Добірка наукової літератури з теми "Gated Recurrent Units (GRUs)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gated Recurrent Units (GRUs)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Gated Recurrent Units (GRUs)"
Dangovski, Rumen, Li Jing, Preslav Nakov, Mićo Tatalović, and Marin Soljačić. "Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications." Transactions of the Association for Computational Linguistics 7 (November 2019): 121–38. http://dx.doi.org/10.1162/tacl_a_00258.
Повний текст джерелаKhadka, Shauharda, Jen Jen Chung, and Kagan Tumer. "Neuroevolution of a Modular Memory-Augmented Neural Network for Deep Memory Problems." Evolutionary Computation 27, no. 4 (December 2019): 639–64. http://dx.doi.org/10.1162/evco_a_00239.
Повний текст джерелаAkpudo, Ugochukwu Ejike, and Jang-Wook Hur. "A CEEMDAN-Assisted Deep Learning Model for the RUL Estimation of Solenoid Pumps." Electronics 10, no. 17 (August 25, 2021): 2054. http://dx.doi.org/10.3390/electronics10172054.
Повний текст джерелаShen, Wenjuan, and Xiaoling Li. "Facial expression recognition based on bidirectional gated recurrent units within deep residual network." International Journal of Intelligent Computing and Cybernetics 13, no. 4 (October 12, 2020): 527–43. http://dx.doi.org/10.1108/ijicc-07-2020-0088.
Повний текст джерелаDing, Chen, Zhouyi Zheng, Sirui Zheng, Xuke Wang, Xiaoyan Xie, Dushi Wen, Lei Zhang, and Yanning Zhang. "Accurate Air-Quality Prediction Using Genetic-Optimized Gated-Recurrent-Unit Architecture." Information 13, no. 5 (April 26, 2022): 223. http://dx.doi.org/10.3390/info13050223.
Повний текст джерелаDing, Chen, Zhouyi Zheng, Sirui Zheng, Xuke Wang, Xiaoyan Xie, Dushi Wen, Lei Zhang, and Yanning Zhang. "Accurate Air-Quality Prediction Using Genetic-Optimized Gated-Recurrent-Unit Architecture." Information 13, no. 5 (April 26, 2022): 223. http://dx.doi.org/10.3390/info13050223.
Повний текст джерелаArunKumar, K. E., Dinesh V. Kalaga, Ch Mohan Sai Kumar, Masahiro Kawaji, and Timothy M. Brenza. "Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells." Chaos, Solitons & Fractals 146 (May 2021): 110861. http://dx.doi.org/10.1016/j.chaos.2021.110861.
Повний текст джерелаOliveira, Pedro, Bruno Fernandes, Cesar Analide, and Paulo Novais. "Forecasting Energy Consumption of Wastewater Treatment Plants with a Transfer Learning Approach for Sustainable Cities." Electronics 10, no. 10 (May 12, 2021): 1149. http://dx.doi.org/10.3390/electronics10101149.
Повний текст джерелаFang, Weiguang, Yu Guo, Wenhe Liao, Shaohua Huang, Nengjun Yang, and Jinshan Liu. "A Parallel Gated Recurrent Units (P-GRUs) network for the shifting lateness bottleneck prediction in make-to-order production system." Computers & Industrial Engineering 140 (February 2020): 106246. http://dx.doi.org/10.1016/j.cie.2019.106246.
Повний текст джерелаFang, Qiang, and Xavier Maldague. "A Method of Defect Depth Estimation for Simulated Infrared Thermography Data with Deep Learning." Applied Sciences 10, no. 19 (September 29, 2020): 6819. http://dx.doi.org/10.3390/app10196819.
Повний текст джерелаДисертації з теми "Gated Recurrent Units (GRUs)"
Sarika, Pawan Kumar. "Comparing LSTM and GRU for Multiclass Sentiment Analysis of Movie Reviews." Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20213.
Повний текст джерелаPutchala, Manoj Kumar. "Deep Learning Approach for Intrusion Detection System (IDS) in the Internet of Things (IoT) Network using Gated Recurrent Neural Networks (GRU)." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1503680452498351.
Повний текст джерелаJavid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Повний текст джерелаThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Hagner, Johan. "Recurrent Neural Networks for End-to-End Speech Recognition : A comparison of gated units in an acoustic model." Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-153234.
Повний текст джерелаGattoni, Giacomo. "Improving the reliability of recurrent neural networks while dealing with bad data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Знайти повний текст джерелаTalevi, Luca, and Luca Talevi. "“Decodifica di intenzioni di movimento dalla corteccia parietale posteriore di macaco attraverso il paradigma Deep Learning”." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17846/.
Повний текст джерелаTsakalos, Vasileios. "Sentiment classification using tree‐based gated recurrent units." Master's thesis, 2018. http://hdl.handle.net/10362/33869.
Повний текст джерелаNatural Language Processing is one of the most challenging fields of Artificial Intelligence. The past 10 years, this field has witnessed a fascinating progress due to Deep Learning. Despite that, we haven’t achieved to build an architecture of models that can understand natural language as humans do. Many architectures have been proposed, each of them having its own strengths and weaknesses. In this report, we will cover the tree based architectures and in particular we will propose a different tree based architecture that is very similar to the Tree-Based LSTM, proposed by Tai(2015). In this work, we aim to make a critical comparison between the proposed architecture -Tree-Based GRU- with Tree-based LSTM for sentiment classification tasks, both binary and fine-grained.
Частини книг з теми "Gated Recurrent Units (GRUs)"
Salem, Fathi M. "Gated RNN: The Gated Recurrent Unit (GRU) RNN." In Recurrent Neural Networks, 85–100. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89929-5_5.
Повний текст джерелаPawlicki, Marek, Adam Marchewka, Michał Choraś, and Rafał Kozik. "Gated Recurrent Units for Intrusion Detection." In Image Processing and Communications, 142–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31254-1_18.
Повний текст джерелаNayak, Jagadish, Yatharth Kher, and Sarthak Sethi. "Image Captioning Using Gated Recurrent Units." In Algorithms for Intelligent Systems, 331–40. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5243-4_30.
Повний текст джерелаBardhan, Sayanti, Sukhendu Das, and Shibu Jacob. "Visual Saliency Detection via Convolutional Gated Recurrent Units." In Neural Information Processing, 162–74. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36711-4_15.
Повний текст джерелаKuta, Marcin, Mikołaj Morawiec, and Jacek Kitowski. "Sentiment Analysis with Tree-Structured Gated Recurrent Units." In Text, Speech, and Dialogue, 74–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64206-2_9.
Повний текст джерелаHuang, Bo, Hualong Huang, and Hongtao Lu. "Convolutional Gated Recurrent Units Fusion for Video Action Recognition." In Neural Information Processing, 114–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70090-8_12.
Повний текст джерелаLiu, Yong, Hongchang He, Xiaofei Wang, Yu Wang, and Runxing Chen. "Hyperspectral Image Classification Based on Bidirectional Gated Recurrent Units." In Lecture Notes in Electrical Engineering, 1505–10. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9409-6_180.
Повний текст джерелаFlores, Anibal, Hugo Tito-Chura, and Victor Yana-Mamani. "Wind Speed Time Series Imputation with a Bidirectional Gated Recurrent Unit (GRU) Model." In Lecture Notes in Networks and Systems, 445–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89880-9_34.
Повний текст джерелаManavi, Mahdi, and Yunpeng Zhang. "A New Intrusion Detection System Based on Gated Recurrent Unit (GRU) and Genetic Algorithm." In Security, Privacy, and Anonymity in Computation, Communication, and Storage, 368–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24907-6_28.
Повний текст джерелаMusto, Luigi, Francesco Valenti, Andrea Zinelli, Fabio Pizzati, and Pietro Cerri. "Convolutional Gated Recurrent Units for Obstacle Segmentation in Bird-Eye-View." In Computer Aided Systems Theory – EUROCAST 2019, 87–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45096-0_11.
Повний текст джерелаТези доповідей конференцій з теми "Gated Recurrent Units (GRUs)"
Zhang, Chengkun, and Junbin Gao. "Hype-HAN: Hyperbolic Hierarchical Attention Network for Semantic Embedding." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/552.
Повний текст джерелаChandrasekaran, Kavin, Luke Buquicchio, Walter Gerych, Emmanuel Agu, and Elke Rundensteiner. "Get Up!: Assessing Postural Activity & Transitions using Bi-Directional Gated Recurrent Units (Bi-GRUs) on Smartphone Motion Data." In 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT). IEEE, 2019. http://dx.doi.org/10.1109/hi-poct45284.2019.8962729.
Повний текст джерелаOtman, Maarouf, El Ayachi Rachid, and Biniz Mohamed. "Amazigh Part Of Speech Tagging using Gated recurrent units (GRU)." In 2021 7th International Conference on Optimization and Applications (ICOA). IEEE, 2021. http://dx.doi.org/10.1109/icoa51614.2021.9442662.
Повний текст джерелаZHU, QINGXIN, HAO WANG, JIANXIAO MAO, SUOTING HU, ZHAOHUA GONG, and XINXIN ZHAO. "TEMPERATURE-INDUCED STRAIN PREDICTION FOR THE LONG-SPAN STEEL TRUSS ARCH RAILWAY BRIDGE USING THE GRU." In 3rd International Workshop on Structural Health Monitoring for Railway System (IWSHM-RS 2021). Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/iwshm-rs2021/36019.
Повний текст джерелаLi, Zhe, Peisong Wang, Hanqing Lu, and Jian Cheng. "Reading selectively via Binary Input Gated Recurrent Unit." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/705.
Повний текст джерелаSong, Z., and L. Florez-Perez. "End-to-end GRU model for construction crew management." In The 29th EG-ICE International Workshop on Intelligent Computing in Engineering. EG-ICE, 2022. http://dx.doi.org/10.7146/aul.455.c210.
Повний текст джерелаMa, HaoJie, Wenzhong Li, Xiao Zhang, Songcheng Gao, and Sanglu Lu. "AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity Recognition." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/431.
Повний текст джерелаDey, Rahul, and Fathi M. Salem. "Gate-variants of Gated Recurrent Unit (GRU) neural networks." In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2017. http://dx.doi.org/10.1109/mwscas.2017.8053243.
Повний текст джерелаSousa, Luiz Felipe, Adam Dreyton Ferreira Santos, and João Weyl Albuquerque Costa. "Imputação de dados ausentes através de redes neurais recorrentes no monitoramento de integridade estrutural." In Congresso Brasileiro de Inteligência Computacional. SBIC, 2021. http://dx.doi.org/10.21528/cbic2021-137.
Повний текст джерелаBiazon, Victor, and Reinaldo Bianchi. "Gated Recurrent Unit Networks and Discrete Wavelet Transforms Applied to Forecasting and Trading in the Stock Market." In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/eniac.2020.12167.
Повний текст джерела