Добірка наукової літератури з теми "Generalized Nash equilibrium problems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Generalized Nash equilibrium problems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Generalized Nash equilibrium problems"
Facchinei, Francisco, and Christian Kanzow. "Generalized Nash Equilibrium Problems." Annals of Operations Research 175, no. 1 (November 1, 2009): 177–211. http://dx.doi.org/10.1007/s10479-009-0653-x.
Повний текст джерелаFacchinei, Francisco, and Christian Kanzow. "Generalized Nash equilibrium problems." 4OR 5, no. 3 (September 13, 2007): 173–210. http://dx.doi.org/10.1007/s10288-007-0054-4.
Повний текст джерелаNasri, Mostafa, and Wilfredo Sosa. "Equilibrium problems and generalized Nash games." Optimization 60, no. 8-9 (August 2011): 1161–70. http://dx.doi.org/10.1080/02331934.2010.527341.
Повний текст джерелаSingh, Shipra, Aviv Gibali, and Simeon Reich. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications." Mathematics 9, no. 14 (July 14, 2021): 1658. http://dx.doi.org/10.3390/math9141658.
Повний текст джерелаFacchinei, Francisco, Andreas Fischer, and Veronica Piccialli. "Generalized Nash equilibrium problems and Newton methods." Mathematical Programming 117, no. 1-2 (July 19, 2007): 163–94. http://dx.doi.org/10.1007/s10107-007-0160-2.
Повний текст джерелаDreves, Axel, and Nathan Sudermann-Merx. "Solving linear generalized Nash equilibrium problems numerically." Optimization Methods and Software 31, no. 5 (April 14, 2016): 1036–63. http://dx.doi.org/10.1080/10556788.2016.1165676.
Повний текст джерелаYANG, ZHE. "Existence of solutions for a system of quasi-variational relation problems and some applications." Carpathian Journal of Mathematics 31, no. 1 (2015): 135–42. http://dx.doi.org/10.37193/cjm.2015.01.16.
Повний текст джерелаDreves, Axel. "An algorithm for equilibrium selection in generalized Nash equilibrium problems." Computational Optimization and Applications 73, no. 3 (March 7, 2019): 821–37. http://dx.doi.org/10.1007/s10589-019-00086-w.
Повний текст джерелаFischer, Andreas, Markus Herrich, and Klaus Schönefeld. "GENERALIZED NASH EQUILIBRIUM PROBLEMS - RECENT ADVANCES AND CHALLENGES." Pesquisa Operacional 34, no. 3 (December 2014): 521–58. http://dx.doi.org/10.1590/0101-7438.2014.034.03.0521.
Повний текст джерелаYuan, Yanhong, Hongwei Zhang, and Liwei Zhang. "A penalty method for generalized Nash equilibrium problems." Journal of Industrial & Management Optimization 8, no. 1 (2012): 51–65. http://dx.doi.org/10.3934/jimo.2012.8.51.
Повний текст джерелаДисертації з теми "Generalized Nash equilibrium problems"
Sudermann-Merx, Nathan Georg [Verfasser], and O. [Akademischer Betreuer] Stein. "Linear Generalized Nash Equilibrium Problems / Nathan Georg Sudermann-Merx. Betreuer: O. Stein." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1102250236/34.
Повний текст джерелаHeusinger, Anna von. "Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem." kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2010/4766/.
Повний текст джерелаDreves, Axel [Verfasser], and Christian [Akademischer Betreuer] Kanzow. "Globally Convergent Algorithms for the Solution of Generalized Nash Equilibrium Problems / Axel Dreves. Betreuer: Christian Kanzow." Würzburg : Universitätsbibliothek der Universität Würzburg, 2012. http://d-nb.info/1020570881/34.
Повний текст джерелаHarms, Nadja [Verfasser], and Christian [Gutachter] Kanzow. "Primal and Dual Gap Functions for Generalized Nash Equilibrium Problems and Quasi-Variational Inequalities / Nadja Harms. Gutachter: Christian Kanzow." Würzburg : Universität Würzburg, 2014. http://d-nb.info/1102828769/34.
Повний текст джерелаBörgens, Eike Alexander Lars Guido [Verfasser], Christian [Gutachter] Kanzow, and Radu Ioan [Gutachter] Boţ. "ADMM-Type Methods for Optimization and Generalized Nash Equilibrium Problems in Hilbert Spaces / Eike Alexander Lars Guido Börgens ; Gutachter: Christian Kanzow, Radu Ioan Boţ." Würzburg : Universität Würzburg, 2020. http://d-nb.info/1223851370/34.
Повний текст джерелаRojas, Frank Navarro. "Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-27032018-114413/.
Повний текст джерелаThis thesis is a study about the generalized Nash equilibrium problem (GNEP). In the first part we will summarize the main concepts about GNEPs, the relationship with other known problems and we will briefly comment on the main methods already done in order to solve these problems numerically. In the second part we study optimality conditions and constraint qualification (CQ) for GNEPs making an analogy with the optimization case. We extend the concepts of the tangent, normal and generated by the active cones, linear and polar cone to the structure of the GNEPs. Each optimization CQ generates two types of CQs for GNEPs, with the one called CQ-GNEP being the strongest and most useful for analyzing the algorithms for GNEPs. We show that the qualification conditions for GNEPs of this type in some cases do not have the same relation as in optimization. We also extend the Approximate Karush- Kuhn-Tucker (AKKT) concept used in optimization for GNEPs to AKKT-GNEP. It is well known that AKKT is a genuine optimality condition in optimization but for GNEPs we show that this does not occur in general. On the other hand, AKKT-GNEP is satisfied, for example, in any solution of a jointly convex GNEP, provided that it is a b-variational equilibrium. With this in mind, we define Augmented Lagrangian methods for the GNEP, using the quadratic and the exponential penalties, and we study the optimality and feasibility properties of the sequence of points generated by the algorithms. Finally some criteria to solve the subproblems and numerical results are presented.
Herrich, Markus. "Local Convergence of Newton-type Methods for Nonsmooth Constrained Equations and Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159569.
Повний текст джерелаBatista, Edvaldo Elias de Almeida. "Generalized vector equilibrium problems and algorithms for variational inequality in hadamard manifolds." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6562.
Повний текст джерелаApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:11:03Z (GMT) No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-12-09T17:11:03Z (GMT). No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-10-20
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this thesis, we study variational inequalities and generalized vector equilibrium problems. In Chapter 1, several results and basic definitions of Riemannian geometry are listed; we present the concept of the monotone vector field in Hadamard manifolds and many of their properties, besides, we introduce the concept of enlargement of a monotone vector field, and we display its properties in a Riemannian context. In Chapter 2, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced, and its convergence properties are studied; see [7]. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained. In Chapter 3, we present an extragradient algorithm for variational inequality associated with the point-to-set vector field in Hadamard manifolds and study its convergence properties; see [8]. In order to present our method, the concept of enlargement of maximal monotone vector fields is used and its lower-semicontinuity is established to obtain the convergence of the method in this new context. In Chapter 4, we present a sufficient condition for the existence of a solution to the generalized vector equilibrium problem on Hadamard manifolds using a version of the KnasterKuratowski-Mazurkiewicz Lemma; see [6]. In particular, the existence of solutions to optimization, vector optimization, Nash equilibria, complementarity, and variational inequality is a special case of the existence result for the generalized vector equilibrium problem.
Nesta tese, estudamos desigualdades variacionais e o problema de equilíbrio vetorial generalizado. No Capítulo 1, vários resultados e definições elementares sobre geometria Riemanniana são enunciados; apresentamos o conceito de campo vetorial monótono e muitas de suas propriedades, além de introduzir o conceito de alargamento de um campo vetorial monótono e exibir suas propriedades em um contexto Riemanniano. No Capítulo 2, um método de ponto proximal inexato para desigualdades variacionais em variedades de Hadamard é introduzido e suas propriedades de convergência são estudadas; veja [7]. Para apresentar o nosso método, generalizamos o conceito de alargamento de operadores monótonos, do contexto linear ao contexto de Riemanniano. Como aplicação, é obtido um método de ponto proximal inexato para problemas de otimização com restrições. No Capítulo 3, apresentamos um algoritmo extragradiente para desigualdades variacionais associado a um campo vetorial ponto-conjunto em variedades de Hadamard e estudamos suas propriedades de convergência; veja [8]. A fim de apresentar nosso método, o conceito de alargamento de campos vetoriais monótonos é utilizado e sua semicontinuidade inferior é estabelecida, a fim de obter a convergência do método neste novo contexto. No Capítulo 4, apresentamos uma condição suficiente para a existência de soluções para o problema de equilíbrio vetorial generalizado em variedades de Hadamard usando uma versão do Lema Knaster-Kuratowski-Mazurkiewicz; veja [6]. Em particular, a existência de soluções para problemas de otimização, otimização vetorial, equilíbrio de Nash, complementaridade e desigualdades variacionais são casos especiais do resultado de existência do problema de equilíbrio vetorial generalizado.
Ye, Zhineng. "Solving Eight Treasures Of Game Theory Problems Using Bi-criteria Method." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1454062652.
Повний текст джерелаAbada, Ibrahim. "Modélisation des marchés du gaz naturel en Europe en concurrence oligopolistique : le modèle GaMMES et quelques applications." Thesis, Paris 10, 2012. http://www.theses.fr/2012PA100043/document.
Повний текст джерелаThis thesis studies the evolution of the natural gas markets in Europe, until 2035, using optimization theory tools. The model we develop, named GaMMES, is based on an oligopolistic description of the markets. Its main advantages are the following: we consider an important level of detail in the economic structure of the gas chain and we endogenously take into account long-term contracts in the upstream as well as energy substitution between gas, oil, and coal in the demand. In the first part of this thesis, we study the issue of security of supply in Europe and the conditions under which it is necessary to regulate the gas markets that are strongly dependent on foreign imports. Three case studies are then presented, regarding the level of dependence and the markets' specificities: the German gas trade of the 1980s and the current Spanish and Bulgarian markets. We study in particular the evolution of the markets' outcome as a function of the supply disruption probability and the kind of regulation to implement in order to maximize the social welfare. In the second part, we develop a system dynamics model in order to capture fuel substitution between oil, coal, and natural gas. Our approach allows one to calculate a new functional form of the demand function for natural gas that contains energy substitution and consumption inertia effects due to end-users' investments. In the third part, we take advantage of our demand function and use it in a partial equilibrium model of natural gas markets in Europe. The GaMMES model, when written as a complementarity problem, describes the principal gas chain actors as well as their strategic interactions and market power. It was applied to the northwestern European gas trade to analyze the evolution of consumption, spot and long-term contract prices and volumes, production, and natural gas dependence, until 2035. In the last part, we present a stochastic extension of the GaMMES model in order to study the impact of the strong Brent price fluctuation on the gas markets. An econometric analysis allowed us to calculate the probability law of the oil price, when taken as a random variable, in order to construct the scenario tree and estimate its weights. Our results show how uncertainty changes the strategic behavior, in particular for the long-term contracting activity. Finally, the value of the stochastic solution is calculated to quantify the importance of taking into account randomness in the optimization programs of the gas chain actors
Книги з теми "Generalized Nash equilibrium problems"
Aussel, Didier, and C. S. Lalitha, eds. Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4774-9.
Повний текст джерелаAussel, Didier, and C. S. Lalitha. Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC. Springer, 2018.
Знайти повний текст джерелаAussel, Didier, and C. S. Lalitha. Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC. Springer, 2018.
Знайти повний текст джерелаAussel, Didier, and C. S. Lalitha. Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC. Springer, 2018.
Знайти повний текст джерелаVanderschraaf, Peter. Dilemmas of Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199832194.003.0001.
Повний текст джерелаЧастини книг з теми "Generalized Nash equilibrium problems"
Aguiar e Oliveira Junior, Hime. "Generalized Nash Equilibrium Problems and Fuzzy ASA." In Studies in Systems, Decision and Control, 93–107. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26467-7_6.
Повний текст джерелаMajig, Mend-Amar, Rentsen Enkhbat, and Masao Fukushima. "Evolutionary Algorithm for Generalized Nash Equilibrium Problems." In Optimization, Simulation, and Control, 97–106. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5131-0_7.
Повний текст джерелаMigot, Tangi, and Monica-G. Cojocaru. "Revisiting Path-Following to Solve the Generalized Nash Equilibrium Problem." In Springer Proceedings in Mathematics & Statistics, 93–101. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63591-6_9.
Повний текст джерелаGahururu, Deborah, Michael Hintermüller, Steven-Marian Stengl, and Thomas M. Surowiec. "Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion." In International Series of Numerical Mathematics, 145–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_7.
Повний текст джерелаKonnov, Igor. "Application of the Decomposable Penalty Method to a Class of Generalized Nash Equilibrium Problems." In Trends in Mathematics, 149–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93616-7_8.
Повний текст джерелаDechboon, P., P. Kumam, and P. Chaipunya. "An Alternative Extragradient Method for a Vector Quasi-Equilibrium Problem to a Vector Generalized Nash Equilibrium Problem." In Studies in Systems, Decision and Control, 27–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98689-6_4.
Повний текст джерелаGrammatico, Sergio. "On Distributed Generalized Nash Equilibrium Seeking." In Analytics for the Sharing Economy: Mathematics, Engineering and Business Perspectives, 39–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35032-1_4.
Повний текст джерелаAnsari, Qamrul Hasan, Elisabeth Köbis, and Jen-Chih Yao. "Generalized Vector Equilibrium Problems." In Vector Optimization, 429–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63049-6_10.
Повний текст джерелаGwinner, Joachim, Baasansuren Jadamba, Akhtar A. Khan, and Fabio Raciti. "Uncertainty Quantification in Nash Equilibrium Problems." In Uncertainty Quantification in Variational Inequalities, 307–20. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781315228969-11.
Повний текст джерелаFacchinei, Francisco, and Jong-Shi Pang. "Exact penalty functions for generalized Nash problems." In Nonconvex Optimization and Its Applications, 115–26. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/0-387-30065-1_8.
Повний текст джерелаТези доповідей конференцій з теми "Generalized Nash equilibrium problems"
Yu, Chung-Kai, Mikaela van der Schaar, and Ali H. Sayed. "Adaptive learning for stochastic generalized Nash equilibrium problems." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472597.
Повний текст джерелаFranci, Barbara, and Sergio Grammatico. "Distributed projected–reflected–gradient algorithms for stochastic generalized Nash equilibrium problems." In 2021 European Control Conference (ECC). IEEE, 2021. http://dx.doi.org/10.23919/ecc54610.2021.9655217.
Повний текст джерелаLiu, Peini, Xinjun Mao, Fu Hou, and Shuai Zhang. "Generalized Nash Equilibrium Model of the Service Provisioning Problem in Multi-Cloud Competitions." In 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018. http://dx.doi.org/10.1109/smartworld.2018.00257.
Повний текст джерелаLu, Haishu. "A Generalized KKM Theorem and its Applications to Saddle Point and Nash Equilibrium Problem." In 2009 First International Workshop on Education Technology and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/etcs.2009.79.
Повний текст джерелаChan, Hau, and Albert Xin Jiang. "An FPTAS for Computing Nash Equilibrium in Resource Graph Games." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/21.
Повний текст джерелаKim, Jong Gwang. "Equilibrium Computation of Generalized Nash Games." In EC '21: The 22nd ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3465456.3467538.
Повний текст джерелаZhao, Yan, Tao Chen, Yangyang Liu, Zhenhua Deng, and Yang Hu. "Generalized Nash equilibrium seeking strategy for multi-cluster games." In 2021 40th Chinese Control Conference (CCC). IEEE, 2021. http://dx.doi.org/10.23919/ccc52363.2021.9550164.
Повний текст джерелаCai, Xin, Feng Xiao, and Bo Wei. "A distributed event-triggered generalized Nash equilibrium seeking algorithm." In 2021 40th Chinese Control Conference (CCC). IEEE, 2021. http://dx.doi.org/10.23919/ccc52363.2021.9549639.
Повний текст джерелаXu, Wenying, Shaofu Yang, Sergio Grammatico, and Wangli He. "An Event-Triggered Distributed Generalized Nash Equilibrium Seeking Algorithm." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683218.
Повний текст джерелаFabiani, Filippo, Barbara Franci, Simone Sagratella, Martin Schmidt, and Mathias Staudigl. "Proximal-like algorithms for equilibrium seeking in mixed-integer Nash equilibrium problems." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9993250.
Повний текст джерелаЗвіти організацій з теми "Generalized Nash equilibrium problems"
Perdigão, Rui A. P., and Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, November 2020. http://dx.doi.org/10.46337/201111.
Повний текст джерела