Статті в журналах з теми "Generalised Maxwell Model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Generalised Maxwell Model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Karner, Timi, Rok Belšak, and Janez Gotlih. "Using a Fully Fractional Generalised Maxwell Model for Describing the Time Dependent Sinusoidal Creep of a Dielectric Elastomer Actuator." Fractal and Fractional 6, no. 12 (December 4, 2022): 720. http://dx.doi.org/10.3390/fractalfract6120720.
Повний текст джерелаFabris, Júlio C. "Cosmological model from generalised Maxwell-Einstein system in higher dimensions." Physics Letters B 267, no. 1 (September 1991): 30–32. http://dx.doi.org/10.1016/0370-2693(91)90519-v.
Повний текст джерелаZhao, Yanqing, Yuanbao Ni, and Weiqiao Zeng. "A consistent approach for characterising asphalt concrete based on generalised Maxwell or Kelvin model." Road Materials and Pavement Design 15, no. 3 (February 26, 2014): 674–90. http://dx.doi.org/10.1080/14680629.2014.889030.
Повний текст джерелаLiu, Zizhen, and Lynne Bilston. "On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour." Biorheology: The Official Journal of the International Society of Biorheology 37, no. 3 (May 2000): 191–201. http://dx.doi.org/10.1177/0006355x2000037003002.
Повний текст джерелаLong, Le Dinh, Bahman Moradi, Omid Nikan, Zakieh Avazzadeh, and António M. Lopes. "Numerical Approximation of the Fractional Rayleigh–Stokes Problem Arising in a Generalised Maxwell Fluid." Fractal and Fractional 6, no. 7 (July 2, 2022): 377. http://dx.doi.org/10.3390/fractalfract6070377.
Повний текст джерелаYang, X. S. "Nonlinear viscoelastic compaction in sedimentary basins." Nonlinear Processes in Geophysics 7, no. 1/2 (June 30, 2000): 1–8. http://dx.doi.org/10.5194/npg-7-1-2000.
Повний текст джерелаSchiffmann, Kirsten Ingolf. "Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models." International Journal of Materials Research 97, no. 9 (September 1, 2006): 1199–211. http://dx.doi.org/10.1515/ijmr-2006-0189.
Повний текст джерелаNaveena Kumara, A., Shreyas Punacha, and Md Sabir Ali. "Lyapunov exponents and phase structure of Lifshitz and hyperscaling violating black holes." Journal of Cosmology and Astroparticle Physics 2024, no. 07 (July 1, 2024): 061. http://dx.doi.org/10.1088/1475-7516/2024/07/061.
Повний текст джерелаGerritzen, Johannes, Michael Müller-Pabel, Jonas Müller, Benjamin Gröger, Niklas Lorenz, Christian Hopmann, and Maik Gude. "Development of a High-Fidelity Framework to Describe the Process-Dependent Viscoelasticity of a Fast-Curing Epoxy Matrix Resin including Testing, Modelling, Calibration and Validation." Polymers 14, no. 17 (September 2, 2022): 3647. http://dx.doi.org/10.3390/polym14173647.
Повний текст джерелаParodi, Pietro, and Peter Watson. "PROPERTY GRAPHS – A STATISTICAL MODEL FOR FIRE AND EXPLOSION LOSSES BASED ON GRAPH THEORY." ASTIN Bulletin 49, no. 2 (March 27, 2019): 263–97. http://dx.doi.org/10.1017/asb.2019.4.
Повний текст джерелаCâmara, Gustavo, Rui Micaelo, Nuno Monteiro Azevedo, and Hugo Silva. "Incremental Viscoelastic Damage Contact Models for Asphalt Mixture Fracture Assessment." Infrastructures 9, no. 7 (July 22, 2024): 118. http://dx.doi.org/10.3390/infrastructures9070118.
Повний текст джерелаCastro-Palacio, Juan Carlos, J. M. Isidro, Esperanza Navarro-Pardo, Luisberis Velázquez-Abad, and Pedro Fernández-de-Córdoba. "Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times." Mathematics 9, no. 1 (December 31, 2020): 77. http://dx.doi.org/10.3390/math9010077.
Повний текст джерелаZHU, ChangSheng, HaiJun ZHANG, Qin YANG, and ZhiXian ZHONG. "Generalized maxwell velocity slip boundary model." SCIENTIA SINICA Physica, Mechanica & Astronomica 43, no. 5 (May 1, 2013): 662–69. http://dx.doi.org/10.1360/132011-827.
Повний текст джерелаHu, H. "On the Nonlinear Generalized Maxwell Fluid Model." Journal of Applied Mechanics 70, no. 2 (March 1, 2003): 309–10. http://dx.doi.org/10.1115/1.1544538.
Повний текст джерелаWang, Ping, Jin-Ling Liu, and Fang Wang. "The first solution for the helical flows of generalized Maxwell fluid with longitudinal time dependent shear stresses on the boundary." Thermal Science 26, no. 2 Part A (2022): 1113–21. http://dx.doi.org/10.2298/tsci2202113w.
Повний текст джерелаRehman, Aziz Ur, Fahd Jarad, Muhammad Bilal Riaz, and Zaheer Hussain Shah. "Generalized Mittag-Leffler Kernel Form Solutions of Free Convection Heat and Mass Transfer Flow of Maxwell Fluid with Newtonian Heating: Prabhakar Fractional Derivative Approach." Fractal and Fractional 6, no. 2 (February 10, 2022): 98. http://dx.doi.org/10.3390/fractalfract6020098.
Повний текст джерелаNguyen, ST, M.-H. Vu, MN Vu, and TN Nguyen. "Generalized Maxwell model for micro-cracked viscoelastic materials." International Journal of Damage Mechanics 26, no. 5 (October 7, 2015): 697–710. http://dx.doi.org/10.1177/1056789515608231.
Повний текст джерелаHess, Siegfried, Bastian Arlt, Sebastian eidenreich, Patrick Ilg, Chris Goddard, and Ortwin Hess. "Flow Properties Inferred from Generalized Maxwell Models." Zeitschrift für Naturforschung A 64, no. 1-2 (February 1, 2009): 81–95. http://dx.doi.org/10.1515/zna-2009-1-213.
Повний текст джерелаXiao, Rui, Hongguang Sun, and Wen Chen. "An equivalence between generalized Maxwell model and fractional Zener model." Mechanics of Materials 100 (September 2016): 148–53. http://dx.doi.org/10.1016/j.mechmat.2016.06.016.
Повний текст джерелаYenilmez, Bekir, Baris Caglar, and E. Murat Sozer. "Viscoelastic modeling of fiber preform compaction in vacuum infusion process." Journal of Composite Materials 51, no. 30 (March 27, 2017): 4189–203. http://dx.doi.org/10.1177/0021998317699983.
Повний текст джерелаZhang, Chao, Jinhao Qiu, Yuansheng Chen, and Hongli Ji. "Modeling hysteresis and creep behavior of macrofiber composite–based piezoelectric bimorph actuator." Journal of Intelligent Material Systems and Structures 24, no. 3 (September 21, 2012): 369–77. http://dx.doi.org/10.1177/1045389x12460337.
Повний текст джерелаCheng, Gang, Jean Claude Gelin, and Thierry Barrière. "Physical Modelling and Identification of Polymer Viscoelastic Behaviour above Glass Transition Temperature and Application to the Numerical Simulation of the Hot Embossing Process." Key Engineering Materials 554-557 (June 2013): 1763–76. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1763.
Повний текст джерелаGuemmadi, M., and A. Ouibrahim. "Generalized Maxwell Model as Viscoelastic Lubricant in Journal Bearing." Key Engineering Materials 478 (April 2011): 64–69. http://dx.doi.org/10.4028/www.scientific.net/kem.478.64.
Повний текст джерелаKapteijn, F., J. A. Moulijn, and R. Krishna. "The generalized Maxwell–Stefan model for diffusion in zeolites:." Chemical Engineering Science 55, no. 15 (August 2000): 2923–30. http://dx.doi.org/10.1016/s0009-2509(99)00564-3.
Повний текст джерелаCorr, D. T., M. J. Starr, R. Vanderby,, and T. M. Best. "A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials." Journal of Applied Mechanics 68, no. 5 (April 26, 2001): 787–90. http://dx.doi.org/10.1115/1.1388615.
Повний текст джерелаLuo, Dan, and Hong-Shan Chen. "A new generalized fractional Maxwell model of dielectric relaxation." Chinese Journal of Physics 55, no. 5 (October 2017): 1998–2004. http://dx.doi.org/10.1016/j.cjph.2017.08.020.
Повний текст джерелаPetera, Jerzy, Kamil Kaminski, and Monika Kotynia. "A generalized viscoelastic Maxwell model for semisolid thixotropic alloys." International Journal of Material Forming 3, S1 (April 2010): 775–78. http://dx.doi.org/10.1007/s12289-010-0885-y.
Повний текст джерелаOrekhov, A. A., L. N. Rabinskiy, and G. V. Fedotenkov. "Fundamental Solutions of the Equations of Classical and Generalized Heat Conduction Models." Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 165, no. 4 (February 18, 2024): 404–14. http://dx.doi.org/10.26907/2541-7746.2023.4.404-414.
Повний текст джерелаKryvko, Andriy, Claudia del C. Gutiérrez-Torres, José Alfredo Jiménez-Bernal, Orlando Susarrey-Huerta, Eduardo Reyes de Luna, and Didier Samayoa. "Fractal Continuum Maxwell Creep Model." Axioms 14, no. 1 (January 2, 2025): 33. https://doi.org/10.3390/axioms14010033.
Повний текст джерелаWang, Zhao Jing, Ling Luo, Yu Xi Jia, Jun Peng Gao, and Xiao Su Yi. "Predicting Polyurethane Shape Memory Behaviors in Stress-Controlled Situations Using a Viscoelastic Model." Key Engineering Materials 575-576 (September 2013): 101–6. http://dx.doi.org/10.4028/www.scientific.net/kem.575-576.101.
Повний текст джерелаBách, Phạm Tiến, Võ Đại Nhật, Nguyễn Việt Kỳ, and Lê Quân. "Maxwell model geotextile encased stone column in soft soil improvement." Science & Technology Development Journal - Engineering and Technology 4, no. 1 (April 9, 2021): first. http://dx.doi.org/10.32508/stdjet.v4i1.772.
Повний текст джерелаBANERJEE, N., and R. BANERJEE. "GENERALIZED HAMILTONIAN EMBEDDING OF THE PROCA MODEL." Modern Physics Letters A 11, no. 24 (August 10, 1996): 1919–27. http://dx.doi.org/10.1142/s0217732396001922.
Повний текст джерелаBrandt, F. T., J. Frenkel, and D. G. C. McKeon. "Dual symmetry in a generalized Maxwell theory." Modern Physics Letters A 31, no. 32 (October 5, 2016): 1650184. http://dx.doi.org/10.1142/s0217732316501844.
Повний текст джерелаKibaroğlu, Salih, Oktay Cebecioğlu, and Ahmet Saban. "Gauging the Maxwell Extended GLn,R and SLn+1,R Algebras." Symmetry 15, no. 2 (February 9, 2023): 464. http://dx.doi.org/10.3390/sym15020464.
Повний текст джерелаBasagiannis, Christos A., and Martin S. Williams. "Modified Generalized Maxwell Model for Hysteresis Behavior of Elastomeric Dampers." Journal of Engineering Mechanics 146, no. 8 (August 2020): 04020083. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001801.
Повний текст джерелаWang, Fan, Wang-Cheng Shen, Jin-Ling Liu, and Ping Wang. "The analytic solutions for the unsteady rotating flows of the generalized Maxwell fluid between coaxial cylinders." Thermal Science 24, no. 6 Part B (2020): 4041–48. http://dx.doi.org/10.2298/tsci2006041w.
Повний текст джерелаStropek, Zbigniew, Zbigniew Stropek, Krzysztof Golacki, and Krzysztof Golacki. "Stress Relaxation of Apples at Different Deformation Velocities and Temperatures." Transactions of the ASABE 62, no. 1 (2019): 115–21. http://dx.doi.org/10.13031/trans.12993.
Повний текст джерелаMontenegro, David, and B. M. Pimentel. "Planar generalized electrodynamics for one-loop amplitude in the Heisenberg picture." International Journal of Modern Physics A 36, no. 19 (July 5, 2021): 2150142. http://dx.doi.org/10.1142/s0217751x21501426.
Повний текст джерелаXue, Changfeng, and Junxiang Nie. "Exact Solutions of Rayleigh-Stokes Problem for Heated Generalized Maxwell Fluid in a Porous Half-Space." Mathematical Problems in Engineering 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/641431.
Повний текст джерелаAl-Bender, F., V. Lampaert, and J. Swevers. "The generalized Maxwell-slip model: a novel model for friction Simulation and compensation." IEEE Transactions on Automatic Control 50, no. 11 (November 2005): 1883–87. http://dx.doi.org/10.1109/tac.2005.858676.
Повний текст джерелаHu Jun, 胡军, 许凯乐 Xu Kaile, 马壮壮 Ma Zhuangzhuang, and 马强 Ma Qiang. "Simulation Analysis of Aspherical Lens Molding Based on Generalized Maxwell Model." Laser & Optoelectronics Progress 57, no. 9 (2020): 092201. http://dx.doi.org/10.3788/lop57.092201.
Повний текст джерелаNguyen, TuanDung, Jin Li, Lijie Sun, DanhQuang Tran, and Fuzhen Xuan. "Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model." Polymers 13, no. 13 (July 2, 2021): 2203. http://dx.doi.org/10.3390/polym13132203.
Повний текст джерелаKamenar, Ervin, and Saša Zelenika. "Issues in validation of pre-sliding friction models for ultra-high precision positioning." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 3 (February 14, 2018): 997–1006. http://dx.doi.org/10.1177/0954406218758797.
Повний текст джерелаIKEDA, Kohsuke, Ryo OMURA, Toshikatsu NOHARA, Kazunori KUGA, Ryoji OKABE, Satoshi ISHIKAWA, and Masaki FUJIKAWA. "Applicability of Generalized Maxwell Model to Creep Deformation Behavior of Thermoplastics." Proceedings of Mechanical Engineering Congress, Japan 2021 (2021): J122–18. http://dx.doi.org/10.1299/jsmemecj.2021.j122-18.
Повний текст джерелаNiekamp, R., E. Stein, and A. Idesman. "Finite elements in space and time for generalized viscoelastic maxwell model." Computational Mechanics 27, no. 1 (January 29, 2001): 49–60. http://dx.doi.org/10.1007/s004660000213.
Повний текст джерелаFrancis, Royce A., Srinivas Reddy Geedipally, Seth D. Guikema, Soma Sekhar Dhavala, Dominique Lord, and Sarah LaRocca. "Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model." Risk Analysis 32, no. 1 (July 30, 2011): 167–83. http://dx.doi.org/10.1111/j.1539-6924.2011.01659.x.
Повний текст джерелаLi, Chuangdi, Xuefeng Yang, Yuxiang Li, and Xinguang Ge. "Wind vibration responses of structure with generalized Maxwell model viscoelastic dampers." Structures 47 (January 2023): 425–33. http://dx.doi.org/10.1016/j.istruc.2022.10.127.
Повний текст джерелаCao, Limei, Cong Li, Botong Li, Xinhui Si, and Jing Zhu. "Electro-osmotic flow of generalized Maxwell fluids in triangular microchannels based on distributed order time fractional constitutive model." AIP Advances 13, no. 2 (February 1, 2023): 025146. http://dx.doi.org/10.1063/5.0138004.
Повний текст джерелаFrolova, A. A. "Numerical Comparison of the Generalized Maxwell and Cercignani–Lampis Models." Computational Mathematics and Mathematical Physics 60, no. 12 (December 2020): 2094–107. http://dx.doi.org/10.1134/s0965542520120040.
Повний текст джерелаJalocha, D., A. Constantinescu, and R. Neviere. "Revisiting the identification of generalized Maxwell models from experimental results." International Journal of Solids and Structures 67-68 (August 2015): 169–81. http://dx.doi.org/10.1016/j.ijsolstr.2015.04.018.
Повний текст джерела