Добірка наукової літератури з теми "Galbrun’s equations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Galbrun’s equations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Galbrun’s equations"
Maeder, Marcus, Gwénaël Gabard, and Steffen Marburg. "90 Years of Galbrun’s Equation: An Unusual Formulation for Aeroacoustics and Hydroacoustics in Terms of the Lagrangian Displacement." Journal of Theoretical and Computational Acoustics 28, no. 04 (October 13, 2020): 2050017. http://dx.doi.org/10.1142/s2591728520500176.
Повний текст джерелаMaeder, Marcus, Andrew Peplow, Maximilian Meindl, and Steffen Marburg. "Solving Galbrun's Equation with a Discontinuous galerkin Finite Element Method." Acta Acustica united with Acustica 105, no. 6 (November 1, 2019): 1149–63. http://dx.doi.org/10.3813/aaa.919369.
Повний текст джерелаHalla, Martin, and Thorsten Hohage. "On the Well-posedness of the Damped Time-harmonic Galbrun Equation and the Equations of Stellar Oscillations." SIAM Journal on Mathematical Analysis 53, no. 4 (January 2021): 4068–95. http://dx.doi.org/10.1137/20m1348558.
Повний текст джерелаДисертації з теми "Galbrun’s equations"
Retka, Stefanie. "Numerische Umsetzung der Galbrun-Gleichung zur Modalanalyse strömender Medien in Außenraumproblemen unter Einsatz finiter und infiniter Elemente." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-90024.
Повний текст джерелаGabard, Gwénaël. "Méthodes numériques et modèles de sources aéroacoustiques fondés sur l'équation de Galbrun." Compiègne, 2003. http://www.theses.fr/2003COMP1477.
Повний текст джерелаPropagation and generation of sound in fluid flows represent an important problem for several industrial applications, particularly for transports. The main caracteristic of this thesis is the use of an original model, Galbrun's equation, to describe acoustic wave propagation in flows. Concerning numerical methods, a dispersion analysis is carried out for several finite element models for aeroacoustic propagation. Furthermore, several non-reflecting boundary conditions for Galbrun's equation in the frequency domain are derived. Two aerodynamic noise source models based on Galbrun's equation are proposed. The first one stems from the source term for the linearized Euler equations proposed by Bailly while the second is obtained with the E. I. F. Approach originaly proposed by Hardin and Pope
Benamar, Mohamed Amine. "Développement d’une approche numérique et expérimentale par la mesure VLD pour la propagation acoustique mutimodale en conduit avec écoulement." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2624.
Повний текст джерелаLaser Doppler Velocimetry (LDV) is a non-intrusive measurement of particle velocity classically used in fluid mechanics. The acoustic velocity is a very important quantity in acoustics for the characterization of acoustic propagation fields, which is essential for the understanding of certain propagation phenomena in near walls or for complex geometries. The DUCAT bench installed in the laboratory of the Acoustics and Vibration team of the University of Technology of Compiègne aimed at characterizing the acoustic performances of various acoustic absorption systems such as SDOF or metallic porous materials for aeronautical uses through the measurement of the acoustic velocity and pressure through two automated probes containing a hot wire sensor as well as a microphone with ogive. The objective of this thesis is to allow the measurement of acoustic velocity in multimodal propagation and in the presence of flow using the VLD. The signal measured by the VLD is randomly sampled and has a fairly large background noise due to the presence of flow in the duct. The complex nature of the measured signal requires special signal processing methods to extract the acoustic velocity that is important to us. The first part of this thesis presents a benchmark of the different methods available in the literature and their validity for the current experimental conditions of the DUCAT bench. A simulation of the measured VLD signal is developed as a reference to validate the methods, whether they are spectral or temporal. The weighted least squares method is finally selected and adapted following this study for the estimation of the various acoustic parameters from the raw signal. The second part concerns the presentation of the numerical tools used or developed for the simulation of the acoustic propagation in infinite ducts. The main numerical tool is an aeroacoustic finite element code developed in the lab based on Galbrun’s equations coupled to a virtual absorbing layer called PML (Perfect Matched Layer). Due to the presence of the PML, the numerical solution of the inverse problem becomes complicated, which led us to develop a code for solving nonlinear eigenvalue problems based on the Integral Contour method. The third part of this work presents the different components of the modified version of the bench as well as the characteristics of these different components. The bench allows the experimentation of multimodal acoustic propagation (up to 5000 Hz) in the presence of a suction/expiration flow that can reach a speed of Mach 0.25. The fourth and last part, presents a protocol of experimental numerical validation of all the tools presented and developed. The test/calculation comparisons are presented for a multimodal propagation in a straight duct at first. The results allow to conclude on the efficiency of the measurement and signal processing system with a relative error lower than 1 dB. The same protocol is then used for the experimental study of the acoustic trapped modes in the case of a cylindrical duct with an abrupt change of section
Feng, Xue. "Modélisation numérique par éléments finis d'un problème aéroacoustique en régime transitoire : application à l'équation de Galbrun." Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-00935560.
Повний текст джерелаPeynaud, Emilie. "Rayonnement sonore dans un écoulement subsonique complexe en régime harmonique : analyse et simulation numérique du couplage entre les phénomènes acoustiques et hydrodynamiques." Thesis, Toulouse, INSA, 2013. http://www.theses.fr/2013ISAT0019/document.
Повний текст джерелаThis thesis deals with the numerical simulation of time harmonic acoustic propagation in an arbitrary mean flow in an unbounded domain. Our approach is based on an equation equivalent to the linearized Euler equations called the Galbrun equation. It is derived from a mixed Eulerian-Lagrangian formulation and results in a single equation whose only unknown is the perturbation of the Lagrangian displacement. A direct solution using finite elements is unstable but this difficulty can be overcome by using an augmented equation which is constructed by adding a new unknown, the vorticity, defined as the curl of the displacement. This leads to a set of equations coupling a wave like equation with a time harmonic transport equation which allows the use of perfectly matched layers (PML) at artificial boundaries to bound the computational domain. The first part of the thesis is a study of the time harmonic transport equation and its approximation by means of a discontinuous Galerkin scheme, the difficulties coming from the oscillating behaviour of its solutions. Once these difficulties have been overcome, it is possible to deal with the resolution of the acoustic propagation problem. The approximation method is based on a mixed continuous-Galerkin and discontinuous-Galerkin finite element scheme. The well-posedness of both the continuous and discrete problems is established and the convergence of the approximation under some mean flow conditions is proved. Finally a numerical implementation is achieved and numerical results are given which confirm the validity of the method and also show that it is relevant in complex cases, even for unstable flows
Частини книг з теми "Galbrun’s equations"
Dhia, Anne-Sophie Bonnet-Ben, Guillaume Legendre, and Eric Lunéville. "Regularization of the Time-Harmonic Galbrun’s Equations." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 78–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_12.
Повний текст джерелаТези доповідей конференцій з теми "Galbrun’s equations"
Legendre, César, Gregory Lielens, and Jean-Pierre Coyette. "Sound Propagation in a Sheared Flow Based on Fluctuating Total Enthalpy as Generalized Acoustic Variable." In ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-0838.
Повний текст джерелаGabard, Gwenael, Emmanuel Lefrancois, and Mabrouk Ben Tahar. "Aeroacoustic Noise Source Simulations Based on Galbrun's Equation." In 10th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2892.
Повний текст джерелаQu, Dong, Jing Yang, and Yubo Yang. "On solving the Galbrun equation via SEM." In 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 2011. http://dx.doi.org/10.1109/csae.2011.5953250.
Повний текст джерелаMaeder, Marcus, and Steffen Marburg. "Utilizing a discontinuous Galerkin method for solving Galbrun’s equation in the frame of aeroacoustics." In 174th Meeting of the Acoustical Society of America. Acoustical Society of America, 2017. http://dx.doi.org/10.1121/2.0000654.
Повний текст джерела