Добірка наукової літератури з теми "Gas stopping cell"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gas stopping cell".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Gas stopping cell"
Droese, C., S. Eliseev, K. Blaum, M. Block, F. Herfurth, M. Laatiaoui, F. Lautenschläger, et al. "The cryogenic gas stopping cell of SHIPTRAP." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 338 (November 2014): 126–38. http://dx.doi.org/10.1016/j.nimb.2014.08.004.
Повний текст джерелаWense, L. v. d., B. Seiferle, M. Laatiaoui, and P. G. Thirolf. "The extraction of 229Th3+ from a buffer-gas stopping cell." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 376 (June 2016): 260–64. http://dx.doi.org/10.1016/j.nimb.2015.12.049.
Повний текст джерелаSytema, A., J. E. van den Berg, O. Böll, D. Chernowitz, E. A. Dijck, J. O. Grasdijk, S. Hoekstra, et al. "A gas cell for stopping, storing and polarizing radioactive particles." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 822 (June 2016): 77–81. http://dx.doi.org/10.1016/j.nima.2016.03.086.
Повний текст джерелаKaleja, O., B. Anđelić, K. Blaum, M. Block, P. Chhetri, C. Droese, Ch E. Düllmann, et al. "The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 463 (January 2020): 280–85. http://dx.doi.org/10.1016/j.nimb.2019.05.009.
Повний текст джерелаEliseev, S. A., M. Block, A. Chaudhuri, Z. Di, D. Habs, F. Herfurth, H. J. Kluge, et al. "Extraction efficiency and extraction time of the SHIPTRAP gas-filled stopping cell." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, no. 2 (May 2007): 479–84. http://dx.doi.org/10.1016/j.nimb.2007.01.291.
Повний текст джерелаRanjan, M., S. Purushothaman, T. Dickel, H. Geissel, W. R. Plass, D. Schäfer, C. Scheidenberger, J. Van de Walle, H. Weick, and P. Dendooven. "New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation." EPL (Europhysics Letters) 96, no. 5 (November 25, 2011): 52001. http://dx.doi.org/10.1209/0295-5075/96/52001.
Повний текст джерелаHuyse, Mark, Marius Facina, Yuri Kudryavtsev, Piet Van Duppen, and ISOLDE collaboration. "Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 187, no. 4 (April 2002): 535–47. http://dx.doi.org/10.1016/s0168-583x(01)01152-1.
Повний текст джерелаMatsuda, Yoshiyuki, Takahiro Shimizu, and Daichi Imamura. "Effect of Formic Acid on Fuel Cell Performance for Automobile Applications." ECS Transactions 114, no. 5 (September 27, 2024): 389–99. http://dx.doi.org/10.1149/11405.0389ecst.
Повний текст джерелаMatsuda, Yoshiyuki, Takahiro Shimizu, and Daichi Imamura. "Effect of Formic Acid on Fuel Cell Performance for Automobile Applications." ECS Transactions 114, no. 5 (September 27, 2024): 403–13. http://dx.doi.org/10.1149/11405.0403ecst.
Повний текст джерелаPellegriti, Maria Grazia, Agatino Musumarra, Enrico De Filippo, Marzio De Napoli, Alessia Di Pietro, Pierpaolo Figuera, Maria Fisichella, et al. "Thick-target inverse kinematic method in order to investigate alpha-clustering in212Po." EPJ Web of Conferences 223 (2019): 01049. http://dx.doi.org/10.1051/epjconf/201922301049.
Повний текст джерелаДисертації з теми "Gas stopping cell"
Reiter, Moritz Pascal [Verfasser]. "Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell / Moritz Pascal Reiter." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/1080475966/34.
Повний текст джерелаDong, Wenling. "Developments for the laser spectroscopy of exotic nuclei with the S³ Low Energy Branch and the FRIENDS³ project." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP149.
Повний текст джерелаThis thesis presents a series of developments aimed to perform resonance-ionization laser spectroscopy on short-lived isotopes produced by the Super Separator Spectrometer (S³) of SPIRAL2 at GANIL and stopped in the gas cell of its Low Energy Branch (S³-LEB). This research focuses on two topics. Firstly, off-line laser spectroscopy measurements were performed on stable isotopes of erbium, the element of choice for the on-line commissioning of S³-LEB. These measurements were performed using the full S³-LEB setup along with the range of available Ti:sa laser systems, representing a proof of principle of the entire apparatus. To identify the optimal scheme for the forthcoming on-line experiments, different atomic transitions were studied by laser spectroscopy in the gas cell and in the gas jet. Isotope shifts were determined for the excitation and ionization steps. Field and mass-shift factors for the excitation steps were extracted from the isotope-shift data using King-plot analysis, and the associated experimental uncertainties in the two factors were discussed. Saturation-power measurements were carried out and the pressure broadening and shift coefficients were determined in the gas-cell environment. Additionally, hyperfine coefficients for the first excited state of the 408.8 nm transition were extracted from the high-resolution gas-jet spectroscopy with a spectral resolution of around 200 MHz. The 408.8 nm transition of erbium is proposed as a suitable candidate for day-one experiments at S³. Secondly, simulations were performed to develop a future generation of the S³-LEB gas cell optimized for the study of short-lived isotopes, featuring a reduced extraction time and using a universal neutralization mechanism. In this gas cell, fast ion extraction is achieved through a combination of electrical field and gas flow. Simulations were performed with the state-of-the-art software for capturing the multiphysics aspect, including the gas flow, the electrostatic field, the ion transport in high pressure and the dynamics of electrons generated by the ionization of the gas. Based on these simulations, an optimized gas-cell prototype has been designed, taking into account the extraction time, the efficiency, as well as the time available for neutralization
Тези доповідей конференцій з теми "Gas stopping cell"
Omeke, J., S. Misra, and A. Retnanto. "Fusing Data-Driven Insights with Physics for Underground Hydrogen Storage." In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/222710-ms.
Повний текст джерела