Дисертації з теми "Generalized Nash equilibrium problems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-26 дисертацій для дослідження на тему "Generalized Nash equilibrium problems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sudermann-Merx, Nathan Georg [Verfasser], and O. [Akademischer Betreuer] Stein. "Linear Generalized Nash Equilibrium Problems / Nathan Georg Sudermann-Merx. Betreuer: O. Stein." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1102250236/34.
Повний текст джерелаHeusinger, Anna von. "Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem." kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2010/4766/.
Повний текст джерелаDreves, Axel [Verfasser], and Christian [Akademischer Betreuer] Kanzow. "Globally Convergent Algorithms for the Solution of Generalized Nash Equilibrium Problems / Axel Dreves. Betreuer: Christian Kanzow." Würzburg : Universitätsbibliothek der Universität Würzburg, 2012. http://d-nb.info/1020570881/34.
Повний текст джерелаHarms, Nadja [Verfasser], and Christian [Gutachter] Kanzow. "Primal and Dual Gap Functions for Generalized Nash Equilibrium Problems and Quasi-Variational Inequalities / Nadja Harms. Gutachter: Christian Kanzow." Würzburg : Universität Würzburg, 2014. http://d-nb.info/1102828769/34.
Повний текст джерелаBörgens, Eike Alexander Lars Guido [Verfasser], Christian [Gutachter] Kanzow, and Radu Ioan [Gutachter] Boţ. "ADMM-Type Methods for Optimization and Generalized Nash Equilibrium Problems in Hilbert Spaces / Eike Alexander Lars Guido Börgens ; Gutachter: Christian Kanzow, Radu Ioan Boţ." Würzburg : Universität Würzburg, 2020. http://d-nb.info/1223851370/34.
Повний текст джерелаRojas, Frank Navarro. "Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/.
Повний текст джерелаThis thesis is a study about the generalized Nash equilibrium problem (GNEP). In the first part we will summarize the main concepts about GNEPs, the relationship with other known problems and we will briefly comment on the main methods already done in order to solve these problems numerically. In the second part we study optimality conditions and constraint qualification (CQ) for GNEPs making an analogy with the optimization case. We extend the concepts of the tangent, normal and generated by the active cones, linear and polar cone to the structure of the GNEPs. Each optimization CQ generates two types of CQs for GNEPs, with the one called CQ-GNEP being the strongest and most useful for analyzing the algorithms for GNEPs. We show that the qualification conditions for GNEPs of this type in some cases do not have the same relation as in optimization. We also extend the Approximate Karush- Kuhn-Tucker (AKKT) concept used in optimization for GNEPs to AKKT-GNEP. It is well known that AKKT is a genuine optimality condition in optimization but for GNEPs we show that this does not occur in general. On the other hand, AKKT-GNEP is satisfied, for example, in any solution of a jointly convex GNEP, provided that it is a b-variational equilibrium. With this in mind, we define Augmented Lagrangian methods for the GNEP, using the quadratic and the exponential penalties, and we study the optimality and feasibility properties of the sequence of points generated by the algorithms. Finally some criteria to solve the subproblems and numerical results are presented.
Herrich, Markus. "Local Convergence of Newton-type Methods for Nonsmooth Constrained Equations and Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159569.
Повний текст джерелаBatista, Edvaldo Elias de Almeida. "Generalized vector equilibrium problems and algorithms for variational inequality in hadamard manifolds." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6562.
Повний текст джерелаApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:11:03Z (GMT) No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-12-09T17:11:03Z (GMT). No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-10-20
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this thesis, we study variational inequalities and generalized vector equilibrium problems. In Chapter 1, several results and basic definitions of Riemannian geometry are listed; we present the concept of the monotone vector field in Hadamard manifolds and many of their properties, besides, we introduce the concept of enlargement of a monotone vector field, and we display its properties in a Riemannian context. In Chapter 2, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced, and its convergence properties are studied; see [7]. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained. In Chapter 3, we present an extragradient algorithm for variational inequality associated with the point-to-set vector field in Hadamard manifolds and study its convergence properties; see [8]. In order to present our method, the concept of enlargement of maximal monotone vector fields is used and its lower-semicontinuity is established to obtain the convergence of the method in this new context. In Chapter 4, we present a sufficient condition for the existence of a solution to the generalized vector equilibrium problem on Hadamard manifolds using a version of the KnasterKuratowski-Mazurkiewicz Lemma; see [6]. In particular, the existence of solutions to optimization, vector optimization, Nash equilibria, complementarity, and variational inequality is a special case of the existence result for the generalized vector equilibrium problem.
Nesta tese, estudamos desigualdades variacionais e o problema de equilíbrio vetorial generalizado. No Capítulo 1, vários resultados e definições elementares sobre geometria Riemanniana são enunciados; apresentamos o conceito de campo vetorial monótono e muitas de suas propriedades, além de introduzir o conceito de alargamento de um campo vetorial monótono e exibir suas propriedades em um contexto Riemanniano. No Capítulo 2, um método de ponto proximal inexato para desigualdades variacionais em variedades de Hadamard é introduzido e suas propriedades de convergência são estudadas; veja [7]. Para apresentar o nosso método, generalizamos o conceito de alargamento de operadores monótonos, do contexto linear ao contexto de Riemanniano. Como aplicação, é obtido um método de ponto proximal inexato para problemas de otimização com restrições. No Capítulo 3, apresentamos um algoritmo extragradiente para desigualdades variacionais associado a um campo vetorial ponto-conjunto em variedades de Hadamard e estudamos suas propriedades de convergência; veja [8]. A fim de apresentar nosso método, o conceito de alargamento de campos vetoriais monótonos é utilizado e sua semicontinuidade inferior é estabelecida, a fim de obter a convergência do método neste novo contexto. No Capítulo 4, apresentamos uma condição suficiente para a existência de soluções para o problema de equilíbrio vetorial generalizado em variedades de Hadamard usando uma versão do Lema Knaster-Kuratowski-Mazurkiewicz; veja [6]. Em particular, a existência de soluções para problemas de otimização, otimização vetorial, equilíbrio de Nash, complementaridade e desigualdades variacionais são casos especiais do resultado de existência do problema de equilíbrio vetorial generalizado.
Ye, Zhineng. "Solving Eight Treasures Of Game Theory Problems Using Bi-criteria Method." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1454062652.
Повний текст джерелаAbada, Ibrahim. "Modélisation des marchés du gaz naturel en Europe en concurrence oligopolistique : le modèle GaMMES et quelques applications." Thesis, Paris 10, 2012. http://www.theses.fr/2012PA100043/document.
Повний текст джерелаThis thesis studies the evolution of the natural gas markets in Europe, until 2035, using optimization theory tools. The model we develop, named GaMMES, is based on an oligopolistic description of the markets. Its main advantages are the following: we consider an important level of detail in the economic structure of the gas chain and we endogenously take into account long-term contracts in the upstream as well as energy substitution between gas, oil, and coal in the demand. In the first part of this thesis, we study the issue of security of supply in Europe and the conditions under which it is necessary to regulate the gas markets that are strongly dependent on foreign imports. Three case studies are then presented, regarding the level of dependence and the markets' specificities: the German gas trade of the 1980s and the current Spanish and Bulgarian markets. We study in particular the evolution of the markets' outcome as a function of the supply disruption probability and the kind of regulation to implement in order to maximize the social welfare. In the second part, we develop a system dynamics model in order to capture fuel substitution between oil, coal, and natural gas. Our approach allows one to calculate a new functional form of the demand function for natural gas that contains energy substitution and consumption inertia effects due to end-users' investments. In the third part, we take advantage of our demand function and use it in a partial equilibrium model of natural gas markets in Europe. The GaMMES model, when written as a complementarity problem, describes the principal gas chain actors as well as their strategic interactions and market power. It was applied to the northwestern European gas trade to analyze the evolution of consumption, spot and long-term contract prices and volumes, production, and natural gas dependence, until 2035. In the last part, we present a stochastic extension of the GaMMES model in order to study the impact of the strong Brent price fluctuation on the gas markets. An econometric analysis allowed us to calculate the probability law of the oil price, when taken as a random variable, in order to construct the scenario tree and estimate its weights. Our results show how uncertainty changes the strategic behavior, in particular for the long-term contracting activity. Finally, the value of the stochastic solution is calculated to quantify the importance of taking into account randomness in the optimization programs of the gas chain actors
Svensson, Anton. "Non-smooth and variational analysis of optimization problems and multi-leader-follower games." Thesis, Perpignan, 2020. http://www.theses.fr/2020PERP0003.
Повний текст джерелаThis thesis is within the framework of optimization and deals with nonsmooth optimization and with some problems of game theory. It is divided into four parts. In the first introductory part, we give the context and some preliminary results. In the second part we discuss about subdifferential calculus rules in general spaces providing of some improved formulas in both the convex and the non-convex cases. Here the focus is on approximate or fuzzy calculus rules and optimality conditions, for which no qualification conditions are required. In the third part, we discuss about the so-called Multi-Leader-Follower Games. We give an existence result for the case of a single optimistic leader and multiple followers, and extend some results concerning the relation between the original problem with the reformulation obtained by replacing the followers' problem by the concatenation of their KKT conditions. Finally, in the fourth part we study quasi-equilibrium problems which are a general formulation for studying Nash equilibrium problems and quasi-variational inequalities. We provide some new existence results that relax some of the standard hypotheses
Dutang, Christophe. "Etude des marchés d'assurance non-vie à l'aide d'équilibre de Nash et de modèle de risques avec dépendance." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00703797.
Повний текст джерелаTheljani, Anis. "Partial differential equations methods and regularization techniques for image inpainting." Thesis, Mulhouse, 2015. http://www.theses.fr/2015MULH0278/document.
Повний текст джерелаImage inpainting refers to the process of restoring a damaged image with missing information. Different mathematical approaches were suggested to deal with this problem. In particular, partial differential diffusion equations are extensively used. The underlying idea of PDE-based approaches is to fill-in damaged regions with available information from their surroundings. The first purpose of this Thesis is to treat the case where this information is not available in a part of the boundary of the damaged region. We formulate the inpainting problem as a nonlinear boundary inverse problem for incomplete images. Then, we give a Nash-game formulation of this Cauchy problem and we present different numerical which show the efficiency of the proposed approach as an inpainting method.Typically, inpainting is an ill-posed inverse problem for it most of PDEs approaches are obtained from minimization of regularized energies, in the context of Tikhonov regularization. The second part of the thesis is devoted to the choice of regularization parameters in second-and fourth-order energy-based models with the aim of obtaining as far as possible fine features of the initial image, e.g., (corners, edges, … ) in the inpainted region. We introduce a family of regularized functionals with regularization parameters to be selected locally, adaptively and in a posteriori way allowing to change locally the initial model. We also draw connections between the proposed method and the Mumford-Shah functional. An important feature of the proposed method is that the investigated PDEs are easy to discretize and the overall adaptive approach is easy to implement numerically
Dreves, Axel. "Globally Convergent Algorithms for the Solution of Generalized Nash Equilibrium Problems." Doctoral thesis, 2011. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-69822.
Повний текст джерелаIn this thesis different algorithms for the solution of generalized Nash equilibrium problems with the focus on global convergence properties are developed. A globalized Newton method for the computation of normalized solutions, a nonsmooth algorithm based on an optimization reformulation of the game-theoretic problem, and a merit function approach and an interior point method for the solution of the concatenated Karush-Kuhn-Tucker-system are analyzed theoretically and numerically. The interior point method turns out to be one of the best existing methods for the solution of generalized Nash equilibrium problems
Börgens, Eike Alexander Lars Guido. "ADMM-Type Methods for Optimization and Generalized Nash Equilibrium Problems in Hilbert Spaces." Doctoral thesis, 2020. https://doi.org/10.25972/OPUS-21877.
Повний текст джерелаDie vorliegende Arbeit behandelt eine Klasse von Algorithmen zur Lösung restringierter Optimierungsprobleme und verallgemeinerter Nash-Gleichgewichtsprobleme in Hilberträumen. Diese Klasse von Algorithmen ist angelehnt an die Alternating Direction Method of Multipliers (ADMM) und eliminiert die Nebenbedingungen durch einen Augmented-Lagrangian-Ansatz. Im Rahmen dessen wird in der Alternating Direction Method of Multipliers das jeweilige Augmented-Lagrangian-Teilproblem in kleinere Teilprobleme aufgespaltet. Zur Vorbereitung wird eine Vielzahl grundlegender Resultate präsentiert. Dies beinhaltet entsprechende Ergebnisse aus der Literatur zu der Theorie von Banach- und Hilberträumen, Fixpunktmethoden sowie konvexer und monotoner mengenwertiger Analysis. Im Anschluss werden gewisse Optimierungsprobleme sowie verallgemeinerte Nash-Gleichgewichtsprobleme als Variationsungleichungen und Inklusionen mit mengenwertigen Operatoren formuliert und analysiert. Die Analysis der im Rahmen dieser Arbeit entwickelten Algorithmen bezieht sich auf diese Reformulierungen als Variationsungleichungen und Inklusionsprobleme. Zuerst werden ein schwach und ein stark konvergenter paralleler ADMM-Algorithmus zur Lösung von separablen Optimierungsaufgaben mit linearen Gleichheitsnebenbedingungen präsentiert und analysiert. Durch die Ausstattung des zugehörigen Hilbertraums mit dem richtigen gewichteten Skalarprodukt gelingt die Analyse dieser beiden Methoden mit Hilfe der Proximalpunktmethode und der Halpern-Methode. Der Rest der Arbeit beschäftigt sich mit Algorithmen für verallgemeinerte Nash-Gleichgewichtsprobleme, die gemeinsame lineare Gleichheitsnebenbedingungen besitzen. Die erste Klasse von Algorithmen ist vollständig parallelisierbar und es wird ein Forward-Backward-Ansatz für die Analyse genutzt. Die zweite Klasse von Algorithmen kann hingegen als direkte Erweiterung des klassischen ADMM-Verfahrens auf verallgemeinerte Nash-Gleichgewichtsprobleme aufgefasst werden. Abschließend wird das Konvergenzverhalten der entwickelten Algorithmen an einer Sammlung von Beispielen demonstriert
Harms, Nadja. "Primal and Dual Gap Functions for Generalized Nash Equilibrium Problems and Quasi-Variational Inequalities." Doctoral thesis, 2014. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-106027.
Повний текст джерелаIn dieser Dissertation wurden die Glattheitseigenschaften von primalen und dualen Gap-Funktionen für verallgemeinerte Nash-Gleichgewichtsprobleme (GNEPs) und Quasi-Variationsungleichungen (QVIs) untersucht. Diese Gap-Funktionen sind Optimalwertfunktionen von primalen und dualen Umformulierungen eines GNEPs oder QVIs als restringiertes oder unrestringiertes Optimierungsproblem. Für gewisse Teilklassen von GNEPs (Spezialfall von `player convex' GNEPs) und QVIs (`generalized moving set case') sind diese primalen Gap-Funktionen überall stetig differenzierbar, für allgemeine GNEPs und QVIs jedoch nicht. Weitere Untersuchungen der Stetigkeit und Differenzierbarkeit ergaben, dass die primalen Gap-Funktionen unter geeigneten Bedingungen, abgesehen von Sonderfällen, in allen lokalen Minima der entsprechenden primalen Umformulierung differenzierbar sind. In dieser Dissertation wurden außerdem duale Gap-Funktionen für bestimmte Klassen von GNEPs und QVIs entwickelt, indem die primalen Gap-Funktionen basierend auf einer Idee von Dietrich (H. Dietrich: A smooth dual gap function solution to a class of quasivariational inequalities. Journal of Mathematical Analysis and Applications 235, 1999, pp. 380--393) als Differenz zweier gleichmäßig konvexer Funktionen dargestellt wurden und auf diese beiden Funktionen die Toland-Singer-Dualitätstheorie angewendet wurde. Es stellte sich heraus, dass diese dualen Gap-Funktionen stetig differenzierbar sind und unter geeigneten Bedingungen sogar stückweise stetig differenzierbare Gradienten besitzen. Die Ergebnisse in dieser Dissertation wurden durch numerische Berechnungen für diverse Testprobleme mittels bekannter Optimierungsverfahren erster Ordnung unterstützt
von, Heusinger Anna. "Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem." Doctoral thesis, 2009. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-47662.
Повний текст джерелаDas verallgemeinerte Nash-Gleichgewichtsproblem ist ein Lösungskonzept für Spiele, in denen neben der Kostenfunktion eines Spielers auch dessen Strategiemenge von den Entscheidungen der anderen Spieler abhängt. In dieser Arbeit werden global konvergente und lokal superlinear konvergente Verfahren zur numerischen Berechnung eines verallgemeinerten Nash-Gleichgewichts vorgestellt. Die Verfahren basieren entweder auf einer Umformulierung des verallgemeinerten Nash-Gleichgewichtsproblems als Optimierungsproblem oder als Fixpunktproblem. Für diese Umformulierungen wird die Nikaido-Isoda Funktion verwendet. Es werden numerische Ergebenisse für einige Probleme aus der Literatur widergegeben
LAMPARIELLO, LORENZO. "Penalty methods for the solution of generalized Nash equilibrium problems and hemivariational inequalities with VI constraints." Doctoral thesis, 2012. http://hdl.handle.net/11573/918565.
Повний текст джерелаHeusinger, Anna von [Verfasser]. "Numerical methods for the solution of the generalized Nash equilibrium problem / Anna von Heusinger." 2009. http://d-nb.info/1001800753/34.
Повний текст джерелаGalli, Leonardo. "Nonmonotone techniques for smooth optimization." Doctoral thesis, 2020. http://hdl.handle.net/2158/1202158.
Повний текст джерелаHerrich, Markus. "Local Convergence of Newton-type Methods for Nonsmooth Constrained Equations and Applications." Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28495.
Повний текст джерелаHuang, Yun-ru, and 黃韻如. "Viscosity Approximation Methods for Generalized Equilibrium Problems and Fixed Point Problems." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/rrwzvc.
Повний текст джерела國立中山大學
應用數學系研究所
96
The purpose of this paper is to investigate the problem of finding a common element of the set of solutions of a generalized equilibrium problem (for short, GEP) and the set of fixed points of a nonexpansive mapping in a Hilbert space. First, by using the well-known KKM technique we derive the existence and uniqueness of solutions of the auxiliary problems for the GEP. Second, on account of this result and Nadler''s theorem, we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of the GEP and the set of fixed points of the nonexpansive mapping. Furthermore, it is proven that the sequences generated by this iterative scheme converge strongly to a common element of the set of solutions of the GEP and the set of fixed points of the nonexpansive mapping.
Liu, Yu Hsuan, and 劉毓璿. "The Study of Abstract Economies, System of Generalized Vector Quasi-Equilibrium Problems and Optimization Problems." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/83876535062785024795.
Повний текст джерела國立彰化師範大學
數學系
91
In this paper, we apply Himmelberg''s fixed point theorem to establish existence theorems of equilibria for generalized abstract economies in which strategic spaces may not be compact and the set of players may not be countable. We apply our res- ults to establish general existence theorems of maximal elements and to establish existence theorems of system of generalized vector quasi-equilibrium problems from which we derive existence theorems of system of generalized vector quasi-variational and quasi-variational-like inequality problems and system of vector quasi-optimization problems.
Chen, Li-fang, and 陳俐芳. "Existence Theorems of Abstract Economies and System of Generalized Vector Quasi-Equilibrium Problems with Applications." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/26601269909427518675.
Повний текст джерела國立彰化師範大學
數學系
91
In this paper, we first establish the existence theorems of generalized abstract economy with a lower semicontinuous constraint correspondence and a fuzzy constraint correspondence defined on non-compact and non-paracompact strategy sets. As consequence of our results, we get existence theorems for a solution to the system of generalized vector quasi-equilibrium problems. As applications, we derive some existence results for the system of mixed vector quasi-variational-like inequality problems, Debreu type vector equilibrium problems and Nash type equilibrium problem for vector-valued mappings.
Peng, Bo-Jun, and 彭柏鈞. "Strong Convergence Theorems for Fixed Points and Systems of Generalized Equilibrium Problems with Applications to Optimization Theory." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/38402676636001742958.
Повний текст джерела國立彰化師範大學
數學系所
99
In this paper, we find a common solution for the system of equilibrium problems and fixed points of a strictly pseudo-contractive mapping. We prove the strong convergence theorem based on shrinking projection in a real Hilbert space. Then we apply our results to study a common solution of system of mixed equilibrium problems and fixed point of a strict pseudo-contractive mapping in a Hilbert space mathematical program with system of mixed equilibrium problems and fixed points constraints.
Liu, Xinwei, and Jie Sun. "Generalized Stationary Points and an Interior Point Method for MPEC." 2003. http://hdl.handle.net/1721.1/3701.
Повний текст джерелаSingapore-MIT Alliance (SMA)