Дисертації з теми "Gene selection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Gene selection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Petronella, Nicholas. "Gene Conversions and Selection in the Gene Families of Primates." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20538.
Повний текст джерелаZid, Mouldi. "Gene Conversions in the Siglec and CEA Immunoglobulin Gene Families of Primates." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23625.
Повний текст джерелаLiu, Zhilin. "Gene expression profiling of bovine ovarian follicular selection." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4490.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pf file; the official abstract appears in the short.pf file (which also appears in the research.pf); a non-technical general description, or public abstract, appears in the public.pf file. Title from title screen of research.pf file (viewed on May 6, 2009) Vita. Includes bibliographical references.
Huisman, Jisca. "Gene Flow and Natural Selection in Atlantic Salmon." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16991.
Повний текст джерелаChen, Li. "Ranking-Based Methods for Gene Selection in Microarray Data." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3888.
Повний текст джерелаMedeiros, Lucas Paoliello de. "Coevolution in mutualistic networks: gene flow and selection mosaics." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/41/41134/tde-17102017-154829/.
Повний текст джерелаInterações ecológicas como predação, competição e mutualismo são importantes forças que influenciam a evolução de espécies. Chamamos de coevolução a mudança evolutiva recíproca em espécies que interagem. A Teoria do Mosaico Geográfico da Coevolução (TMGC) fornece um arcabouço teórico para entender como conjuntos de populações coevoluem ao longo do espaço. Dois aspectos fundamentais da TMGC são o fluxo gênico entre populações e a presença de mosaicos de seleção, isto é, conjuntos de locais com regimes de seleção particulares. Diversos estudos exploraram como o acoplamento entre fenótipos de diferentes espécies evolui em pares ou pequenos grupos de espécies. Entretanto, interações ecológicas frequentemente formam grandes redes que conectam dezenas de espécies presentes em uma comunidade. Em redes de mutualismos, por exemplo, a organização das interações pode influenciar processos ecológicos e evolutivos. Um próximo passo para a compreensão do processo coevolutivo consiste em investigar como aspectos da TMGC influenciam a evolução de espécies em redes de interações. Nesta dissertação, tentamos preencher esta lacuna usando um modelo matemático de coevolução, ferramentas de redes complexas e informação sobre redes mutualistas empíricas. Nossas simulações numéricas do modelo coevolutivo apontam para três principais conclusões. Primeiro, o fluxo gênico influencia os padrões fenotípicos gerados por coevolução e pode favorecer a emergência de acoplamento fenotípico entre espécies dependendo do mosaico de seleção. Segundo, a organização de redes mutualistas influencia a coevolução, mas este efeito pode desaparecer quando o fluxo gênico favorece acoplamento fenotípico. Mutualismos íntimos, como proteção de plantas hospedeiras por formigas, formam redes pequenas e compartimentalizadas que geram um maior acoplamento fenotípico do que as redes grandes e aninhadas típicas de mutualismos entre espécies de vida livre, como polinização. Por fim, a fragmentação de habitat, ao extinguir o fluxo gênico, pode reduzir as adaptações recíprocas entre espécies e ao mesmo tempo tornar cada espécie mais adaptada ao seu ambiente abiótico local. Em suma, mostramos que interações complexas entre fluxo gênico, estrutura geográfica da seleção e organização de redes ecológicas moldam a evolução de grandes grupos de espécies. Dessa forma, podemos traçar previsões sobre como impactos ambientais como a fragmentação de habitat irão alterar a evolução de interações ecológicas
Dai, Xiaotian. "Novel Statistical Models for Quantitative Shape-Gene Association Selection." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6856.
Повний текст джерелаPerucchini, Matteo. "The cervid PrP gene : patterns of variability and selection." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/15634.
Повний текст джерелаRiddoch, B. "Selection component analysis of the PGI polymorphism in Sphaeroma rugicauda." Thesis, University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378440.
Повний текст джерелаPanji, Sumir. "Identification of bacterial pathogenic gene classes subject to diversifying selection." Thesis, University of the Western Cape, 2009. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5842_1297942831.
Повний текст джерелаAvailability of genome sequences for numerous bacterial species comprising of different bacterial strains allows elucidation of species and strain specific adaptations that facilitate their survival in widely fluctuating micro-environments and enhance their pathogenic potential. Different bacterial species use different strategies in their pathogenesis and the pathogenic potential of a bacterial species is dependent on its genomic complement of virulence factors. A bacterial virulence factor, within the context of this study, is defined as any endogenous protein product encoded by a gene that aids in the adhesion, invasion, colonization, persistence and pathogenesis of a bacterium within a host. Anecdotal evidence suggests that bacterial virulence genes are undergoing diversifying evolution to counteract the rapid adaptability of its host&rsquo
s immune defences. Genome sequences of pathogenic bacterial species and strains provide unique opportunities to study the action of diversifying selection operating on different classes of bacterial genes.
Wood, S. Morwenna. "Oxygen sensing and gene expression : selection and analysis of mutant cells." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297427.
Повний текст джерелаNasiadka, Andrzej. "Gene-regulatory interactions and mechanisms of target gene selection of the Drosophila homeodomain protein Fushi tarazu." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63722.pdf.
Повний текст джерелаLiu, Yushi. "Properties of the SCOOP Method of Selecting Gene Sets." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1280163360.
Повний текст джерелаBerggren, Bremdal Karin. "Evolution of MHC Genes and MHC Gene Expression." Doctoral thesis, Uppsala universitet, Evolutionsbiologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122011.
Повний текст джерелаDong, Chunrong. "A housekeeping gene based procedure for the selection of differentially expressed genes for Affymetrix microarray experiments." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1278088559.
Повний текст джерелаFreudenberg, Johannes M. "Bayesian Infinite Mixture Models for Gene Clustering and Simultaneous Context Selection Using High-Throughput Gene Expression Data." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1258660232.
Повний текст джерелаMuttalib, Shahin. "The balance between selection and gene flow evaluated in threespine stickleback." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110425.
Повний текст джерелаLes populations naturelles sont généralement adaptées à leur environnement, et il existe une correspondance entre la morphologie et l'habitat ou les ressources. Pourtant, la maladaptation significative et elle aussi présente. Elle peut-être causé par flux génétique entre populations. Ce flux génétique, empêche la population d'atteindre leur optimum local, dû fait de l'introduction d'allèles adaptés aux conditions alternatives. Dans ma thèse, pour investiguer la maladaptation , j'utilise des populations d'épinoche à trois épines du système Misty, où la contrainte causée par le flux génétique est élevée. Pour séparer la causalité entre le flux génétique et la divergence adaptative, j'utilise la méthode de mesurer la sélection naturelle pour estimer la contrainte du flux génétique. L'épinoche à trois épines montre une divergence adaptative importante dans une variété de traits phénotypiques. Les paires lac-rivière de l'île de Vancouver illustrent bien l'équilibre entre la sélection et le flux génétique qu'il existe entre les populations des lacs et des rivières. En effectuant une expérience de capture marquage recapture individuelle sur deux ans, j'ai pu estimer la sélection naturelle sur la forme des poissons, en utilisant plusieurs mesures de sélection. J'ai estimé l'intensité totale de la sélection et ses effets sur des traits spécifiques, comme la profondeur du corps, qui montrent une divergence entre les deux sites. En utilisant des distances multivariées, j'ai estimé l'intensité de sélection multivariée et j'ai déterminé la direction de sélection en référence a la population du inlet. Mon hypothèse principale est que la sélection devrait être plus élevée dans le outlet du fait de son plus grande déviation du phénotype riverain typique. Les résultats indiquent une sélection variable sur la profondeur du corps, et sur la forme générale; ce qui suggère que le patron de sélection a une dynamique temporelle, changeant d'un modèle de sélection à un autre dans le temps. Les différents modèles de sélection ne s'appliqueront pas, si la causalité entre la divergence et le flux génétique est renversé dans les deux sites. Mes résultats indiquent que pour mieux répondre à la question du rôle du flux génétique dans l'adaptation, il est nécessaire de quantifier les conséquences pour les populations au niveau des traits et du fitness. Les travaux futurs intégreront aussi le rôle du dimorphisme sexuel en utilisant aussi une plus large gamme de traits et de composants de fitness.
Song, Youqiang. "Development of polymorphic molecular markers for bovine gene mapping and selection." Thesis, University of Reading, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262235.
Повний текст джерелаOsborne, Owen Gregory. "Genomic analyses of gene flow and selection during diversification in Senecio." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:ffe5fb97-f0d0-4f6f-aed0-8cbb3226c1e5.
Повний текст джерелаCanul, Reich Juana. "An Iterative Feature Perturbation Method for Gene Selection from Microarray Data." Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1588.
Повний текст джерелаAssareh, Amin. "OPTIMIZING DECISION TREE ENSEMBLES FOR GENE-GENE INTERACTION DETECTION." Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1353971575.
Повний текст джерелаLewis, Samuel Howard. "Evolution of Dipteran Argonaute genes through duplication, selection and functional specialisation." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/19569.
Повний текст джерелаXu, Yaomin. "New Clustering and Feature Selection Procedures with Applications to Gene Microarray Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1196144281.
Повний текст джерелаMakrinou, Eleni. "A cDNA selection approach to isolate Y-linked genes expressed in testis." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326172.
Повний текст джерелаVenegas-Ortiz, Juan. "Statistical mechanics of gene competition." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/9372.
Повний текст джерелаAkhimienmhonan, Douglas. "An economic analysis of gene marker assisted seedstock selection in beef cattle." Thesis, University of British Columbia, 2006. http://hdl.handle.net/2429/96.
Повний текст джерелаSteiger, Edgar [Verfasser]. "Efficient Sparse-Group Bayesian Feature Selection for Gene Network Reconstruction / Edgar Steiger." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1170876633/34.
Повний текст джерелаFernando, Himesh. "Selection of G-quadruplex specific proteins and their effects on gene expression." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598998.
Повний текст джерелаMcDonald, Kenneth W. "Gene Expression and Phenotype Response of Drosophila melanogaster to Selection." Digital Commons @ East Tennessee State University, 2008. https://dc.etsu.edu/etd/1967.
Повний текст джерелаCoop, Graham M. "The likelihood of gene trees under selective models." Thesis, University of Oxford, 2004. http://ora.ox.ac.uk/objects/uuid:ba97d36c-61c1-40c8-a1f4-e7ddc8918d5b.
Повний текст джерелаMcCluskey, Braedan. "Genome Evolution and Gene Expression Divergence in the Genus Danio." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20484.
Повний текст джерелаChen, Xiaohui. "Comparisons of statistical modeling for constructing gene regulatory networks." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/4068.
Повний текст джерелаYu, Guoqiang. "Machine Learning to Interrogate High-throughput Genomic Data: Theory and Applications." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/28980.
Повний текст джерелаPh. D.
Romano, Eduardo O. "Selection indices for combining marker genetic data and animal model information /." This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09192009-040546/.
Повний текст джерелаShu, Cindy Chia-Fan Biotechnology & Biomolecular Sciences Faculty of Science UNSW. "Selection and isolation of high producing mammalian clones." Awarded by:University of New South Wales, 2007. http://handle.unsw.edu.au/1959.4/37031.
Повний текст джерелаNordling, Torbjörn E. M. "Robust inference of gene regulatory networks : System properties, variable selection, subnetworks, and design of experiments." Doctoral thesis, KTH, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120830.
Повний текст джерелаDenna avhandling behandlar inferens av biologiskanätverk från in vivo data genererat genom störningsexperiment, d.v.s. bestämning av kausala kopplingar som existerar mellan de observerade variablerna. Kunskap om dessa regulatoriska influenser är väsentlig för biologisk förståelse. En system egenskap—förstärksvagning—introduceras. Denna förklarar varför variationen i existerande genexpressionsdata är koncentrerat till några få ”karakteristiska moder” eller ”egengener” och varför de modeller som konstruerats innan innehåller många falska positiva och falska negativa linkar. Ett system med förstärksvagning karakteriseras av starka kopplingar som möjliggör simultan FÖRSTÄRKning och förSVAGNING av olika signaler. Vi demonstrerar att störning av individuella tillståndsvariabler, t.ex. gener, typiskt leder till illakonditionerat data med både karakteristiska och svaga moder. De svaga moderna domineras typiskt av mätbrus p.g.a. dålig excitering och försvårar rekonstruktion av nätverket. Excitationsproblemet löses med iterativdesign av experiment där korrelerade störningar i multipla gener motverkar systemets inneboende försvagning av signaller. Följande störning bör designas så att det förväntade svaret praktiskt spänner ytterligare en dimension av tillståndsrummet. Den föreslagna designen demonstreras numeriskt för Snf1 signalleringsvägen i S. cerevisiae. Påverkan av ostörda och icke observerade latenta tillståndsvariabler, som existerar i varje verkligt biologiskt system, på konstruerade nätverk och planeringen av experiment för nätverksinferens analyseras. Existens av dessa tillståndsvariabler innebär att delnätverk med pseudo-direkta regulatoriska influenser, som kompenserar för miljöeffekter, generellt bestäms. I princip så kan antalet latenta tillstånd och alternativa vägar mellan noder i nätverket bestämmas, men deras identitet kan ej bestämmas om de inte direkt observeras eller störs. Nätverksinferens behandlas som ett variabel-/modelselektionsproblem och löses genom att undersöka alla modeller inom en vald klass som kan förklara datat på den önskade signifikansnivån, samt klassificera endast linkar som är närvarande i alla dessa modeller som existerande. Dessa linkar kan bestämmas utan estimering av parametrar genom att skriva om variabelselektionsproblemet som ett robustrangproblem. Lösning av rangproblemet möjliggör att statistisk konfidens kan tillskrivas individuella linkar utan approximationer eller asymptotiska betraktningar. Detta demonstreras genom rekonstruktion av det syntetiska IRMA genreglernätverket från publicerat data. En tidigare okänd aktivering av transkription av SWI5 av CBF1 i IRMA stammen av S. cerevisiae bevisas. Detta illustrerar att t.o.m. den ackumulerade kunskapen om välstuderade gener är ofullständig.
QC 20130508
Bueno, Maria Rita Spina. "Níveis de seleção: uma avaliação a partir da teoria do \"gene egoísta\"." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/8/8133/tde-03092009-145224/.
Повний текст джерелаThis Masters thesis studies the controversy over what is the biological level in which natural selection takes place. Emphasis is given to Richard Dawkins proposal of the selfish gene and to the issues that arise therefrom, which include many questions in the philosophy of biology. We hope that by assessing the impact that the theory of the selfish gene has had on the problems of evolution, one may understand its importance. The aim of this study is philosophical, raising questions and clarifying the terms of the debate, without taking side on one or another position. The first chapter presents the historical origins of the debate, starting with the original view of Charles Darwin that the individual is the entity that is effectively selected. We then set out to understand how new empirical problems, specifically the search for biological explanations for altruism, led to proposals of group selection. In the second chapter, we depict how the development of genetics allowed that a new level of selection be proposed: the gene. We analyze Dawkins exposition of the point of view of the selfish gene, especially in the two most important books on the subject: The selfish gene and The extended phenotype. The third chapter examines several philosophical approaches to the question what is a unit of selection?. Our study is consistent with the thesis that selective forces act simultaneously in different levels.
Zhang, Yiran. "Bayesian Variable Selection for High-Dimensional Data with an Ordinal Response." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1565283865507018.
Повний текст джерелаWagner, Brandie D. "Permutation based microarray gene selection methods with covarience adjustment applicable to complex diseases /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2007.
Знайти повний текст джерелаTypescript. Includes bibliographical references (leaves 57-60). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Fischer, Curt R. Ph D. Massachusetts Institute of Technology. "Selection and optimization of gene targets for the metabolic engineering of E. coli." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/51566.
Повний текст джерелаIncludes bibliographical references.
This thesis is about identifying genetic interventions that improve the performance of targeted pathways in the metabolism of the bacterium Escherichia coli. Three case studies illustrate three disparate approaches to identifying genetic interventions: (i) combining metabolomic measurements with thermodynamic calculations to identify rate-limiting reaction steps in a target pathway; (ii) use of stoichiometric, optimization-based models of metabolism to predict target genetic interventions in silico; and (iii) the mutagenesis of promoter sequences to fine-tune the expression level of rate-limiting genes. These techniques can be classified by both the number of strain modifications created, and the number of variables measured in each. Taken together, the cases suggest that the best methods for identifying genetic interventions balance the number of strain modifications with the number of measured variables. The first case is butyrate production in recombinant E. coli. A strain of E. coli deleted for the production of lactate, ethanol, and acetate was designed to minimize competing pathways for carbon, and was unexpectedly found to exhibit oxygen auxotrophy. Expression of genes from Clostridium acetobutylicum resulted in production of 3-hydroxybutyric acid, but not butyric acid.
(cont.) The clostridial genes ptb and buk were capable of producing S-3-hydroxybutyric acid from the butyrate pathway intermediate metabolite S-3-hydroxybutyryl-CoA. In parallel, the intracellular concentrations of pathway metabolites was measured for a set of strains expressing the clostridial butanol biosynthesis pathway in various configurations. Comparison of measured pool sizes and pool sizes for thermodynamic equilibrium pinpointed the butyryl-CoA dehydrogenase step, encoded by bcd, as a bottleneck enzyme. Thus, points for genetic intervention are ptb, buk, and bcd. The second case is tyrosine overproduction in E. coli. Constraints-based models of E. coli metabolism proved incapable of predicting gene knockout targets. Therefore, to understand factors underlying tyrosine overproduction, the intracellular concentrations of amino acids were measured. In tyrosine overproducers, the intracellular concentrations of most proteinogenic amino acids were vastly perturbed relative to non-producing strains. This fact and thermodynamic considerations suggested that the transamination of p-hydroxyphenylpyruvate to tyrosine was near equilibrium, and thus that nitrogen supply may be limiting tyrosine production. Culture media amended with glutamate or glutamine, but not with a-ketoglutarate or other organic acids, increased tyrosine production in these strains more than 8-fold, showing that interventions which affect nitrogen supply are attractive targets for engineering tyrosine overproduction in E. coli. The last case addresses the question of what types of intervention are best. A series of 22 promoters with well-characterized, variable strengths was created by mutagenesis. This library was used to replace promoters for key genes in the biosynthesis of lycopene or biomass from glucose. These metabolic phenotypes exhibited strain-dependent optima with respect to the expression levels of the key rate-controlling genes genes. Promoter engineering thus shows that subtle genetic interventions can have profound effects on pathway function.
by Curt R. Fischer.
Ph.D.
Bhukhai, Kanit. "Transduction and selection of hematopoietic stem cells for gene therapy of hemoglobin disorders." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC182.
Повний текст джерелаRecent clinical trials conducted in patients with hematopoietic congenital diseases have demonstrated the potential benefit of autologous hematopoietic stem cell (HSC) transplantation combined with gene transfer using integrative lentiviral vectors. However, the level of transduced HSCs was occasionally non optimal, resulting in partial correction of the diseases. In order to achieve high level HSC modification without increasing the concurrent risk of insertional mutagenesis and oncogene activation, we decided to develop methods aimed at selecting genetically modified stem cells rather than increasing their initial transduction rate. In order to demonstrate the feasibility of our approach, drug resistance genes encoding an antibiotic resistant protein or a dealkylating agent were introduced, together with a suicide gene, in a clinical 3-globin lentiviral vector specifically designed for patients with hemoglobin disorders. In vitro evaluation made with a vector encoding the dealkylating protein suggested that its expression was too low to provide full protection to the cells. Lnterestingly, we demonstrated that the puromycin resistant gene allowed optimal ex vivo selection of genetically modified puromycin treated human HSC, provided that P-gp transporter inhibitors were added to the cells. Once selected, transduced HSC survived and were able to reconstitute human hematopoiesis in immunodeficient animal. Furthermore, the vector was able to express the therapeutic [3- globin gene for correction of hemoglobin disorders and to produce the suicide protein in vivo, for elimination of transduced stem cells if necessary
Peng, Ho-Lan, and 彭郃嵐. "Gene Selection Methods." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/03200922452706313969.
Повний текст джерела國立交通大學
統計學研究所
96
It's a trend to use statistical methods in medical science. If the genes which cause the diseases could be found, it might be helpful to nowadays medical field. In this article, we proposed several methods to find the probable influential genes which are over- or down-expressed in some but not all samples in a disease group. Those methods include WORT (weight outlier robust t-statistic), WOS (weight outlier sum), PGM (the MLE of probability of Gaussian mixture model), TGM (T-statistic of Gaussian mixture model), QGM(Quantile of Gaussian mixture model), and Bayesian Rule P-value(BRP). Also we will compare those methods with four methods (t-statistic, OS, ORT, COPA) which have been proposed and published for detecting differentially expressed genes. Those new methods include improvements of ORT and OS methods, four methods related to Gaussian mixture model and Bayesian method.
Chang, Shu-Jing, and 張淑淨. "Nonlinear Gene Selection Method." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/8ugnmr.
Повний текст джерела國立交通大學
統計學研究所
92
Microarray data contains large number of p genes (usually several thousands) and small number of n patients (usually nearly 100 or less). The problem of identifying the features best discriminate among the classes to improve the ability of a classifier is known as feature selection. Some current feature selection methods and the problem of dealing with "large p, small n" are reviewed. The Support Vector Machines (SVMs) has proofed excellent performance in practice as a classification methodology. For linear classification problem, this paper studies the following two issues: (i) the number of one gene s surrogates somehow affects the importance of the gene; (ii) the case of overlapping classes. For nonlinear classification problem, we utilize two procedures: 1. mapping the original nonlinear separable data to the high dimension space, and then use SVM RFE with linear kernel to find crucial genes; 2. using SVM RFE with nonlinear kernel. Then we compare these two methods on nonlinear toy problem.
Tseng, Yen-Cheng, and 曾彥誠. "Improving Target Gene Selection in Microarray Data of Ovarian CancerImproving Target Gene Selection in Microarray Data of Ovarian CancerImproving Target Gene Selection in Microarray Data of Ovarian CancerImproving Target Gene Selection in Microarray." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/02746016456521864581.
Повний текст джерела華梵大學
資訊管理學系碩士班
97
The Cancers may be one of the nightmares of the humanity in advances into 22 century. Furthermore, the increase speed of cancer has surpassed the scope which the humanity can understand. Taking this into consideration, scientists have transformed passive role into the steer seeker in the domain of biomedicine. Because of precious pathology material and the mutually union project of Human Genome, it is possible to find the production reason of cancer cell and the rule in the humanity's huge gene labyrinth. Without definite reasons, the ovarian cancer is one of common gynecology cancers. In this paper, the computation intelligence with decision tree can effectively get the target genes. Due to obtained target genes, doctors can effectively use these pathology data to achieve the cancer effective prevention.
Lu, Yu-Lun, and 陸宇綸. "Gene Expression Normalization by GO based Housekeeping Gene Selection." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/xgd29k.
Повний текст джерела國立臺灣海洋大學
資訊工程學系
102
High throughput RNA-seq analysis provides a powerful tool for revealing relationships between gene expression level and biological function of proteins. To discover differentially expressed genes among various RNA-seq datasets obtained from different experimental designs, an appropriate normalization method for calibrating multiple experimental datasets is the first challenging problem. In this thesis, a novel normalization method to facilitate biologists in selecting a set of suitable housekeeping genes for inter-sample normalization is proposed. The approach is achieved by adopting user defined experimentally related keywords, gene ontology (GO) annotations, orthologous housekeeping genes, and stability of housekeeping genes at different time periods. By identifying the most distanced GO terms from query keywords and selecting housekeeping gene candidates with low coefficients of variation among different spatio-temporal datasets, the proposed method can automatically enumerate a set of functionally irrelevant housekeeping genes for practical normalization. By employing benchmark RNA-seq datasets to evaluate our developed system, the results showed that different selections of housekeeping gene set would lead to strong impact on differential gene expression analysis. The compared results have shown that our proposed method outperformed other traditional approaches in terms of both sensitivity and specificity. The proposed mechanism of selecting appropriate housekeeping genes for inter-dataset normalization is robust and accurate for differential expression analyses.
Chen, Yu-Chao, and 陳昱超. "Key Gene Selection in Microarray Using Sequential Forward Selection Strategy." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/7c578t.
Повний текст джерела國立臺中科技大學
流通管理系碩士班
101
High dimension of feature space、low instance amount、and only a limited number of key genes critical for bioinformation classification problems are three characteristics in the analysis of microarray. On one hand, the selection of discriminative genes is important. On the other hand, a collection of discriminative genes do not necessarily lead to good classification quality. This is because some attributes could likely possess the similar classification effects and in turn lead to the redundant classification results. In order to generate the subsets of genes with not only sufficient but also necessary discrimination power for bioinformation classification problems, a novel selection strategy which integrates fuzzy cluster analyses and information gain (IG) into the traditional sequential forward selection (SFS) algorithm is proposed in this paper. In terms of classification accuracy and discrimination power, the experimental results gained from six microarray datasets show that our strategy can efficiently select compact subsets of characterizing genes and these selected genes are suitable for various conventional classifiers.
Swartz, Michael D. "Stochastic search gene suggestion: Hierarchical Bayesian model selection meets gene mapping." Thesis, 2004. http://hdl.handle.net/1911/18711.
Повний текст джерелаWu, Kuo-yi, and 吳國翊. "GAGS : A Novel Microarray Gene Selection Algorithm for Gene Expression Classification." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/11487163557935590475.
Повний текст джерела國立中山大學
資訊工程學系研究所
98
In this thesis, we have proposed a novel microarray gene selection algorithm consisting of five processes for solving gene expression classification problem. A normalization process is first used to remove the differences among different scales of genes. Second, an efficient gene ranking process is proposed to filter out the unrelated genes. Then, the genetic algorithm is adopted to find the informative gene subsets for each class. For each class, these informative gene subsets are adopted to classify the testing dataset separately. Finally, the separated classification results are fused to one final classification result. In the first experiment, 4 microarray datasets are used to verify the performance of the proposed algorithm. The experiment is conducted using the leave-one-out-cross-validation (LOOCV) resampling method. We compared the proposed algorithm with twenty one existing methods. The proposed algorithm obtains three wins in four datasets, and the accuracies of three datasets all reach 100%. In the second experiment, 9 microarray datasets are used to verify the proposed algorithm. The experiment is conducted using 50% VS 50% resampling method. Our proposed algorithm obtains eight wins among nine datasets for all competing methods.
Ke, Chao-Hsuan, and 柯兆軒. "Two-Stage Gene Selection Algorithms for Classification of Gene Expression Data." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/85395768415812242759.
Повний текст джерела國立高雄應用科技大學
電子與資訊工程研究所碩士班
96
The microarray is a medical diagnostic tool with good efficiency, and it was used for analyzing the behavior characteristic between the gene and disease by the extensive one at present. Microarray data are characterized by a high dimension, which could be analyzed more than thousand of genes and diseases simultaneously. However, it will lead to need more computation time when it is implemented on classification. Many previous literatures showed the feature (gene) selection has some advantage, such as gene extraction which influences classification accuracy effectively, to eliminate the useless genes and improve the calculation performance and classification accuracy. The goal of this study is to select a small set of genes which are useful to the classification task. We proposed a two-stage method using several filter methods to proceed gene ranking and combined the evolutional algorithms on gene expression data to select an optimal gene subset. In this study, an improved particle swarm optimization which introduced a Boolean function was used to improve the disadvantage of standard binary particle swarm optimization as a new evolutional algorithm for gene selection, and both k-nearest neighbor and support vector machine classifiers were used to calculate the classification accuracy. The experimental results revealed that our proposed feature selection method is able to effectively select the relevant gene subset and achieve better classification accuracy than the previous studies.
Chao, Chia-Huang, and 趙嘉煌. "Feature Selection for Microarray Gene Expression Data." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/18135104235078213487.
Повний текст джерела國立臺灣科技大學
資訊工程系
92
Feature selection plays an extremely important role in many data mining tasks. In this thesis, we applied three feature selection approaches, weight score approach, the 1-norm SVM and IRSVM to microarray gene expression data classification on two well-known datasets, acute leukemia and colon cancer datasets. We introduced the correlation coefficient criterion to evaluate these three feature selection approaches. The weight score approach selects the significant features independently. As a result, the highly linear correlated features might be selected. While the 1-norm SVM and IRSVM select features under the classification mechanism and will exclude the highly linear correlated features. Besides, the 1-norm SVM and IRSVM selected fewer features than weight score did. We applied the SSVM to these resulting selected feature sets respectively and got a slightly better classification result on the case of 1-norm SVM and IRSVM. In another part of our experiments, we iteratively remove selected features from original datasets and re-perform feature selection and classification steps until the classification accuracy degrades drastically. We find that more than one feature subset can be used to construct SSVM classifiers with similar classification accuracy in each dataset for every feature selection approach scheme. This result indicates that there are several feature subsets can provide enough information for classification tasks in a microarray gene expression dataset.