Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: GAN Generative Adversarial Network.

Дисертації з теми "GAN Generative Adversarial Network"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "GAN Generative Adversarial Network".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Aftab, Nadeem. "Disocclusion Inpainting using Generative Adversarial Networks." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-40502.

Повний текст джерела
Анотація:
The old methods used for images inpainting of the Depth Image Based Rendering (DIBR) process are inefficient in producing high-quality virtual views from captured data. From the viewpoint of the original image, the generated data’s structure seems less distorted in the virtual view obtained by translation but when then the virtual view involves rotation, gaps and missing spaces become visible in the DIBR generated data. The typical approaches for filling the disocclusion tend to be slow, inefficient, and inaccurate. In this project, a modern technique Generative Adversarial Network (GAN) is us
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yamazaki, Hiroyuki Vincent. "On Depth and Complexity of Generative Adversarial Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217293.

Повний текст джерела
Анотація:
Although generative adversarial networks (GANs) have achieved state-of-the-art results in generating realistic look- ing images, they are often parameterized by neural net- works with relatively few learnable weights compared to those that are used for discriminative tasks. We argue that this is suboptimal in a generative setting where data is of- ten entangled in high dimensional space and models are ex- pected to benefit from high expressive power. Additionally, in a generative setting, a model often needs to extrapo- late missing information from low dimensional latent space when generating
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eisenbeiser, Logan Ryan. "Latent Walking Techniques for Conditioning GAN-Generated Music." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100052.

Повний текст джерела
Анотація:
Artificial music generation is a rapidly developing field focused on the complex task of creating neural networks that can produce realistic-sounding music. Generating music is very difficult; components like long and short term structure present time complexity, which can be difficult for neural networks to capture. Additionally, the acoustics of musical features like harmonies and chords, as well as timbre and instrumentation require complex representations for a network to accurately generate them. Various techniques for both music representation and network architecture have been used in t
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oskarsson, Joel. "Probabilistic Regression using Conditional Generative Adversarial Networks." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166637.

Повний текст джерела
Анотація:
Regression is a central problem in statistics and machine learning with applications everywhere in science and technology. In probabilistic regression the relationship between a set of features and a real-valued target variable is modelled as a conditional probability distribution. There are cases where this distribution is very complex and not properly captured by simple approximations, such as assuming a normal distribution. This thesis investigates how conditional Generative Adversarial Networks (GANs) can be used to properly capture more complex conditional distributions. GANs have seen gr
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rinnarv, Jonathan. "GANChat : A Generative Adversarial Network approach for chat bot learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278143.

Повний текст джерела
Анотація:
Recently a new method for training generative neural networks called Generative Adversarial Networks (GAN) has shown great results in the computer vision domain and shown potential in other generative machine learning tasks as well. GAN training is an adversarial training method where two neural networks compete and attempt to outperform each other, and in the process they both learn. In this thesis the effectiveness of GAN training is tested on conversational agents also called chat bots. To test this, current state-of-the-art training methods such as Maximum Likelihood Estimation (MLE) model
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ljung, Mikael. "Synthetic Data Generation for the Financial Industry Using Generative Adversarial Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301307.

Повний текст джерела
Анотація:
Following the introduction of new laws and regulations to ensure data protection in GDPR and PIPEDA, interests in technologies to protect data privacy have increased. A promising research trajectory in this area is found in Generative Adversarial Networks (GAN), an architecture trained to produce data that reflects the statistical properties of its underlying dataset without compromising the integrity of the data subjects. Despite the technology’s young age, prior research has made significant progress in the generation process of so-called synthetic data, and the current models can generate i
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sargent, Garrett Craig. "A Conditional Generative Adversarial Network Demosaicing Strategy for Division of Focal Plane Polarimeters." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1606050550958383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zou, Xiaozhou. "Improve the Convergence Speed and Stability of Generative Adversarial Networks." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1309.

Повний текст джерела
Анотація:
In this thesis, we address two major problems in Generative Adversarial Networks (GAN), an important sub-field in deep learning. The first problem that we address is the instability in the training process that happens in many real-world problems and the second problem that we address is the lack of a good evaluation metric for the performance of GAN algorithms. To understand and address the first problem, three approaches are developed. Namely, we introduce randomness to the training process; we investigate various normalization methods; most importantly we develop a better parameter initiali
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Waldow, Walter E. "An Adversarial Framework for Deep 3D Target Template Generation." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1597334881614898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Birgersson, Anna, and Klara Hellgren. "Texture Enhancement in 3D Maps using Generative Adversarial Networks." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162446.

Повний текст джерела
Анотація:
In this thesis we investigate the use of GANs for texture enhancement. To achievethis, we have studied if synthetic satellite images generated by GANs will improvethe texture in satellite-based 3D maps. We investigate two GANs; SRGAN and pix2pix. SRGAN increases the pixelresolution of the satellite images by generating upsampled images from low resolutionimages. As for pip2pix, the GAN performs image-to-image translation bytranslating a source image to a target image, without changing the pixel resolution. We trained the GANs in two different approaches, named SAT-to-AER andSAT-to-AER-3D, wher
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Karlsson, Anton, and Torbjörn Sjöberg. "Synthesis of Tabular Financial Data using Generative Adversarial Networks." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273633.

Повний текст джерела
Анотація:
Digitalization has led to tons of available customer data and possibilities for data-driven innovation. However, the data needs to be handled carefully to protect the privacy of the customers. Generative Adversarial Networks (GANs) are a promising recent development in generative modeling. They can be used to create synthetic data which facilitate analysis while ensuring that customer privacy is maintained. Prior research on GANs has shown impressive results on image data. In this thesis, we investigate the viability of using GANs within the financial industry. We investigate two state-of-the-
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Evholt, David, and Oscar Larsson. "Generative Adversarial Networks and Natural Language Processing for Macroeconomic Forecasting." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273422.

Повний текст джерела
Анотація:
Macroeconomic forecasting is a classic problem, today most often modeled using time series analysis. Few attempts have been made using machine learning methods, and even fewer incorporating unconventional data, such as that from social media. In this thesis, a Generative Adversarial Network (GAN) is used to predict U.S. unemployment, beating the ARIMA benchmark on all horizons. Furthermore, attempts at using Twitter data and the Natural Language Processing (NLP) model DistilBERT are performed. While these attempts do not beat the benchmark, they do show promising results with predictive power.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Jonsson, Jacob. "Cooperative versus Adversarial Learning: Generating Political Text." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241440.

Повний текст джерела
Анотація:
This thesis aims to evaluate the current state of the art for unconditional text generation and compare established models with novel approaches in the task of generating texts, after being trained on texts written by political parties from the Swedish Riksdag. First, the progression of language modeling from n-gram models and statistical models to neural network models is presented. This is followed by theoretical arguments for the development of adversarial training methods,where a generator neural network tries to fool a discriminator network, trained to distinguish between real and generat
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gustafsson, Fredrik. "Unsupervised Image Enhancement Using Generative Adversarial Networks : An attempt at real-time video enhancement." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446698.

Повний текст джерела
Анотація:
As the world has become more connected meetings have moved online. However, since few have access to studio lighting and uses the embedded webcam the video quality can be far from good. Hence, there is an interest in using a software solution to enhance the video quality in real time. This thesis investigates the feasibility to train a machine learning model to automatically enhance the quality of images. The model must learn without using paired images, since it is difficult to capture images with the exact same content but different quality. Furthermore, the model has to process at least 30
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Berglöf, Olle, and Adam Jacobs. "Effects of Transfer Learning on Data Augmentation with Generative Adversarial Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259485.

Повний текст джерела
Анотація:
Data augmentation is a technique that acquires more training data by augmenting available samples, where the training data is used to fit model parameters. Data augmentation is utilized due to a shortage of training data in certain domains and to reduce overfitting. Augmenting a training dataset for image classification with a Generative Adversarial Network (GAN) has been shown to increase classification accuracy. This report investigates if transfer learning within a GAN can further increase classification accuracy when utilizing the augmented training dataset. The method section describes a
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Adhikari, Aakriti. "Skin Cancer Detection using Generative Adversarial Networkand an Ensemble of deep Convolutional Neural Networks." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1574383625473665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Bak, Adam. "Simulace projevu kožního onemocnění s využitím GAN." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445569.

Повний текст джерела
Анотація:
Cieľom tejto diplomovej práce je vygenerovanie datasetu syntetických snímkov odtlačkov prstov, ktoré vykazujú známky kožných ochorení. Práca sa zaoberá poškodením spôsobeným kožnými ochoreniami v odtlačkoch prstov a generovaním syntetických odtlačkov prstov. Odtlačky prstov s prejavom kožných ochorení boli generované s využitím modelu založeného na Wasserstein GAN s penalizáciou gradientu. Na trénovanie GAN modelu bola použitá unikátna databáza odtlačkov prstov s prejavom kožných ochorení vytvorená na FIT VUT. Daný model bol trénovaný na troch typoch kožných ochorení: atopický ekzém, psoriáza
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Albertazzi, Riccardo. "A study on the application of generative adversarial networks to industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Знайти повний текст джерела
Анотація:
High performance and nearly perfect accuracy are the standards required by OCR algorithms for industrial applications. In the last years research on Deep Learning has proven that Convolutional Neural Networks (CNNs) are a very powerful and robust tool for image analysis and classification; when applied to OCR tasks, CNNs are able to perform much better than previously adopted techniques and reach easily 99% accuracy. However, Deep Learning models' effectiveness relies on the quality of the data used to train them; this can become a problem since OCR tools can run for months without interrupti
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gehlin, Nils, and Martin Antonsson. "Detecting Non-Natural Objects in a Natural Environment using Generative Adversarial Networks with Stereo Data." Thesis, Linköpings universitet, Datorseende, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166619.

Повний текст джерела
Анотація:
This thesis investigates the use of Generative Adversarial Networks (GANs) for detecting images containing non-natural objects in natural environments and if the introduction of stereo data can improve the performance. The state-of-the-art GAN-based anomaly detection method presented by A. Berget al. in [5] (BergGAN) was the base of this thesis. By modifiying BergGAN to not only accept three channel input, but also four and six channel input, it was possible to investigate the effect of introducing stereo data in the method. The input to the four channel network was an RGB image and its corres
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Marriott, Richard. "Data-augmentation with synthetic identities for robust facial recognition." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEC048.

Повний текст джерела
Анотація:
En 2014, l'utilisation des réseaux neuronaux profonds (RNP) a révolutionné la reconnaissance faciale (RF). Les RNP sont capables d'apprendre à extraire des images des représentations basées sur des caractéristiques qui sont discriminantes et robustes aux détails non pertinents. On peut dire que l'un des facteurs les plus importants qui limitent aujourd'hui les performances des algorithmes de RF sont les données utilisées pour les entraîner. Les ensembles de données d'images de haute qualité qui sont représentatives des conditions de test du monde réel peuvent être difficiles à collecter. Une s
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Käll, Viktor, and Erik Piscator. "Particle Filter Bridge Interpolation in GANs." Thesis, KTH, Matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301733.

Повний текст джерела
Анотація:
Generative adversarial networks (GANs), a type of generative modeling framework, has received much attention in the past few years since they were discovered for their capacity to recover complex high-dimensional data distributions. These provide a compressed representation of the data where all but the essential features of a sample is extracted, subsequently inducing a similarity measure on the space of data. This similarity measure gives rise to the possibility of interpolating in the data which has been done successfully in the past. Herein we propose a new stochastic interpolation method
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Šagát, Martin. "Návrh generativní kompetitivní neuronové sítě pro generování umělých EKG záznamů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413114.

Повний текст джерела
Анотація:
The work deals with the generation of ECG signals using generative adversarial networks (GAN). It examines in detail the basics of artificial neural networks and the principles of their operation. It theoretically describes the use and operation and the most common types of failures of generative adversarial networks. In this work, a general procedure of signal preprocessing suitable for GAN training was derived, which was used to compile a database. In this work, a total of 3 different GAN models were designed and implemented. The results of the models were visually displayed and analyzed in
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Schilling, Lennart. "Generating synthetic brain MR images using a hybrid combination of Noise-to-Image and Image-to-Image GANs." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166034.

Повний текст джерела
Анотація:
Generative Adversarial Networks (GANs) have attracted much attention because of their ability to learn high-dimensional, realistic data distributions. In the field of medical imaging, they can be used to augment the often small image sets available. In this way, for example, the training of image classification or segmentation models can be improved to support clinical decision making. GANs can be distinguished according to their input. While Noise-to-Image GANs synthesize new images from a random noise vector, Image-To-Image GANs translate a given image into another domain. In this study, it
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chowdhury, Muhammad Iqbal Hasan. "Question-answering on image/video content." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205096/1/Muhammad%20Iqbal%20Hasan_Chowdhury_Thesis.pdf.

Повний текст джерела
Анотація:
This thesis explores a computer's ability to understand multimodal data where the correspondence between image/video content and natural language text are utilised to answer open-ended natural language questions through question-answering tasks. Static image data consisting of both indoor and outdoor scenes, where complex textual questions are arbitrarily posed to a machine to generate correct answers, was examined. Dynamic videos consisting of both single-camera and multi-camera settings for the exploration of more challenging and unconstrained question-answering tasks were also considered. I
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Xu, Libo. "GAN-based Automatic Segmentation of Thoracic Aorta from Non-contrast-Enhanced CT Images." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295428.

Повний текст джерела
Анотація:
The deep learning-based automatic segmentation methods have developed rapidly in recent years to give a promising performance in the medical image segmentation tasks, which provide clinical medicine with an accurate and fast computer-aided diagnosis method. Generative adversarial networks and their extended frameworks have achieved encouraging results on image-to-image translation problems. In this report, the proposed hybrid network combined cycle-consistent adversarial networks, which transformed contrast-enhanced images from computed tomography angiography to the conventional low-contrast C
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hermansson, Adam, and Stefan Generalao. "Interpretable Superhuman Machine Learning Systems: An explorative study focusing on interpretability and detecting Unknown Knowns using GAN." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20857.

Повний текст джерела
Анотація:
I en framtid där förutsägelser och beslut som tas av maskininlärningssystem överträffar människors förmåga behöver systemen att vara tolkbara för att vi skall kunna lita på och förstå dem. Vår studie utforskar världen av tolkbar maskininlärning genom att designa och undersöka artefakter. Vi genomför experiment för att utforska förklarbarhet, tolkbarhet samt tekniska utmaningar att skapa maskininlärningsmodeller för att identifiera liknande men unika objekt. Slutligen genomför vi ett användartest för att utvärdera toppmoderna förklaringsverktyg i ett direkt mänskligt sammanhang. Med insikter fr
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Pakdaman, Hesam. "Updating the generator in PPGN-h with gradients flowing through the encoder." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-224867.

Повний текст джерела
Анотація:
The Generative Adversarial Network framework has shown success in implicitly modeling data distributions and is able to generate realistic samples. Its architecture is comprised of a generator, which produces fake data that superficially seem to belong to the real data distribution, and a discriminator which is to distinguish fake from genuine samples. The Noiseless Joint Plug & Play model offers an extension to the framework by simultaneously training autoencoders. This model uses a pre-trained encoder as a feature extractor, feeding the generator with global information. Using the Plug &
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lai, Matteo. "Conditional MR image synthesis with Auxiliary Progressive Growing GANs." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Знайти повний текст джерела
Анотація:
L'addestramento di algotritmi di deep learning (DL) richiede una grande quantità di dati, che però spesso non sono disponibili in ambito medico. In questa tesi viene proposto un modello per la generazione di dataset sintetici etichettati nell'ambito dell'imaging medico ad alta risoluzione. Dopo aver presentato vantaggi e limiti dell'uso delle tecniche di DL in radiologia, vengono proposte le Generative Adversarial Networks (GANs) come possibile soluzione per superare tali limiti. Illustrando lo stato dell'arte relativo alle GAN, viene focalizzata l'attenzione sulle Progressive Growing GAN, ca
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Karlík, Pavol. "Odstraňování šumu pomocí neuronových sítí s cyklickou konzistencí." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417289.

Повний текст джерела
Анотація:
Hlboké neurónové siete sa bežne používajú v oblasti odstraňovania šumu. Trénovací proces neurónovej siete je možné rožšíriť využitím druhej neurónovej siete, ktorej cieľom je vložiť šum do čistej rečovej nahrávky. Tieto dve siete sa môžu spolu využiť k rekonštrukcii pôvodných čistých a zašumených nahrávok. Táto práca skúma efektivitu tejto techniky, zvanej cyklická konzistencia. Cyklická konzistencia zlepšuje robustnosť neurónovej siete bez toho, aby sa daná sieť akokoľvek modifikovala, nakoľko vystavuje sieť na odstraňovanie šumu rôznorodejšiemu množstvu zašumených dát. Avšak, táto technika v
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Nilsson, Alexander, and Martin Thönners. "A Framework for Generative Product Design Powered by Deep Learning and Artificial Intelligence : Applied on Everyday Products." Thesis, Linköpings universitet, Maskinkonstruktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149454.

Повний текст джерела
Анотація:
In this master’s thesis we explore the idea of using artificial intelligence in the product design process and seek to develop a conceptual framework for how it can be incorporated to make user customized products more accessible and affordable for everyone. We show how generative deep learning models such as Variational Auto Encoders and Generative Adversarial Networks can be implemented to generate design variations of windows and clarify the general implementation process along with insights from recent research in the field. The proposed framework consists of three parts: (1) A morphologic
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kola, Ramya Sree. "Generation of synthetic plant images using deep learning architecture." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18450.

Повний текст джерела
Анотація:
Background: Generative Adversarial Networks (Goodfellow et al., 2014) (GANs)are the current state of the art machine learning data generating systems. Designed with two neural networks in the initial architecture proposal, generator and discriminator. These neural networks compete in a zero-sum game technique, to generate data having realistic properties inseparable to that of original datasets. GANs have interesting applications in various domains like Image synthesis, 3D object generation in gaming industry, fake music generation(Dong et al.), text to image synthesis and many more. Despite h
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Nilsson, Mårten. "Augmenting High-Dimensional Data with Deep Generative Models." Thesis, KTH, Robotik, perception och lärande, RPL, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233969.

Повний текст джерела
Анотація:
Data augmentation is a technique that can be performed in various ways to improve the training of discriminative models. The recent developments in deep generative models offer new ways of augmenting existing data sets. In this thesis, a framework for augmenting annotated data sets with deep generative models is proposed together with a method for quantitatively evaluating the quality of the generated data sets. Using this framework, two data sets for pupil localization was generated with different generative models, including both well-established models and a novel model proposed for this pu
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Rana, Aakanksha. "Analyse d'images haute gamme dynamique." Electronic Thesis or Diss., Paris, ENST, 2018. http://www.theses.fr/2018ENST0015.

Повний текст джерела
Анотація:
L'imagerie HDR (High Dynamic Range) permet de capturer une gamme dynamique plus larges, nous permettant ainsi de tirer parti de détails subtils, mais différenciés, présents à la fois dans les zones extrêmement sombres et lumineuses d'une scène. Ces propriétés présentent un intérêt potentiel pour les algorithmes de vision par ordinateur où la performance peut se dégrader considérablement en présence de changements d’illumination lorsque les scènes acquises sont à l'aide d'images traditionnelles à faible gamme dynamique (LDR). Dans cette thèse, nous présentons des aspects quantitatifs et qualita
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Shahid, Mustafizur Rahman. "Deep learning for Internet of Things (IoT) network security." Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAS003.

Повний текст джерела
Анотація:
L’internet des objets (IoT) introduit de nouveaux défis pour la sécurité des réseaux. La plupart des objets IoT sont vulnérables en raison d'un manque de sensibilisation à la sécurité des fabricants d'appareils et des utilisateurs. En conséquence, ces objets sont devenus des cibles privilégiées pour les développeurs de malware qui veulent les transformer en bots. Contrairement à un ordinateur de bureau, un objet IoT est conçu pour accomplir des tâches spécifiques. Son comportement réseau est donc très stable et prévisible, ce qui le rend bien adapté aux techniques d'analyse de données. Ainsi,
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Gruneau, Joar. "Investigation of deep learning approaches for overhead imagery analysis." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232208.

Повний текст джерела
Анотація:
Analysis of overhead imagery has a great potential to produce real-time data cost-effectively. This can be an important foundation for decision-making for businesses and politics. Every day a massive amount of new satellite imagery is produced. To fully take advantage of these data volumes a computationally efficient pipeline is required for the analysis. This thesis proposes a pipeline which outperforms the Segment Before you Detect network [6] and different types of fast region based convolutional neural networks [61] with a large margin in a fraction of the time. The model obtains a predict
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Antipov, Grigory. "Apprentissage profond pour la description sémantique des traits visuels humains." Thesis, Paris, ENST, 2017. http://www.theses.fr/2017ENST0071/document.

Повний текст джерела
Анотація:
Les progrès récents des réseaux de neurones artificiels (plus connus sous le nom d'apprentissage profond) ont permis d'améliorer l’état de l’art dans plusieurs domaines de la vision par ordinateur. Dans cette thèse, nous étudions des techniques d'apprentissage profond dans le cadre de l’analyse du genre et de l’âge à partir du visage humain. En particulier, deux problèmes complémentaires sont considérés : (1) la prédiction du genre et de l’âge, et (2) la synthèse et l’édition du genre et de l’âge.D’abord, nous effectuons une étude détaillée qui permet d’établir une liste de principes pour la c
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Daley, Jr John. "Generating Synthetic Schematics with Generative Adversarial Networks." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20901.

Повний текст джерела
Анотація:
This study investigates synthetic schematic generation using conditional generative adversarial networks, specifically the Pix2Pix algorithm was implemented for the experimental phase of the study. With the increase in deep neural network’s capabilities and availability, there is a demand for verbose datasets. This in combination with increased privacy concerns, has led to synthetic data generation utilization. Analysis of synthetic images was completed using a survey. Blueprint images were generated and were successful in passing as genuine images with an accuracy of 40%. This study confirms
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Tang, Hao. "Learning to Generate Things and Stuff: Guided Generative Adversarial Networks for Generating Human Faces, Hands, Bodies, and Natural Scenes." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/306790.

Повний текст джерела
Анотація:
In this thesis, we mainly focus on image generation. However, one can still observe unsatisfying results produced by existing state-of-the-art methods. To address this limitation and further improve the quality of generated images, we propose a few novel models. The image generation task can be roughly divided into three subtasks, i.e., person image generation, scene image generation, and cross-modal translation. Person image generation can be further divided into three subtasks, namely, hand gesture generation, facial expression generation, and person pose generation. Meanwhile, scene image
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Tang, Hao. "Learning to Generate Things and Stuff: Guided Generative Adversarial Networks for Generating Human Faces, Hands, Bodies, and Natural Scenes." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/306790.

Повний текст джерела
Анотація:
In this thesis, we mainly focus on image generation. However, one can still observe unsatisfying results produced by existing state-of-the-art methods. To address this limitation and further improve the quality of generated images, we propose a few novel models. The image generation task can be roughly divided into three subtasks, i.e., person image generation, scene image generation, and cross-modal translation. Person image generation can be further divided into three subtasks, namely, hand gesture generation, facial expression generation, and person pose generation. Meanwhile, scene image
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Marek, Jan. "Rekonstrukce chybějících části obličeje pomocí neuronové sítě." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-433506.

Повний текст джерела
Анотація:
Cílem této práce je vytvořit neuronovou síť která bude schopna rekonstruovat obličeje z fotografií na kterých je část obličeje překrytá maskou. Jsou prezentovány koncepty využívané při vývoji konvolučních neuronových sítí a generativních kompetitivních sítí. Dále jsou popsány koncepty používané v neuronových sítích specificky pro rekonstrukci fotografií obličejů. Je představen model generativní kompetitivní sítě využívající kombinaci hrazených konvolučních vrstev a víceškálových bloků schopný realisticky doplnit oblasti obličeje zakryté maskou.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Li, Yuchuan. "Dual-Attention Generative Adversarial Network and Flame and Smoke Analysis." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42774.

Повний текст джерела
Анотація:
Flame and smoke image processing and analysis could improve performance to detect smoke or fire and identify many complicated fire hazards, eventually to help firefighters to fight fires safely. Deep Learning applied to image processing has been prevailing in recent years among image-related research fields. Fire safety researchers also brought it into their studies due to its leading performance in image-related tasks and statistical analysis. From the perspective of input data type, traditional fire research is based on simple mathematical regressions or empirical correlations relying on sen
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Cabezas, Rodríguez Juan Pablo. "Generative adversarial network based model for multi-domain fault diagnosis." Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/170996.

Повний текст джерела
Анотація:
Memoria para optar al título de Ingeniero Civil Mecánico<br>Con el uso de las redes neuronal profundas ganando terreno en el área de PHM, los sensores disminuyendo progresivamente su precio y mejores algoritmos, la falta de datos se ha vuelto un problema principal para los modelos enfocados en datos. Los datos etiquetados y aplicables a escenarios específicos son, en el mejor de los casos, escasos. El objetivo de este trabajo es desarrollar un método para diagnosticas el estado de un rodamiento en situaciones con datos limitados. Hoy en día la mayoría de las técnicas se enfocan en mejora
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Zeid, Baker Mousa. "Generation of Synthetic Images with Generative Adversarial Networks." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15866.

Повний текст джерела
Анотація:
Machine Learning is a fast growing area that revolutionizes computer programs by providing systems with the ability to automatically learn and improve from experience. In most cases, the training process begins with extracting patterns from data. The data is a key factor for machine learning algorithms, without data the algorithms will not work. Thus, having sufficient and relevant data is crucial for the performance. In this thesis, the researcher tackles the problem of not having a sufficient dataset, in terms of the number of training examples, for an image classification task. The idea is
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Desentz, Derek. "Partial Facial Re-imaging Using Generative Adversarial Networks." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1622122813797895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Antipov, Grigory. "Apprentissage profond pour la description sémantique des traits visuels humains." Electronic Thesis or Diss., Paris, ENST, 2017. http://www.theses.fr/2017ENST0071.

Повний текст джерела
Анотація:
Les progrès récents des réseaux de neurones artificiels (plus connus sous le nom d'apprentissage profond) ont permis d'améliorer l’état de l’art dans plusieurs domaines de la vision par ordinateur. Dans cette thèse, nous étudions des techniques d'apprentissage profond dans le cadre de l’analyse du genre et de l’âge à partir du visage humain. En particulier, deux problèmes complémentaires sont considérés : (1) la prédiction du genre et de l’âge, et (2) la synthèse et l’édition du genre et de l’âge.D’abord, nous effectuons une étude détaillée qui permet d’établir une liste de principes pour la c
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Vanhainen, Erik, and Johan Adamsson. "Generating Realistic Neuronal Morphologies in 3D using a Generative Adversarial Network." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301788.

Повний текст джерела
Анотація:
Neuronal morphology is primarily responsible for the structure of the connectivity among the neurons and is an important determinant for neuronal activity. This raises questions about the relationship between neuron shape and neuron function. To further investigate the structure-function relationship in neurons, extensive modelling with more morphological data is key. Digitally reconstructing neurons is tedious and requires a lot of manual labour and hence several generative methods have been proposed. However these generative models utilizes the current understanding of neuronal morphology, o
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Hermoza, Aragonés Renato. "3D Reconstruction of Incomplete Archaeological Objects Using a Generative Adversarial Network." Master's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/12263.

Повний текст джерела
Анотація:
We introduce a data-driven approach to aid the repairing and conservation of archaeological objects: ORGAN, an object reconstruction generative adversarial network (GAN). By using an encoder-decoder 3D deep neural network on a GAN architecture, and combining two loss objectives: a completion loss and an Improved Wasserstein GAN loss, we can train a network to effectively predict the missing geometry of damaged objects. As archaeological objects can greatly differ between them, the network is conditioned on a variable, which can be a culture, a region or any metadata of the object. In our resul
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ankaräng, Fredrik. "Generative Adversarial Networks for Cross-Lingual Voice Conversion." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299560.

Повний текст джерела
Анотація:
Speech synthesis is a technology that increasingly influences our daily lives, in the form of smart assistants, advanced translation systems and similar applications. In this thesis, the phenomenon of making one’s voice sound like the voice of someone else is explored. This topic is called voice conversion and needs to be done without altering the linguistic content of speech. More specifically, a Cycle-Consistent Adversarial Network that has proven to work well in a monolingual setting, is evaluated in a multilingual environment. The model is trained to convert voices between native speakers
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Radhakrishnan, Saieshwar. "Domain Adaptation of IMU sensors using Generative Adversarial Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286821.

Повний текст джерела
Анотація:
Autonomous vehicles rely on sensors for a clear understanding of the environment and in a heavy duty truck, the sensors are placed at multiple locations like the cabin, chassis and the trailer in order to increase the field of view and reduce the blind spot area. Usually, these sensors perform best when they are stationary relative to the ground, hence large and fast movements, which are quite common in a truck, may lead to performance reduction, erroneous data or in the worst case, a sensor failure. This enforces a need to validate the sensors before using them for making life-critical decisi
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Delacruz, Gian P. "Using Generative Adversarial Networks to Classify Structural Damage Caused by Earthquakes." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2158.

Повний текст джерела
Анотація:
The amount of structural damage image data produced in the aftermath of an earthquake can be staggering. It is challenging for a few human volunteers to efficiently filter and tag these images with meaningful damage information. There are several solution to automate post-earthquake reconnaissance image tagging using Machine Learning (ML) solutions to classify each occurrence of damage per building material and structural member type. ML algorithms are data driven; improving with increased training data. Thanks to the vast amount of data available and advances in computer architectures, ML and
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!