Добірка наукової літератури з теми "GCAP1"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "GCAP1".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "GCAP1"

1

Ames, James B. "Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs)." International Journal of Molecular Sciences 22, no. 16 (August 13, 2021): 8731. http://dx.doi.org/10.3390/ijms22168731.

Повний текст джерела
Анотація:
Retinal guanylate cyclases (RetGCs) promote the Ca2+-dependent synthesis of cGMP that coordinates the recovery phase of visual phototransduction in retinal rods and cones. The Ca2+-sensitive activation of RetGCs is controlled by a family of photoreceptor Ca2+ binding proteins known as guanylate cyclase activator proteins (GCAPs). The Mg2+-bound/Ca2+-free GCAPs bind to RetGCs and activate cGMP synthesis (cyclase activity) at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, Ca2+-bound GCAPs bind to RetGCs and inactivate cyclase activity at high cytosolic Ca2+ levels found in dark-adapted photoreceptors. Mutations in both RetGCs and GCAPs that disrupt the Ca2+-dependent cyclase activity are genetically linked to various retinal diseases known as cone-rod dystrophies. In this review, I will provide an overview of the known atomic-level structures of various GCAP proteins to understand how protein dimerization and Ca2+-dependent conformational changes in GCAPs control the cyclase activity of RetGCs. This review will also summarize recent structural studies on a GCAP homolog from zebrafish (GCAP5) that binds to Fe2+ and may serve as a Fe2+ sensor in photoreceptors. The GCAP structures reveal an exposed hydrophobic surface that controls both GCAP1 dimerization and RetGC binding. This exposed site could be targeted by therapeutics designed to inhibit the GCAP1 disease mutants, which may serve to mitigate the onset of retinal cone-rod dystrophies.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vinberg, Frans, Teemu T. Turunen, Hanna Heikkinen, Marja Pitkänen, and Ari Koskelainen. "A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light." Journal of General Physiology 146, no. 4 (September 28, 2015): 307–21. http://dx.doi.org/10.1085/jgp.201511412.

Повний текст джерела
Анотація:
Sensory cells adjust their sensitivity to incoming signals, such as odor or light, in response to changes in background stimulation, thereby extending the range over which they operate. For instance, rod photoreceptors are extremely sensitive in darkness, so that they are able to detect individual photons, but remain responsive to visual stimuli under conditions of bright ambient light, which would be expected to saturate their response given the high gain of the rod transduction cascade in darkness. These photoreceptors regulate their sensitivity to light rapidly and reversibly in response to changes in ambient illumination, thereby avoiding saturation. Calcium ions (Ca2+) play a major role in mediating the rapid, subsecond adaptation to light, and the Ca2+-binding proteins GCAP1 and GCAP2 (or guanylyl cyclase–activating proteins [GCAPs]) have been identified as important mediators of the photoreceptor response to changes in intracellular Ca2+. However, mouse rods lacking both GCAP1 and GCAP2 (GCAP−/−) still show substantial light adaptation. Here, we determined the Ca2+ dependency of this residual light adaptation and, by combining pharmacological, genetic, and electrophysiological tools, showed that an unknown Ca2+-dependent mechanism contributes to light adaptation in GCAP−/− mouse rods. We found that mimicking the light-induced decrease in intracellular [Ca2+] accelerated recovery of the response to visual stimuli and caused a fourfold decrease of sensitivity in GCAP−/− rods. About half of this Ca2+-dependent regulation of sensitivity could be attributed to the recoverin-mediated pathway, whereas half of it was caused by the unknown mechanism. Furthermore, our data demonstrate that the feedback mechanisms regulating the sensitivity of mammalian rods on the second and subsecond time scales are all Ca2+ dependent and that, unlike salamander rods, Ca2+-independent background-induced acceleration of flash response kinetics is rather weak in mouse rods.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Avesani, Anna, Laura Bielefeld, Nicole Weisschuh, Valerio Marino, Pascale Mazzola, Katarina Stingl, Tobias B. Haack, Karl-Wilhelm Koch, and Daniele Dell’Orco. "Molecular Properties of Human Guanylate Cyclase-Activating Protein 3 (GCAP3) and Its Possible Association with Retinitis Pigmentosa." International Journal of Molecular Sciences 23, no. 6 (March 17, 2022): 3240. http://dx.doi.org/10.3390/ijms23063240.

Повний текст джерела
Анотація:
The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Peshenko, Igor V., Elena V. Olshevskaya, and Alexander M. Dizhoor. "GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone–rod dystrophy but not for stationary night blindness." Journal of Biological Chemistry 295, no. 52 (October 27, 2020): 18301–15. http://dx.doi.org/10.1074/jbc.ra120.015553.

Повний текст джерела
Анотація:
Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone–rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro. The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer—6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Howes, K. A. "GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice." EMBO Journal 21, no. 7 (April 1, 2002): 1545–54. http://dx.doi.org/10.1093/emboj/21.7.1545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gorczyca, Wojciech A., Marcin Kobiałka, Marianna Kuropatwa, and Ewa Kurowska. "Ca2+ differently affects hydrophobic properties of guanylyl cyclase-activating proteins (GCAPs) and recoverin." Acta Biochimica Polonica 50, no. 2 (June 30, 2003): 367–76. http://dx.doi.org/10.18388/abp.2003_3691.

Повний текст джерела
Анотація:
Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca(2+)-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca(2+). Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca(2+)-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca(2+)](free) (10 microM) than at low [Ca(2+)](free) (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca(2+)](free) in recoverin and at low [Ca(2+)](free) in GCAP2. Such different changes of hydrophobicity evoked by Ca(2+) appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dejda, Agnieszka, Izabela Matczak, and Wojciech A. Gorczyca. "p19 detected in the rat retina and pineal gland is a guanylyl cyclase-activating protein (GCAP)." Acta Biochimica Polonica 49, no. 4 (December 31, 2002): 899–905. http://dx.doi.org/10.18388/abp.2002_3749.

Повний текст джерела
Анотація:
The Ca(2+)-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 microM) concentrations of Ca(2+). At low Ca(2+), immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca(2+)-dependent electrophoretic mobility shift.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Imanishi, Yoshikazu, Lili Yang, Izabela Sokal, S?awomir Filipek, Krzysztof Palczewski, and Wolfgang Baehr. "Diversity of Guanylate Cyclase-Activating Proteins (GCAPs) in Teleost Fish: Characterization of Three Novel GCAPs (GCAP4, GCAP5, GCAP7) from Zebrafish (Danio rerio) and Prediction of Eight GCAPs (GCAP1-8) in Pufferfish (Fugu rubripes)." Journal of Molecular Evolution 59, no. 2 (August 2004): 204–17. http://dx.doi.org/10.1007/s00239-004-2614-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pennesi, M. E., K. A. Howes, W. Baehr, and S. M. Wu. "Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice." Proceedings of the National Academy of Sciences 100, no. 11 (May 5, 2003): 6783–88. http://dx.doi.org/10.1073/pnas.1130102100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Payne, Annette M., Susan M. Downes, David A. R. Bessant, Catherine Plant, Tony Moore, Alan C. Bird, and Shomi S. Bhattacharya. "Genetic analysis of the guanylate cyclase activator 1B (GUCA1B) gene in patients with autosomal dominant retinal dystrophies: Table 1." Journal of Medical Genetics 36, no. 9 (September 1, 1999): 691–93. http://dx.doi.org/10.1136/jmg.36.9.691.

Повний текст джерела
Анотація:
The guanylate cyclase activator proteins (GCAP1 and GCAP2) are calcium binding proteins which by activating Ret-GC1 play a key role in the recovery phase of phototransduction. Recently a mutation in theGUCA1A gene (coding for GCAP1) mapping to the 6p21.1 region was described as causing cone dystrophy in a British family. In addition mutations in Ret-GC1have been shown to cause Leber congenital amaurosis and cone-rod dystrophy. To determine whether GCAP2 is involved in dominant retinal degenerative diseases, the GCAP2 gene was screened in 400 unrelated subjects with autosomal dominant central and peripheral retinal dystrophies.A number of changes involving the intronic as well as the coding sequence were observed. In exon 1 a T to C nucleotide change was observed leaving the tyrosine residue 57 unchanged. In exon 3 a 1 bp intronic insertion, a single nucleotide substitution G to A in the intron 3′ of this exon, and a GAG to GAT change at codon 155 were observed. This latter change results in a conservative change of glutamic acid to aspartic acid. In exon 4 a 7 bp intronic insertion, a single nucleotide A to G substitution in the intron 5′ of this exon, and a single base pair change C to G in the intron 3′ of exon 4 were seen. None of these changes would be expected to affect correct splicing of this gene. All these changes were observed in controls. The results of this study do not show any evidence so far that GCAP2 is involved in the pathogenesis of autosomal dominant retinal degeneration in this group of patients. All the changes detected were found to be sequence variations or polymorphisms and not disease causing.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "GCAP1"

1

Prévèreau, Audrey-Anne. "Liaison membranaire et étude spectroscopique de la GCAP1." Master's thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25622.

Повний текст джерела
Анотація:
Les protéines activatrices de la guanylate cyclase (GCAPs) font partie de la famille des neuroprotéines sensibles au Ca²⁺ (NCS) et celle des protéines à EF-Hand. Il a été proposé que le mécanisme de Ca²⁺-myristoyl switch avait lieu chez toutes les protéines de la famille des NCS. Les travaux présentés dans ce mémoire permettent de déterminer si ce mécanisme est observé chez la GCAP1. En effet, des travaux de liaison membranaire à des monocouches de Langmuir effectués avec la GCAP1 ont permis d’observer ce mécanisme. De plus, l’utilisation d’un analogue du myristoyle, le 13-oxa-myristoyle, a aussi permis d’observer un Ca²⁺-myristoyl switch chez la GCAP1. Effectivement, des mesures en résonance magnétique nucléaire (RMN) ont démontré que la présence de cet analogue favorise l’extrusion du myristoyle. Finalement, différentes analyses par RMN ont été effectuées afin de déterminer si cette méthode pourrait permettre de déterminer la structure de la forme active de la GCAP1.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weiß, Christian [Verfasser]. "Functional analysis of the ubiquitously conserved protein GCP1 from Escherichia coli / Christian Weiß." Konstanz : Bibliothek der Universität Konstanz, 2009. http://d-nb.info/1017326452/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schröder, Thomas [Verfasser], Hauke [Akademischer Betreuer] Lilie, Daniel [Akademischer Betreuer] Huster, and Karl-Wilhelm [Akademischer Betreuer] Koch. "Konformationsänderung des Guanylatzyklase-aktivierenden Proteins 2 (GCAP-2) zur Aktivierung der Sehstäbchenaußensegment-Guanylatzyklase (ROS-GC1) / Thomas Schröder. Betreuer: Hauke Lilie ; Daniel Huster ; Karl-Wilhelm Koch." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2011. http://d-nb.info/102513513X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Venkatesan, Jagadeesh Kumar [Verfasser]. "Molecular and functional characterization of Ribeye-GCAP2 interaction in the photoreceptor ribbon synapse / Jagadeesh Kumar Venkatesan." 2010. http://d-nb.info/1011158906/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mati, Jacob Mwathi. "Global civil society advocacy alliances and networks in the changing terrain of global governance and development : a critical inquiry into the politics and dynamics in crafting and operations of the Global Action against Poverty (GCAP)." Thesis, 2009. http://hdl.handle.net/10539/6102.

Повний текст джерела
Анотація:
The last few decades have witnessed the emergence of global civil society advocacy networks as major players in global governance. This research aimed at using a case study of GCAP in critically analysing the politics and dynamics of crafting a global civil society advocacy alliance. Specifically, the study aimed to: a) identify, analyse, and document GCAP’s experiences, strategies and challenges in trans-national networking and advocacy; b) generate knowledge on recent developments in global civil society networking and advocacy. The study analyses the study phenomenon using two central features of GCAP: networking and advocacy. Chapter one attempts to give a background of the study and also discusses the methods used. Chapter two lays the theoretical framework and operationalises the concepts explored in the study. The report argues that alliances are very different from ‘normal’ forms of organisations because they are made up of diverse forms of organisations, coming together voluntarily to achieve a specific purpose. They are therefore, by their very nature, complex, unstable, and difficult to co-ordinate. Chapters Three and Four look at such intricacies and complexities of crafting and operations of global advocacy networks. I conclude this research arguing that despite challenges in alliances building and operations, global civil society organisations will still need to network if they are to remain relevant and effective in current global governance context. It is only in their unity that they will be able to confront their common challenges.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "GCAP1"

1

J, Foose Thomas, and IUCN/SSC Captive Breeding Specialist Group., eds. Rhino global captive action plan (GCAP): 1 September 1992. [S.l.]: IUCN/SSC Captive Breeding Specialist Group, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "GCAP1"

1

Jiang, Li, and Wolfgang Baehr. "GCAP1 Mutations Associated with Autosomal Dominant Cone Dystrophy." In Retinal Degenerative Diseases, 273–82. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1399-9_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hunt, David M., Susan E. Wilkie, Richard Newbold, Evelyne Deery, Martin J. Warren, Shomi S. Bhattacharya, and Kang Zhang. "Dominant Cone and Cone-Rod Dystrophies: Functional Analysis of Mutations in RetGC1 and GCAP1." In Novartis Foundation Symposia, 37–50. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/0470092645.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anil Sethi, Anjula Garg, Jan Sacharko, Regina List, Jesse O. Bollinger, Lisiunia Romanienko, Allyson Reaves, David B. Howard, et al. "GCAP." In International Encyclopedia of Civil Society, 751. New York, NY: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-93996-4_9115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baehr, Wolfgang, Iswari Subbaraya, Wojciech A. Gorczyca, and Krzysztof Palczewski. "Guanylate Cyclase-Activating Protein (GCAP)." In Degenerative Diseases of the Retina, 339–47. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1897-6_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koch, Karl-Wilhelm. "GCAP (Guanylate Cyclase–Activating Protein)." In Encyclopedia of Signaling Molecules, 2041–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koch, Karl-Wilhelm. "GCAP (Guanylate Cyclase–Activating Protein)." In Encyclopedia of Signaling Molecules, 1–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_12-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meigs, Thomas E., Alex Lyakhovich, Hoon Shim, Ching-Kang Chen, Denis J. Dupré, Terence E. Hébert, Joe B. Blumer, et al. "GCAP (Guanylate Cyclase–Activating Protein)." In Encyclopedia of Signaling Molecules, 769–73. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gorczyca, Wojciech A., and Izabela Sokal. "GCAPs: Ca2+-Sensitive Regulators of retGC." In Advances in Experimental Medicine and Biology, 319–32. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0121-3_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anil Sethi, Anjula Garg, Jan Sacharko, Regina List, Jesse O. Bollinger, Lisiunia Romanienko, Allyson Reaves, David B. Howard, et al. "Global Call to Action Against Poverty (GCAP)." In International Encyclopedia of Civil Society, 769–70. New York, NY: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-93996-4_759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Diaz, Michel, Roberto Canonico, Luis Costa, Serge Fdida, David Hutchison, Laurent Mathy, Andreas Meissner, Stephane Owezarski, Rolland Vida, and Lars Wolf. "GCAP: A New Multimedia Multicast Architecture for QoS." In Protocols for Multimedia Systems, 103–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45481-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "GCAP1"

1

Zhu, Xiaobo. "Computer Simulation on Global Atmospheric Transport of Mercury by GEOS-Chem/GCAP." In 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/msam-18.2018.21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ungemach, Pierre, Miklos Antics, Davide Di Tommaso, and Filippo Casali. "Real Time Geosteering Integrated Services. A Key Issue in Maximizing Geothermal Exposure and Minimizing Drilling and Completion Risks. A Paris Basin Case Study." In SPE/IADC International Drilling Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/204012-ms.

Повний текст джерела
Анотація:
Abstract Geothermal District Heating (GDH) doublets in the Central part of the Paris Basin, particularly in the Capital City suburban areas, face two major concerns: The replacement of aging and declining, when not damaged, well infrastructures and productive/injective capacities; GDH doublets density, approaching overpopulation in some areas, which limits well replacement opportunities and clouds new development issues bearing in mind the space limitations in urban areas and the thermal breakthrough/reservoir cooling shortcomings. The Paris suburban Cachan site was considered a relevant candidate for a first implementation of an alternative well architecture design. In March 2018, the second sub-horizontal geothermal injection well, GCAH2, was successfully tested at the Paris suburban Cachan site, thus validating this innovative sub-horizontal well (SHW) architecture, initiated on the previously drilled production well, GCAH1, recorded as a world first with 1000 m 8-1/2 in. open hole horizontal drain. The sub-horizontal drain sections of the wells were drilled using the geosteering technique in place of the usual geometric pre-planned trajectory. Geosteering was successfully used for optimal well placement of the geothermal injection/production doublet. The real-time data was correlated to reservoir model to design and implement a reliable well trajectory and to increase reservoir exposure. Alongside LWD (logging while drilling), advanced near real-time cuttings analysis utilizing elemental and mineralogical measurements and custom software was used to improve decision making while drilling. The integration of chemo-stratigraphy, mud logging, wireline, logging while drilling and production test results improved the correlation between wells, supporting the building of a proper geological model and reservoir characterization.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії