Добірка наукової літератури з теми "Generative classifiers"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Generative classifiers".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Generative classifiers"
Varga, Michal, Ján Jadlovský, and Slávka Jadlovská. "Generative Enhancement of 3D Image Classifiers." Applied Sciences 10, no. 21 (October 22, 2020): 7433. http://dx.doi.org/10.3390/app10217433.
Повний текст джерелаShakhuro, V. I., and A. S. Konushin. "IMAGE SYNTHESIS WITH NEURAL NETWORKS FOR TRAFFIC SIGN CLASSIFICATION." Computer Optics 42, no. 1 (March 30, 2018): 105–12. http://dx.doi.org/10.18287/2412-6179-2018-42-1-105-112.
Повний текст джерелаSensoy, Murat, Lance Kaplan, Federico Cerutti, and Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Повний текст джерелаYakura, Hiromu, Youhei Akimoto, and Jun Sakuma. "Generate (Non-Software) Bugs to Fool Classifiers." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 01 (April 3, 2020): 1070–78. http://dx.doi.org/10.1609/aaai.v34i01.5457.
Повний текст джерелаHassan, Anthony Rotimi, Rasaki Olawale Olanrewaju, Queensley C. Chukwudum, Sodiq Adejare Olanrewaju, and S. E. Fadugba. "Comparison Study of Generative and Discriminative Models for Classification of Classifiers." International Journal of Mathematics and Computers in Simulation 16 (June 28, 2022): 76–87. http://dx.doi.org/10.46300/9102.2022.16.12.
Повний текст джерелаChen, Wei, Xinmiao Chen, and Xiao Sun. "Emotional dialog generation via multiple classifiers based on a generative adversarial network." Virtual Reality & Intelligent Hardware 3, no. 1 (February 2021): 18–32. http://dx.doi.org/10.1016/j.vrih.2020.12.001.
Повний текст джерелаLu, Zhengdong, Todd K. Leen, and Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals." Neural Computation 23, no. 9 (September 2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Повний текст джерелаAmiryousefi, Ali, Ville Kinnula, and Jing Tang. "Bayes in Wonderland! Predictive Supervised Classification Inference Hits Unpredictability." Mathematics 10, no. 5 (March 5, 2022): 828. http://dx.doi.org/10.3390/math10050828.
Повний текст джерелаElzobi, Moftah, and Ayoub Al-Hamadi. "Generative vs. Discriminative Recognition Models for Off-Line Arabic Handwriting." Sensors 18, no. 9 (August 24, 2018): 2786. http://dx.doi.org/10.3390/s18092786.
Повний текст джерелаKaraliutė, Marta, and Kęstutis Dučinskas. "Performance of the supervised generative classifiers of spatio-temporal areal data using various spatial autocorrelation indexes." Nonlinear Analysis: Modelling and Control 28 (February 22, 2023): 1–14. http://dx.doi.org/10.15388/namc.2023.28.31434.
Повний текст джерелаДисертації з теми "Generative classifiers"
Xue, Jinghao. "Aspects of generative and discriminative classifiers." Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/272/.
Повний текст джерелаPh.D. thesis submitted to the Department of Statistics, Faculty of Information and Mathematical Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
ROGER-YUN, Soyoung. "Les expressions nominales à classificateurs et les propositions à cas multiples du coréen : recherches sur leur syntaxe interne et mise en évidence de quelques convergences structurales." Phd thesis, Université de la Sorbonne nouvelle - Paris III, 2002. http://tel.archives-ouvertes.fr/tel-00002834.
Повний текст джерелаMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Повний текст джерелаGuo, Hong Yu. "Multiple classifier combination through ensembles and data generation." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26648.
Повний текст джерелаKang, Dae-Ki. "Abstraction, aggregation and recursion for generating accurate and simple classifiers." [Ames, Iowa : Iowa State University], 2006.
Знайти повний текст джерелаKimura, Takayuki. "RNA-protein structure classifiers incorporated into second-generation statistical potentials." Thesis, San Jose State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10241445.
Повний текст джерелаComputational modeling of RNA-protein interactions remains an important endeavor. However, exclusively all-atom approaches that model RNA-protein interactions via molecular dynamics are often problematic in their application. One possible alternative is the implementation of hierarchical approaches, first efficiently exploring configurational space with a coarse-grained representation of the RNA and protein. Subsequently, the lowest energy set of such coarse-grained models can be used as scaffolds for all-atom placements, a standard method in modeling protein 3D-structure. However, the coarse-grained modeling likely will require improved ribonucleotide-amino acid potentials as applied to coarse-grained structures. As a first step we downloaded 1,345 PDB files and clustered them with PISCES to obtain a non-redundant complex data set. The contacts were divided into nine types with DSSR according to the 3D structure of RNA and then 9 sets of potentials were calculated. The potentials were applied to score fifty thousand poses generated by FTDock for twenty-one standard RNA-protein complexes. The results compare favorably to existing RNA-protein potentials. Future research will optimize and test such combined potentials.
Alani, Shayma. "Design of intelligent ensembled classifiers combination methods." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/12793.
Повний текст джерелаDING, ZEJIN. "Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/cs_diss/60.
Повний текст джерелаSvénsen, Johan F. M. "GTM: the generative topographic mapping." Thesis, Aston University, 1998. http://publications.aston.ac.uk/1245/.
Повний текст джерелаPyon, Yoon Soo. "Variant Detection Using Next Generation Sequencing Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1347053645.
Повний текст джерелаКниги з теми "Generative classifiers"
Grant, McDuling, ed. Instant leads: Everything you need to know about generating more business. 2nd ed. Brisbane, Qld: Action International, 2004.
Знайти повний текст джерелаSilent heros of the Cold War declassified: The mysterious military plane crash on a Nevada mountain peak-- and the families who endured an abyss of silence for generation. Las Vegas, Nev: Stephens Press, 2009.
Знайти повний текст джерелаAbbas, Atheir I., and Jeffrey A. Lieberman. Pharmacological Treatments for Schizophrenia. Oxford University Press, 2015. http://dx.doi.org/10.1093/med:psych/9780199342211.003.0006.
Повний текст джерелаMartín-Vide, Carlos. Formal Grammars and Languages. Edited by Ruslan Mitkov. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0008.
Повний текст джерелаSolms, Mark. Sleep and dreams. Edited by Sudhansu Chokroverty, Luigi Ferini-Strambi, and Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0034.
Повний текст джерелаFerguson, Ben, and Hillel Steiner. Exploitation. Edited by Serena Olsaretti. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199645121.013.21.
Повний текст джерелаBiddle, Justin B., and Rebecca Kukla. The Geography of Epistemic Risk. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190467715.003.0011.
Повний текст джерелаLalvani, Ajit, and Katrina Pollock. Defences against infection. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0303.
Повний текст джерелаCaramello, Olivia. Theories of presheaf type: general criteria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198758914.003.0008.
Повний текст джерелаЧастини книг з теми "Generative classifiers"
Yang, Xiulong, Hui Ye, Yang Ye, Xiang Li, and Shihao Ji. "Generative Max-Mahalanobis Classifiers for Image Classification, Generation and More." In Machine Learning and Knowledge Discovery in Databases. Research Track, 67–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86520-7_5.
Повний текст джерелаWang, Yaxiao, Yuanzhang Li, Quanxin Zhang, Jingjing Hu, and Xiaohui Kuang. "Evading PDF Malware Classifiers with Generative Adversarial Network." In Cyberspace Safety and Security, 374–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37337-5_30.
Повний текст джерелаDrummond, Chris. "Discriminative vs. Generative Classifiers for Cost Sensitive Learning." In Advances in Artificial Intelligence, 479–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11766247_41.
Повний текст джерелаSantafé, Guzmán, Jose A. Lozano, and Pedro Larrañaga. "Discriminative vs. Generative Learning of Bayesian Network Classifiers." In Lecture Notes in Computer Science, 453–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75256-1_41.
Повний текст джерелаAntoniou, Antreas, Amos Storkey, and Harrison Edwards. "Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks." In Artificial Neural Networks and Machine Learning – ICANN 2018, 594–603. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_58.
Повний текст джерелаTran, Quang Duy, and Fabio Di Troia. "Word Embeddings for Fake Malware Generation." In Silicon Valley Cybersecurity Conference, 22–37. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24049-2_2.
Повний текст джерелаAgarwal, Chirag, and Anh Nguyen. "Explaining Image Classifiers by Removing Input Features Using Generative Models." In Computer Vision – ACCV 2020, 101–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69544-6_7.
Повний текст джерелаPingi, Sharon Torao, Md Abul Bashar, and Richi Nayak. "A Comparative Look at the Resilience of Discriminative and Generative Classifiers to Missing Data in Longitudinal Datasets." In Communications in Computer and Information Science, 133–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8746-5_10.
Повний текст джерелаMery, Bruno, and Christian Retoré. "Classifiers, Sorts, and Base Types in the Montagovian Generative Lexicon and Related Type Theoretical Frameworks for Lexical Compositional Semantics." In Studies in Linguistics and Philosophy, 163–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50422-3_7.
Повний текст джерелаZanda, Manuela, and Gavin Brown. "A Study of Semi-supervised Generative Ensembles." In Multiple Classifier Systems, 242–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02326-2_25.
Повний текст джерелаТези доповідей конференцій з теми "Generative classifiers"
van de Ven, Gido M., Zhe Li, and Andreas S. Tolias. "Class-Incremental Learning with Generative Classifiers." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2021. http://dx.doi.org/10.1109/cvprw53098.2021.00400.
Повний текст джерелаSmith, Andrew T., and Charles Elkan. "Making generative classifiers robust to selection bias." In the 13th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1281192.1281263.
Повний текст джерелаWang, Xin, and Siu Ming Yiu. "Classification with Rejection: Scaling Generative Classifiers with Supervised Deep Infomax." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/412.
Повний текст джерелаYoshida, Hidefumi, Daichi Suzuo, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase, Takashi Machida, and Yoshiko Kojima. "Pedestrian detection by scene dependent classifiers with generative learning." In 2013 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2013. http://dx.doi.org/10.1109/ivs.2013.6629541.
Повний текст джерелаShin, Donghwa, Daehee Han, and Sunghyon Kyeong. "Performance Enhancement of Malware Classifiers Using Generative Adversarial Networks." In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020505.
Повний текст джерелаDing, Xiaoan, Tianyu Liu, Baobao Chang, Zhifang Sui, and Kevin Gimpel. "Discriminatively-Tuned Generative Classifiers for Robust Natural Language Inference." In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.emnlp-main.657.
Повний текст джерелаMackowiak, Radek, Lynton Ardizzone, Ullrich Kothe, and Carsten Rother. "Generative Classifiers as a Basis for Trustworthy Image Classification." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.00299.
Повний текст джерелаZhu, Yao, Jiacheng Ma, Jiacheng Sun, Zewei Chen, Rongxin Jiang, Yaowu Chen, and Zhenguo Li. "Towards Understanding the Generative Capability of Adversarially Robust Classifiers." In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00763.
Повний текст джерелаSun, Xin, Xin An, Shuo Xu, Liyuan Hao, and Jinghong Li. "Identifying Important Citations by Incorporating Generative Model into Discriminative Classifiers." In IMMS 2020: 2020 3rd International Conference on Information Management and Management Science. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3416028.3416043.
Повний текст джерелаTiwari, Lokender, Anish Madan, Saket Anand, and Subhashis Banerjee. "REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust Predictions." In 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2022. http://dx.doi.org/10.1109/wacv51458.2022.00388.
Повний текст джерелаЗвіти організацій з теми "Generative classifiers"
Mittal, Vibhu O., and Cecile L. Paris. Generating Examples for Use in Tutorial Explanations: The Use of a Subsumption Based Classifier. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada286028.
Повний текст джерелаDzanku, Fred M., and Louis S. Hodey. Achieving Inclusive Oil Palm Commercialisation in Ghana. Institute of Development Studies (IDS), February 2022. http://dx.doi.org/10.19088/apra.2022.007.
Повний текст джерелаvan den Boogaard, Vanessa, and Fabrizio Santoro. Explaining Informal Taxation and Revenue Generation: Evidence from south-central Somalia. Institute of Development Studies, March 2021. http://dx.doi.org/10.19088/ictd.2021.003.
Повний текст джерелаRodriguez, Russell, and Stanley Freeman. Characterization of fungal symbiotic lifestyle expression in Colletotrichum and generating non-pathogenic mutants that confer disease resistance, drought tolerance, and growth enhancement to plant hosts. United States Department of Agriculture, February 2005. http://dx.doi.org/10.32747/2005.7587215.bard.
Повний текст джерела