Дисертації з теми "Generalized Metric Spaces"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-23 дисертацій для дослідження на тему "Generalized Metric Spaces".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sarkis, Ralph. "Lifting Algebraic Reasoning to Generalized Metric Spaces." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0025.
Повний текст джерелаAlgebraic reasoning is ubiquitous in mathematics and computer science, and it has been generalized to many different settings. In 2016, Mardare, Panangaden, and Plotkin introduced quantitative algebras, that is, metric spaces equipped with operations that are nonexpansive relative to the metric. They proved counterparts to important results in universal algebra, and in particular they provided a sound and complete deduction system generalizing Birkhoff's equational logic by replacing equality with equality up to \varepsilon. This allowed them to give algebraic axiomatizations for several important metrics like the Hausdorff and Kantorovich distances.In this thesis, we make two modifications to Mardare et al.'s framework. First, we replace metrics with a more general notion that captures pseudometrics, partial orders, probabilistic metrics, and more. Second, we do not require the operations in a quantitative algebra to be nonexpansive. We provide a sound and complete deduction system, we construct free quantitative algebras, and we demonstrate the value of our generalization by proving that any monad on generalized metric spaces that lifts a monad on sets can be presented with a quantitative algebraic theory. We apply this last result to obtain an axiomatization for the \L ukaszyk--Karmowski distance
Miravet, Fortuño David. "GENERALIZED FUZZY METRIC SPACES DEFINED BY MEANS OF T-NORMS." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/124816.
Повний текст джерела[CAT] En 1965, L. Zadeh va introduir el concepte de conjunt fuzzy, establint una nova línia d'investigació, coneguda com matemàtica fuzzy. Des d'aquell moment, molts autors han investigat la construcció d'una definició consistent d'espai mètric fuzzy. En 1994, George i Veeramani van introduir i estudiar una noció d'espai mètric fuzzy, realitzant una modificació adequada del concepte donat per Kramosil i Michalek. Aquests conceptes han estat estudiats i desenvolupats en diversos sentits durant els últims 25 anys. Amb la intenció de contribuir a aquest desenvolupament de la teoria fuzzy, en aquesta tesi hem introduït i estudiat els següents continguts: 1. Hem introduït el concepte d'espai mètric extés M0, que és una extensió adequada d'una GV -mètrica fuzzy M on el paràmetre t pot prendre el valor 0. A més, hem estudiat conceptes relacionats amb la convergència i les successions de Cauchy en aquest context, així com teoremes sobre contractivitat i punt fixe. 2. Hem provat l'existència de successions contractives en el sentit de D. Mihet en un GV -espai mètric fuzzy que no són Cauchy. Conseqüentment, hem aportat i estudiat un concepte apropiat de successió estrictament contractiva i hem corregit el Lema 3.2 de [V. Gregori and J.J. Miñana, On fuzzy psi-contractive sequences and fixed point theorems, Fuzzy Sets and Systems 300 (2016), 93-101]. 3. Hem introduït i estudiat una noció de (GV -)espai mètric parcial fuzzy (X,P,*) sense cap tipus de condició addicional sobre la t-norma contínua *. A continuació, hem definit una topologia T_P sobre X deduïda de P i hem demostrat que (X, T_P) es un espai T0. 4. Hem relacionat el ja mencionat concepte de GV -espai mètric parcial fuzzy amb la noció de GV -espai quasi-mètric fuzzy definit per Gregori i Romaguera en [V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Applied General Topology 5 (2004), 129-136]. S'ha estudiat una dualitat entre ambdós espais, imitant les tècniques utilitzades per Matthews en [S.G.Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728 (1994), 183-197].
[EN] In 1965, L. Zadeh introduced the concept of fuzzy set, and thus established a new topic of research, known as fuzzy mathematics. Since then, several authors have been investigating the approach of a consistent fuzzy metric space theory. In 1994, George and Veeramani introduced and studied a concept of fuzzy metric space which was a proper modification of the concept given by Kramosil and Michalek. These notions have been studied and developed in several ways during the last 25 years. With the purpose of contributing to the development of the study of the fuzzy theory, in this thesis we have introduced and studied the following items: 1. We have introduced the concept of extended fuzzy metric M0 which is an appropriate extension of a GV -fuzzy metric M where the parameter t can take the value 0. Furthermore, we have studied convergence and Cauchyness concepts in this context, as well as contractivity and fixed point theorems. 2. We have proved the existence of contractive sequences in the sense of D. Mihet in a GV -fuzzy metric space which are not Cauchy. Then we have given and studied an appropriate concept of strictly contractive sequence and we have corrected Lemma 3.2 of [V. Gregori and J.J. Miñana, On fuzzy psi-contractive sequences and fixed point theorems, Fuzzy Sets and Systems 300 (2016), 93-101]. 3. We have introduced and studied a concept of (GV -)fuzzy partial metric space (X,P,*) without any extra conditions on the continuous t-norm *. Then we have defined a topology T_P on X deduced from P and we have proved that (X, T_P) is a T0 space. 4. We have related the aforementioned notion of GV -fuzzy partial metric space with the concept of GV -fuzzy quasi-metric space given by Gregori and Romaguera in [V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Applied General Topology 5 (2004), 129-136]. A duality is studied by mimicking the techniques used in [S.G.Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728 (1994), 183-197] by Matthews.
Miravet Fortuño, D. (2019). GENERALIZED FUZZY METRIC SPACES DEFINED BY MEANS OF T-NORMS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124816
TESIS
Tran, Anh Tuyet. "1p spaces." CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2238.
Повний текст джерелаStares, Ian S. "Extension of functions and generalised metric spaces." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386678.
Повний текст джерелаBabus, Octavian Vladut. "Generalised distributivity and the logic of metric spaces." Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/37701.
Повний текст джерелаShi, Xiaohui. "Graev Metrics and Isometry Groups of Polish Ultrametric Spaces." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc271898/.
Повний текст джерелаIvana, Štajner-Papuga. "Uopštena konvolucija." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2001. https://www.cris.uns.ac.rs/record.jsf?recordId=5987&source=NDLTD&language=en.
Повний текст джерелаIn this thesis the generalized convolution have been defined. This operation with functions has applications in different mathematical theo ries, for example in Probabilistic Metric Spaces, PDE, System and Control Theory, Fuzzy numbers. Some basic properties of this operation has been proved, as well as connection between generalized convolutions based on different classes of semirings. (5, U)-convolution has been defined, as well as convolution based on generalized pseudo-operations.
Jelena, Stojanov. "Anisotropic frameworks for dynamical systems and image processing." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2015. https://www.cris.uns.ac.rs/record.jsf?recordId=93698&source=NDLTD&language=en.
Повний текст джерелаPredmet istraživanja doktorske disertacije je uporedna analiza klasičnih i specifičnih geometrijskih radnih okruženja i njihovih anizotropnih proširenja; konstrukcija tri Finslerova radna okruženja različitog tipa koja su pogodna za analizu dinamičkog sistema populacije kanceroznih ćelija; razvoj teorije anizotropnog Beltramijevog radnog okruženja i formiranje jednačina evolutivnog toka za različite klase anizotropnih metrika, kao i mogućnost primene dobijenih teorijskih rezultata u digitalnoj obradi slika.
Popa-Fischer, Anca. "Generalized Kähler metrics on complex spaces and a supplement to a Theorem of Fornæss and Narasimhan." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960695028.
Повний текст джерелаAbbas, Mujahid. "Soft Set Theory: Generalizations, Fixed Point Theorems, and Applications." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/48470.
Повний текст джерелаAbbas, M. (2014). Soft Set Theory: Generalizations, Fixed Point Theorems, and Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48470
TESIS
Zhong, Ning. "Generalized metric spaces and products." 1990. http://catalog.hathitrust.org/api/volumes/oclc/23438508.html.
Повний текст джерелаJiang, Shouli. "The strict p-space problem and generalized metric spaces as images of metric spaces." 1988. http://catalog.hathitrust.org/api/volumes/oclc/18720098.html.
Повний текст джерелаTypescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 53-55).
Ying-hung, Lin, and 林盈宏. "SOME GENERALIZED FIXED POINT THEOREMS IN COMPLETE METRIC SPACES." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/65425785537769086829.
Повний текст джерела國立高雄師範大學
數學系
94
In this paper , we first establish some new fixed point theorems for multivalued maps. Using these theorems, we can prove generalized Kannan's type and generalized Chatterjea's type fixed point theorems for multivalued maps. The primitive Kannan's type and Chatterjea's type fixed point theorems for single-valued maps are special cases of our theorems.
彭錦嶽. "Generalized KKM Theorem on Hyperconvex Metric Spaces and Its Applications." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/99848893033899503558.
Повний текст джерела國立新竹教育大學
數學教育學系碩士班
95
In this paper, we use the property of hyperconvex metric space to establish an intersection property about a family of admissible sets. Applying this intersection property we get a generalized theorem, a matching theorem and a coincidence theorem. As the application, we use this generalized theorem to establish some existence theorems about variational inequalities and minimax inequalities.
Chen, Chao-Hung, and 陳昭宏. "Generalized 2-gKKM theorem in hyperconvex metric spaces and its applications." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/65279578083872604167.
Повний текст джерела國立新竹教育大學
應用數學系碩士班
95
In this paper, we prove a generalized 2-gKKM theorem in hyperconvex metric space. By using this theorem we get a matching theorem, a coincidence theorem, and some fixed point theorems under some assumptions. As applications, we use this generalized 2-gKKM theorem to establish some existence theorems about variational inequalities.
Chang, Ching-Hsiang, and 張景翔. "Generalized 2-KKM theorem in hyperconvex metric spaces and its applications." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/16322146095943764465.
Повний текст джерела國立新竹教育大學
人資處數學教育碩士班
95
In this paper, we first define 2-KKM mapping and generalized 2-KKM mapping. Then we apply the property of hyperconvex metric space to get a KKM theorem and a fixed point theorem without compact assumption. By using this KKM theorem we get some theorems about variational inequalities and minimax inequalities.
LIU, YUAN-LIANG, and 劉原良. "Some new convergence theorems for generalized nonlinear cyclic mappings in metric spaces." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/19917770447190661454.
Повний текст джерела國立高雄師範大學
數學系
105
Let A and B be nonempty subsets of a metric space (X,d) and T:A∪B → A∪B be a cyclic mapping. In this paper, we establish some new convergence theorems satisfying the following condition: (G) there exists an MT-funtion ϕ:[0,∞) → [0,1) such that d(Tx,Ty)≤ϕ(d(x,y))max{(1/4)[d(x,Ty)+2d(Tx,Ty)+d(y,Tx)], (1/8)[d(x,Ty)+3d(x,Tx)+3d(y,Ty)+d(y,Tx)]}+[1-ϕ(d(x,y))]dist(A,B) for all x∈A and y∈B.
Tsou, Chia-Fang, and 鄒佳芳. "Generalized Variational Inequality Theorems and Minimax Inequality Theorems on Hyperconvex Metric Spaces." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/35340995457508642124.
Повний текст джерела國立新竹教育大學
人資處數學教育碩士班
95
In this paper, we use the property of hyperconvex metric space to establish an intersection property about a family of admissible sets. Applying this intersection property we establish some generalized variational inequality theorems. We also establish some minimax inequality theorems concerning four real-valued mappings under some assumptions.
Sun, Wei-Yi, та 孫維毅. "Periodic Points and Fixed Points for the Weaker (Φ,ϕ)-Contractive Mappings in Complete Generalized Metric Spaces". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/24760494217308018228.
Повний текст джерела國立新竹教育大學
應用數學系碩士班
100
We introduce the notion of weaker (Φ,ϕ)-contractive mapping in completemetric spaces and prove the periodic points and fixed points for this type of contraction. Our results generalize or improve many recent fixed point theorems in the literature
Skovajsa, Břetislav. "Zobecněné obyčejné diferenciální rovnice v metrických prostorech." Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-340897.
Повний текст джерелаHu, Chung-Yao, and 胡忠堯. "Korovkin type approximation theorem in generalized metric space." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/d7brm4.
Повний текст джерела國立清華大學
應用數學系所
105
The paper is concerned with the result of the Korovkin type approximation theorem related to functions of single-valued and multi-valued. For the study of Korovkin type approximation theorem of single-valued functions, we discuss the uniform convergence in the space of functions define on the space of partial metric and metric-like. As for the Korovkin type approximation theorem of multi-valued functions, we discuss the uniform convergence in the space of functions from partial metric space to closed and bounded sets of real number and the functions from metric-like space to closed and bounded sets of real number.
Popa-Fischer, Anca [Verfasser]. "Generalized Kähler metrics on complex spaces and a supplement to a Theorem of Fornæss and Narasimhan / von Anca Popa-Fischer." 2000. http://d-nb.info/960695028/34.
Повний текст джерелаΧρυσικός, Ιωάννης. "Ομογενείς μετρικές Einstein σε γενικευμένες πολλαπλότητες σημαιών". Thesis, 2011. http://nemertes.lis.upatras.gr/jspui/handle/10889/4418.
Повний текст джерелаA Riemannian manifold (M, g) is called Einstein, if it has constant Ricci curvature. It is well known that if (M=G/K, g) is a compact homogeneous Riemannian manifold, then the G-invariant \tl{Einstein} metrics of unit volume, are the critical points of the scalar curvature function restricted to the space of all G-invariant metrics with volume 1. For a G-invariant Riemannian metric the Einstein equation reduces to a system of algebraic equations. The positive real solutions of this system are the $G$-invariant Einstein metrics on M. An important family of compact homogeneous spaces consists of the generalized flag manifolds. These are adjoint orbits of a compact semisimple Lie group. Flag manifolds of a compact connected semisimple Lie group exhaust all compact and simply connected homogeneous Kahler manifolds and are of the form G/C(S), where C(S) is the centralizer (in G) of a torus S in G. Such homogeneous spaces admit a finite number of G-invariant complex structures, and for any such complex structure there is a unique compatible G-invariant Kahler-Einstein metric. In this thesis we classify all flag manifolds M=G/K of a compact simple Lie group G, whose isotropy representation decomposes into 2 or 4, isotropy summands. For these spaces we solve the (homogeneous) Einstein equation, and we obtain the explicit form of new G-invariant Einstein metrics. For most cases we give the classification of homogeneous Einstein metrics. We also examine the isometric problem. For the construction of the Einstein equation on certain flag manifolds with four isotropy summands, we apply for first time the twistor fibration of a flag manifold over an isotropy irreducible symmetric space of compact type. This method is new and it can be used also for other flag manifolds. For flag manifolds with two isotropy summands, we use the restricted Hessian and we characterize the new Einstein metrics as local minimum points of the scalar curvature function restricted to the space of G-invariant Riemannian metrics of volume 1. We mention that the classification of flag manifolds with two isotropy summands gives us new examples of homogeneous spaces, for which the motion of a charged particle under the electromagnetic field, and the geodesics curves, are completely determined.