria, en die plastiede. Die DNA van plastiede bestaan uit veelvuldige kopieë van 'n ~ 150 kb dubbelstring, sirkulêre genoom van prokariotiese oorsprong. Die genoomekwivalente van plastiede in hoër plante is 'n aantreklike teiken vir genetiese manipulering, aangesien die hoë genoom kopiegetal per organel dit moontlik maak om gereeld hoë vlakke van proteïenuitdrukking te verkry. Hierdie proteïene word tot die plastied beperk, en die ooreenstemmende transgene word in die meeste plante sitoplasmies oorgeërf, sonder die oordrag van DNA deur die stuifmeel. Plastied transformasie behels die uniforme modifikasie van al die plastied genoomkopieë, 'n proses wat deur homoloë rekombinasie en die nie-Mendeliese segregasie van plastiede tydens seldeling gefasiliteer word. As gevolg van die gemeenskaplike genetiese komplement, vind aanhoudende interen intra-molekulêre uitruiling van plastiedgenome plaas. Dit maak die setel-spesifieke integrasie, via homoloë rekombinasie, van enige stuk DNA wat deur plastied teikenvolgordes begrens word, moontlik. Vir die verkrying van homoplasmie, waar alle genome getransformeer is, word die insluiting van 'n plastiedspesifieke selekteerbare merker benodig. Seleksiedruk wat die vermeerdering van die getransformeerde genoomkopieë bevoordeel, en die lukrake segregasie van plastiede tydens seldeling, maak dit moontlik om genetiese stabiliteit en uniformiteit van die genoom te verkry. Dit kan op sy beurt tot die verkryging van 'n volledige transplastomiese lyn lei, waar alle aanwesige plastiedgenome transgenies is, en wilde tipe genoomkopieë geëlimineer is. Die prokariotiese aard van die chloroplas genetiese sisteem maak die uitdrukking van veelvuldige proteïene vanaf polisistroniese mRNAs moontlik, wat die toevoeging van volledige operons in 'n enkele transformasie toelaat. Uitdrukkingskassette in vektore bevat dus enkel regulatoriese elemente van plastied oorsprong, gene wat kodeer vir selekteerbare en sifbare merkers, asook een of meer gene van belang (teikengene). Voor elke koderingsstreek, is daar ook 'n toepaslike translasie beheerstreek om doeltreffende translasie vanaf die polisistroniese mRNA te verseker. Die funksie van 'n plastied transformasie vektor is om die oordrag en stabiele integrasie van transgene in chloroplasgenome van hoër plante moontlik te maak. Die uitdrukkingsvektor wat in hierdie studie gekonstrueer is, is spesifiek vir die transformasie van die druif chloroplasgenoom. Vitis vinifera L., van die familie Vitaceae, is die voorkeur species vir die produksie van wyn, en daarom die teiken vir plastied transformasie. Alle chloroplast-afgeleide regulatoriese elemente en volgordes wat in hierdie vektor ingesluit is, het huloorsprong vanaf VUis vinifera L.
Ghosh, Arkasubhra. "Rational design of split gene vectors to expand the packaging capacity of adeno-associated viral vectors." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4712.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "December 2007" Includes bibliographical references.
Wood, David Rowe Ding Jiahuan. "Design, optimization, and evaluation of conditionally active gene therapy vectors." Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5153.
Повний текст джерелаMück-Häusl, Martin Andreas. "Genetic engineering of adenoviral vectors for improved therapeutic applications." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-138269.
Повний текст джерелаWong, Tik-wun Lina. "Construction of an infectious PRRSV cDNA clone and its use as a vector for foreign gene expression." Click to view the E-thesis via HKUTO, 2010. http://sunzi.lib.hku.hk/hkuto/record/B44251841.
Повний текст джерелаVan, Eeden C. (Christiaan). "The construction of gene silencing transformation vectors for the introduction of multiple-virus resistance in grapevines." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53764.
Повний текст джерелаENGLISH ABSTRACT: Viruses are some of the most important pathogens of grapevines. There are no effective chemical treatments, and no grapevine- or other natural resistance genes have been discovered against grapevine infecting viruses. The primary method of grapevine virus control is prevention by biological indexing and molecular- and serological screening of rootstocks and scions before propagation. Due to the spread of grapevine viruses through insect vectors, and in the case of GRSPaV the absence of serological screening, these methods of virus control are not always effective. In the past several methods, from cross-protection to pathogen derived resistance (PDR), have been applied to induce plant virus resistance, but with inconsistent results. In recent years the application of post-transcriptional gene silencing (PTGS), a naturally occurring plant defense mechanism, to induce targeted virus resistance has achieved great success. The Waterhouse research group has designed plant transformation vectors that facilitate specific virus resistance through PTGS. The primary focus of this study was the production of virus specific transformation vectors for the introduction of grapevine virus resistance. The Waterhouse system has been successfully utilised for the construction of three transformation vectors with the pHannibal vector as backbone. Each vector contains homologous virus coat protein (CP) gene segments, cloned in a complementary conformation upstream and downstream of an intron sequence. The primary vector (pHann-SAScon) contains complementary CP gene segments of both GRSPaV and GLRaV-3 and was designed for the introduction of multiple-virus resistance. For the construction of the primary vector the GRSPaV CP gene was isolated from RSP infected grapevines. A clone of the GLRaV-3 CP gene was acquired. The second vector (pHann- LR3CPsas) contains complementary CP gene segments of GLRaV-3. The third vector (pHann-LR2CPsas) contains complementary CP gene segments of GLRaV-2. The cassette containing the complementary CP gene segments of both GRSPaV and GLRaV-3 was cloned into pART27 (pART27-HSAScon), and used to transform N tabacum cv. Petit Havana (SRI), through A. tumefaciens mediated transformation. Unfortunately potential transformants failed to regenerate on rooting media; hence no molecular tests were performed to confirm transformation. Once successful transformants are generated, infection with a recombinant virus vector (consisting of PYX, the GFP gene as screenable marker and the complementary CP gene segments of both GRSPaV and GLRaV-3) will be used to test for the efficacy of the vectors to induce resistance. A secondary aim was added to this project when a need was identified within the South African viticulture industry for GRSPaV specific antibodies to be used in serological screening. To facilitate future serological detection of GRSPaV, the CP gene was isolated and expressed with a bacterial expression system (pETI4b) within the E. coli BL2I(DE3)pLysS cell line. The expressed protein will be used to generate GRSPaV CP specific antibodies.
AFRIKAANSE OPSOMMING: Virusse is van die belangrikste patogene by wingerd. Daar bestaan geen effektiewe chemiese beheer nie, en geen wingerd- of ander natuurlike weerstandsgene teen wingerdvirusse is al ontdek nie. Die primêre metode van beheer t.o.v. wingerdvirusse is voorkoming deur biologiese indeksering, en molekulêre- en serologiese toetsing van onderstokke en entlote voor verspreiding. As gevolg van die verspreiding van wingerdvirusse deur insekvektore, en in die geval van GRSPa V die tekort aan serologiese toetsing, is dié metodes van virusbeheer nie altyd effektief nie. In die verlede is metodes soos kruis-beskerming en patogeen-afgeleide weerstand (PDR) gebruik om virusweerstand te induseer, maar met inkonsekwente resultate. In onlangse jare is post-transkripsionele geenonderdrukking (PTGS), 'n natuurlike plantbeskermingsmeganisme, met groot sukses toegepas om geteikende virusweerstand te induseer. Die Waterhouse-navorsingsgroep het planttransformasievektore ontwerp wat spesifieke virusweerstand induseer d.m.v. PTGS. Die vervaardiging van virus spesifieke tranformasievektore vir die indusering van wingerdvirusweerstand was die primêre doelwit van hierdie studie. Die Waterhouse-sisteem was gebruik vir die konstruksie van drie transformasievektore, met die pHannibal vektor as basis. Elke vektor bevat homoloë virus kapsiedproteïen (CP) geensegmente, gekloneer in 'n komplementêre vorm stroom-op en stroom-af van 'n intronvolgorde. Die primêre vektor (pHann-SAScon) bevat komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, en was ontwerp vir die indusering van veelvoudige-virusweerstand. Die CP-geen van GRSPa V was vanuit RSP-geïnfekteerde wingerd geïsoleer, vir die konstruksie van die primêre vektor. 'n Kloon van die GLRa V-3 CP-geen was verkry. Die tweede vektor (pHann-LR3CPsas) bevat komplementêre CP geensegmente van GLRaV-3. Die derde vektor (pHann-LR2CPsas) bevat komplementêre CP geensegmente van GLRa V-2. Die kasset bestaande uit die komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, was gekloneer in pART27 (pART27-HSAScon), en gebruik om N tabacum cv. Petit Havana (SRI) te transformeer d.m.v. A. tumefaciens bemiddelde transformasie. Ongelukkig het potensiële transformante nie geregenereer op bewortelingsmedia nie; gevolglik was geen molekulêre toetse gedoen om transformasie te bevestig nie. Na suksesvolle transformante gegenereer is, sal infeksie met 'n rekombinante-virusvektor (bestaande uit PYX, die GFP geen as waarneembare merker en die komplementêre CP geensegmente van beide GRSPa V en GLRa V-3) gebruik word om die effektiwiteit van die vektore as weerstandsinduseerders te toets. 'n Sekondêre doelwit is by die projek gevoeg toe 'n behoefte aan GRSPaV spesifieke teenliggame binne die Suid-Afrikaanse wynbedryf geïdentifiseer is, vir gebruik in serologiese toetsing. Om toekomstige serologiese toetsing van GRSPa V te bemiddel, was die CP-geen geïsoleer en in 'n bakteriële uitdrukkingsisteem (PETI4b) uitgedruk, in die E. coli BL21(DE3)pLysS sellyn. Die uitgedrukte proteïne sal gebruik word vir die vervaardiging van GRSPa V CP spesifieke antiliggame.
Warren, Ann. "Transposable genetic elements in the mosquito Aedes aegypti." Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237672.
Повний текст джерелаLimberis, Maria. "A lentiviral gene transfer vector for the treatment of cystic fibrosis airway disease." Title page, synopsis and list of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl735.pdf.
Повний текст джерелаAhmed, Seemin Seher. "rAAV-Mediated Gene Transfer For Study of Pathological Mechanisms and Therapeutic Intervention in Canavan's Disease: A Dissertation." eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/749.
Повний текст джерелаAhmed, Seemin Seher. "rAAV-Mediated Gene Transfer For Study of Pathological Mechanisms and Therapeutic Intervention in Canavan's Disease: A Dissertation." eScholarship@UMMS, 2012. http://escholarship.umassmed.edu/gsbs_diss/749.
Повний текст джерелаLandazuri, Natalia. "Enhanced gene transfer using polymer-complexed retrovirus vectors." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/20677.
Повний текст джерелаcom, shawnseet@gmail, and Shawn Ginn Ming Seet. "Genome sequence of bacteriophage ÖAR29 : a basis for integrative plasmid vectors." Murdoch University, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20060615.135718.
Повний текст джерелаSeet, Shawn Ginn Ming. "Genome sequence of bacteriophage €AR29 : a basis for integrative plasmid vectors /." Access via Murdoch University Digital Theses Project, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20060615.135718.
Повний текст джерелаMaliti, Deodatus Vincent. "Ecological and genetic determinants of malaria vectors feeding and resting behaviours." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6933/.
Повний текст джерелаFuller, Maria. "A gene transfer system derived from human immunodeficiency virus type 1 (HIV-1)." Title page, table of contents, list of abbreviations and epitome only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phf9669.pdf.
Повний текст джерелаWong, Tik-wun Lina, and 黃荻媛. "Construction of an infectious PRRSV cDNA clone and its use as a vectorfor foreign gene expression." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44251841.
Повний текст джерелаShi, Bu-Jun. "Expression and function of cucumoviral genomes." Title page, contents and summary only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phs5546.pdf.
Повний текст джерелаJeong, Pyengsoo. "Construction of a Cloning Vector Based upon a Rhizobium Plasmid Origin of Replication and its Application to Genetic Engineering of Rhizobium Strains." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc278189/.
Повний текст джерелаThirion, Christian. "Improving gene transfer into skeletal muscle through genetic retargeting of adenoviral vectors." Diss., [S.l.] : [s.n.], 2004. http://edoc.ub.uni-muenchen.de/archive/00006339.
Повний текст джерелаChoi, Kwang Shik. "Genetic differentiation and introgression in malaria vectors of the Anopheles gambiae complex." Thesis, University of Liverpool, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431729.
Повний текст джерелаLotti, Francesco. "Transcriptional targeting of lentiviral vectors to the erythroblastic progeny of hematopoietic stem cells." Thesis, Open University, 2003. http://oro.open.ac.uk/54805/.
Повний текст джерелаSandersfeld, Lindsay Marie Maury Wendy J. "Identification of ebola glycoprotein mutants that exhibit increased transduction efficiency." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/428.
Повний текст джерелаWolgamot, Gregory M. "Mus dunni endogenous virus (MDEV) /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/6319.
Повний текст джерелаChoudhury, Sourav Roy. "Developing an Adeno-Associated Viral Vector (AAV) Toolbox for CNS Gene Therapy: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/809.
Повний текст джерелаChoudhury, Sourav Roy. "Developing an Adeno-Associated Viral Vector (AAV) Toolbox for CNS Gene Therapy: A Dissertation." eScholarship@UMMS, 2001. http://escholarship.umassmed.edu/gsbs_diss/809.
Повний текст джерелаPatterson, Sonya Marie. "Development of a cell-specific targeting strategy for therapeutic gene delivery vectors." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364767.
Повний текст джерелаSamaan, L. Z. "Comparative studies using Agrobacterium spp. as vectors for genetic engineering of higher plants." Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373321.
Повний текст джерелаAddison, Christina Lynn. "Construction and characterization of adenoviral vectors expressing cytokines for cancer immunotherapy /." *McMaster only, 1997.
Знайти повний текст джерелаThomas, Rodney H. "Machine Learning for Exploring State Space Structure in Genetic Regulatory Networks." Diss., NSUWorks, 2018. https://nsuworks.nova.edu/gscis_etd/1053.
Повний текст джерелаHe, Jin. "Lentiviral vectors mechanisms of transgene silencing and functional characterization of novel genes /." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006628.
Повний текст джерелаTypescript. Title from title page of source document. Document formatted into pages; contains 143 pages. Includes Vita. Includes bibliographical references.
Brandén, Lars J. "The development of synthetic gene delivery systems /." Stockholm, 2001.
Знайти повний текст джерелаBae, Insoo. "Construction of a hybrid vector which allows for temperature regulation of expression of cloned genes in cyanobacterium, Synechocystis 6803." Virtual Press, 1988. http://liblink.bsu.edu/uhtbin/catkey/544002.
Повний текст джерелаDepartment of Biology
Ndabambi, Nonkululeko. "Recombinant expression of the pRb- and p53-interacting domains from the human RBBP6 protein for in vitro binding studies." Thesis, University of the Western Cape, 2004. http://etd.uwc.ac.za/index.php?module=etd&.
Повний текст джерела梁頌偉 and Chung-wai Leung. "Novel gene transfer vector targeted high affinity IL-2 receptor bearing cell." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226280.
Повний текст джерелаLeung, Chung-wai. "Novel gene transfer vector targeted high affinity IL-2 receptor bearing cell /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25248698.
Повний текст джерелаRosli, Rozita. "Characterization of psb O mutants from cyanobacterium synechococcus PCC 7942 and expression of the wild-type gene in escherichia coli." Virtual Press, 1994. http://liblink.bsu.edu/uhtbin/catkey/941569.
Повний текст джерелаDepartment of Biology
Voronin, Yegor A. "Investigation of initiation of reverse transcription in retroviruses using vectors with two primer-binding sites." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=3136.
Повний текст джерелаFrancis, Murray A. "Characterisation of DNA damage inducible responses and repair in human cells using recombinant adenovirus vectors /." *McMaster only, 2000.
Знайти повний текст джерелаKjos, Sonia Alane. "Biogeography and genetic variation of triatomine chagas disease vectors and trypanosoma cruzi isolates from texas." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1299.
Повний текст джерелаUstyugov, Alexey. "Expression and function of the small heat shock protein Hsp27 during embryogenesis of zebrafish Danio rerio." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/a_ustyugov_080307.pdf.
Повний текст джерелаMyhre, Susanna. "Genetic re-targeting and de-targeting of adenovirus type 5 in order to create vectors for gene therapy /." Göteborg : Department of Microbiology and Immunology, The Sahlgrenska Academy at Göteborg University, 2007. http://hdl.handle.net/2077/7498.
Повний текст джерелаChan, Fu-lun, and 陳賦麟. "Effective DNA delivery mediated by pH responsive peptides." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48333335.
Повний текст джерелаpublished_or_final_version
Pharmacology and Pharmacy
Master
Master of Medical Sciences
Xu, Zhenhua, and 许振华. "Functional characterization of cell cycle-related kinase in glioblastoma and development of gene delivery system." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47752658.
Повний текст джерелаpublished_or_final_version
Chemistry
Doctoral
Doctor of Philosophy
Liu, Zun Kearney Christopher Michel. "New viral vectors for the expression of antigens and antibodies in plants." Waco, Tex. : Baylor University, 2009. http://hdl.handle.net/2104/5341.
Повний текст джерелаDu, Preez Jacques. "The development and characterisation of grapevine virus-based expression vectors." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4003.
Повний текст джерелаENGLISH ABSTRACT: Grapevine (Vitis vinifera L.) is a very important agricultural commodity that needs to be protected. To achieve this several in vivo tools are needed for the study of this crop and the pathogens that infect it. Recently the grapevine genome has been sequenced and the next important step will be gene annotation and function using these in vivo tools. In this study the use of Grapevine virus A (GVA), genus Vitivirus, family Flexiviridae, as transient expression and VIGS vector for heterologous protein expression and functional genomics in Nicotiana benthamiana and V. vinifera were evaluated. Full-length genomic sequences of three South African variants of the virus (GTR1-1, GTG11-1 and GTR1-2) were generated and used in a molecular sequence comparison study. Results confirmed the separation of GVA variants into three groups, with group III (mild variants) being the most distantly related. It showed the high molecular heterogeneity of the virus and that ORF 2 was the most diverse. The GVA variants GTG11-1, GTR1-2 and GTR1-1 were placed in molecular groups I, II and III respectively. A collaboration study investigating the molecular divergence of GVA variants linked to Shiraz disease (SD), described two interesting GVA variants of group II, namely GTR1-2 and P163-M5 (Goszczynski et al., 2008). The group II variants were found to be closely linked to the expression of SD. GTR1-2 was isolated from a susceptible grapevine plant that never showed SD symptoms (Goszczynski 2007). The P163-M5 variant that resulted in exceedingly severe symptoms in N. benthamiana and is that used as SD positive control by the grapevine industry, was found to contain a 119 nt insert within the native ORF2. Comparative analysis performed on the complete nt and aa sequences of group II GVA variants suggested that the components in the GVA genome that cause pathogenicity in V. vinifera are more complex (or different) to those that cause pathogenicity in N. benthamiana. The three South African variants (GTR1-1, GTG11-1 and GTR1-2) were assembled into fulllength cDNA clones under control of CaMV 35S promoters. After several strategies were attempted, including a population cloning strategy for GTR1-2, none of the clones generated were able to replicate in N. benthamiana plants. A single amino acid substitution at position 13 (Tyr/Y Cys/C) in ORF 5 of the GTR1-2 cDNA clone was shown to abolish or reduce replication of the virus to below a detectable level. Two infectious clones of Israeli variants of GVA (T7-GVA-GR5 and T7-GVA118, obtained from M. Mawassi) were brought under control of a CaMV 35S promoter (35S-GVA-GR5 and 35S-GVA118). Both clones were infectious, able to replicate, move systemically and induce typical GVA symptoms after agroinfiltration in N. benthamiana. These Israeli clones served as backbone for further experiments in characterisation of transient expression and VIGS vectors. The use of GVA as gene insertion vector (35S-GVA118) and gene exchange vector (35S-GVA-GR5- ORF2+sgMP) in N. benthamiana and V. vinifera was compared. The gene insertion vector, 35S-GVA118 was based on the full-length GVA genome. The gene exchange vector, 35SGVA- GR5- ORF2+sgMP, was constructed in this study by elimination of ORF 2 and insertion of a sgMP and unique restriction sites to facilitate transgene insertion. In N. benthamiana both vectors showed similar GUS expression levels and photobleaching symptoms upon virus-induced NbPDS silencing. In V. vinifera limited GUS expression levels and VIGS photobleaching symptoms were observed for the gene insertion vector, 35SGVA118. No GUS expression was observed for the gene exchange vector 35S-GVA-GR5- ORF2+sgMP in this host. As for silencing, one plant, agroinfiltrated with 35S-GVA-GR5- ORF2-VvPDS+sgMP, developed photobleaching symptoms in 3 systemic infected leaves after 4 months. This study showed that GVA can be used as gene insertion and gene exchange vector for expression and VIGS in N. benthamiana, but in grapevine its use is limited to expression and silencing of genes in the phloem tissue. It is also the first report that ORF 2 of GVA is not needed for long distance movement in grapevine. To investigate the possible role of the P163-M5 119 nt insertion and the GVA ORF 2 (of unknown function), in expression of symptoms in plants, ORF 2 of a 35S-GVA-GR5 cDNA clone was removed and subsequently substituted by the corresponding ORFs of four South African GVA variants. Upon agro-infiltration into N. benthamiana leaves, all chimaeric GVA constructs were able to move systemically through the plant. At this stage no correlation could be found between severity of symptoms, the presence of the P163-M5 insert and the specific GVA ORF 2 present in the chimaeras, indicating that other factors in the viral genome or the host plant probably play a crucial role. This study contributed to the pool of available in vivo tools for study and improvement of the valuable grapevine crop. It also opened several exciting research avenues to pursue in the near future.
AFRIKAANSE OPSOMMING: Wingerd (Vitis vinifera L.) is ‘n baie belangrike landboukundige gewas wat beskerm moet word. Om die rede word verskeie in vivo gereedskap vir die bestudering van die wingerdplant, en die patogene wat dit infekteer benodig. Die wingerd genoom se volgorde is bepaal en dus is die volgende logiese stap om die gene te annoteer en funksie daaraan toe te skryf. In hierdie studie is die gebruik van Grapevine virus A (GVA), genus Vitivirus, familie Flexiviridae, as tydelike uitdrukking- en virus-geinduseerde geenuitdowingsvektor vir heteroloë proteïen uitdrukking en funksionele genoomstudies in Nicotiana benthamiana en V. Vinifera getoets. Vollengte genoomvolgordes van drie Suid-Afrikaanse variante van die virus (GTR1-1, GTG11-1 en GTR1-2) is gegenereer en in ‘n molekulêre volgorde vergelyking studie gebruik. Resultate het die verdeling van GVA variante in drie groepe, waar groep III die verste verwant is, bevestig. Dit het ook gewys dat die virus ‘n baie hoë molekulêre heterogeniteit het en dat oopleesraam 2 (ORF 2) die mees divers is. ‘n Samewerking studie waar die molekulêre diversiteit van GVA variante, gekoppel aan Shiraz siekte (SD), ondersoek is, is twee interessante variante van groep II beskryf, naamlik GTR1-2 en P163-M5 (Goszczynski et al., 2008). Groep II variante is vooraf gevind om nou verwant te wees aan die ontwikkeling van SD in wingerd. Die GTR1-2 variant is uit ’n vatbare wingerd plant, wat nooit SD-simptome vertoon het nie, geïsoleer (Goszczynski et al., 2007). In die ORF 2 van die P163-M5 variant, wat simptome van die ergste graad in N. benthamiana geïnduseer het, en ook deur die industrie as betroubare SD-positiewe kontrole gebruik word, is ’n 119 nt invoeging gevind. Die vergelykende analise wat uitgevoer is, het daarop gedui dat die determinante van patogenisiteit in die GVA genoom moontlik meer kompleks kan wees in V. vinifera as in N. benthamiana. Die drie Suid-Afrikaanse variante (GTR1-1, GTG11-1 en GTR1-2) is in afsonderlike vollengte cDNA klone, onder beheer van CaMV 35S promotors, aanmekaargesit. Nadat verskeie kloneringstrategieë, insluitend ’n populasie kloneringstrategie vir die GTR1-2 kloon, gebruik is, het geen een van die cDNA klone die vermoë besit om in N. benthamiana te repliseer nie. ’n Enkele aminosuur substitusie in posisie 13 (Tyr/Y Cys/C) in ORF 5 van die GTR1-2 kloon, het die replisering van die virus tot laer as ’n opspoorbare vlak verlaag. Twee infektiewe klone van Israeliese GVA variante (T7-GVAGR5 en T7-GVA118, verkry van M. Mawassi) is onder beheer van ‘n CaMV 35S promotor geplaas (35S-GVA-GR5 and 35S-GVA118). Beide klone het na agro-infiltrasie in N. benthamiana plante gerepliseer, sistemies beweeg en tipiese GVA simptome geinduseer. Hierdie twee klone het as raamwerk gedien vir verdere eksperimente in karakterisering van tydelike uitdrukkings- en VIGS vektore. Die gebruik van GVA as geen-insvoegingsvektor (35S-GVA118) en geen-vervangingsvektor (35S-GVA-GR5- ORF2+sgMP) is in N. benthamiana en V. vinifera vergelyk. Die geen-invoegingsvektor 35S-GVA118, was op die vollengte GVA genoom gebasseer. Die geen-vervangingsvektor 35S-GVA-GR5- ORF2+sgMP, was in hierdie studie gekonstrueer. Dit is gemaak eerstens deur eliminasie van ORF 2 in die 35S-GVA-GR5 kloon, en tweedens deur die invoeging van ’n subgenomiese promotor van die beweginsproteïen (sgMP) en unieke beperkings-ensiemsetels om klonering van transgene te fasiliteer. Beide vektore het in N. benthamiana vergelykbare GUS uitdrukkingsvlakke en fotobleikende simptome getoon na virus-geinduseerde NbPDS uitdowing. In V. Vinifera is beperkte GUS uitdrukkingsvlakke en VIGS fotobleikende simptome opgemerk met die geen-invoegingsvektor, 35S-GVA118. Geen GUS uitdrukking is in hierdie gasheerplant met die geen-vervangingsvektor opgemerk nie. Slegs een wingerdplant het fotobleikende simptome, na 4 maande in 3 sistemies geïnfekteerde blare gewys, na agroinfiltrasie van die 35S-GVA-GR5- ORF2-VvPDS+sgMP konstruk. Hierdie studie het bevestig dat GVA as geen-invoeging en geen-vervangingsvektor, vir heteroloë proteïenuitdrukking en VIGS, in N. benthamiana gebruik kan word, maar dit blyk of die gebruik daarvan in wingerd meer tot die floeëm weefsel beperk is. Hierdie studie wys vir die eerste keer dat ORF 2 nie nodig is vir langafstand beweging van die virus in wingerd nie. Om die moontlike rol van die P163-M5 119 nt invoeging en die GVA ORF 2 (met onbekende funksie), in die uitdrukking van simptome in plante te ondersoek, is ORF 2 van die 35SGVA- GR5 cDNA kloon verwyder en daaropvolgens vervang met die ooreenstemmende ORFs van vier Suid-Afrikaanse GVA variante. Na agro-infiltrasie in N. benthamiana blare, het al die chimeras die vermoë gehad om te repliseer, sistemies te beweeg en simptome te induseer. Geen korrelasie kon gevind word tussen die graad van simptome, die teenwoordigheid van die P163-M5 insersie en die spesifieke GVA ORF 2 teenwoordig in die chimeras nie, wat dus daarop dui dat ander faktore in die virusgenoom of die gasheerplant `n moontlike belangrike rol kan speel. Hierdie studie het bygedrae tot die beskikbare poel van in vivo gereedskap vir die bestudering en verbetering van die kosbare wingerdgewas. Dit het ook talle interessante navorsingsgeleenthede oopgemaak om in die nabye toekoms te betree.
Keeler, Allison M. "Gene Therapy for Very Long Chain Acyl-coA Dehydrogenase Deficiency Using Adeno-Associated Virus Vectors: A Dissertation." eScholarship@UMMS, 2012. https://escholarship.umassmed.edu/gsbs_diss/632.
Повний текст джерелаMück-Häusl, Martin Andreas [Verfasser], and Roland [Akademischer Betreuer] Beckmann. "Genetic engineering of adenoviral vectors for improved therapeutic applications / Martin Andreas Mück-Häusl. Betreuer: Roland Beckmann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/1018847227/34.
Повний текст джерелаRoig-Merino, Alicia [Verfasser], and Richard [Akademischer Betreuer] Harbottle. "Genetic Modification of Stem Cells Utilizing S/MAR DNA Vectors / Alicia Roig-Merino ; Betreuer: Richard Harbottle." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177149265/34.
Повний текст джерела