Добірка наукової літератури з теми "Galaxy feedback"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Galaxy feedback".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Galaxy feedback"

1

McNamara, B. R. "Feedback on Galaxy Formation." Science 341, no. 6150 (September 5, 2013): 1073–75. http://dx.doi.org/10.1126/science.1243114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silk, Joseph. "Feedback in Galaxy Formation." Proceedings of the International Astronomical Union 6, S277 (December 2010): 273–81. http://dx.doi.org/10.1017/s1743921311022939.

Повний текст джерела
Анотація:
AbstractI review the outstanding problems in galaxy formation theory, and the role of feedback in resolving them. I address the efficiency of star formation, the galactic star formation rate, and the roles of supernovae and supermassive black holes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Murray, Norman. "Feedback and Outflows." Proceedings of the International Astronomical Union 8, S292 (August 2012): 343–50. http://dx.doi.org/10.1017/s1743921313001671.

Повний текст джерела
Анотація:
AbstractThe low stellar and gas mass fractions, low galaxy-wide star formation rates (relative to galactic dynamical times) and observations of rapid outflows from galaxies, all suggest that stars and active galactic nuclei violently alter the state of the interstellar and even inter-halo gas in galaxies. I argue that the low galaxy wide star formation rates are not the result of turbulent suppression of star formation on small scale, but rather the result of a balance between dynamical pressure and the force (or rate of momentum deposition) provided by stellar feedback, either in the form of radiation pressure or by supernovae. Galaxy scale winds can also be driven by feedback, either from stars or active galactic nuclei, although the exact mechanisms involved are still not well determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hopkins, Philip F. "Quasars, Feedback, and Galaxy Formation." Proceedings of the International Astronomical Union 5, S267 (August 2009): 421–28. http://dx.doi.org/10.1017/s1743921310006940.

Повний текст джерела
Анотація:
AbstractRecent observations of tight correlations between supermassive black hole masses and the properties of their host galaxies demonstrate that black holes and bulges are co-eval and have motivated theoretical models in which feedback from AGN activity regulates the black hole and host galaxy evolution. Combining simulations, analytic models, and recent observations, answers to a number of questions are starting to take shape: how do AGN get triggered? How long do they live? What are typical light curves and what sets them? Is feedback necessary and/or sufficient to regulate BH growth? What effects does that feedback have on the host galaxy? On the host halo? All of this also highlights questions that remain wide open: how does gas get from a few pc to the AGN? What are the actual microphysical mechanisms of feedback? What is the tradeoff between stellar and AGN feedback? And, if there are different “modes” of feedback, where/when are each important?
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nayakshin, Sergei, Mark I. Wilkinson, and Andrew King. "Competitive feedback in galaxy formation." Monthly Notices of the Royal Astronomical Society: Letters 398, no. 1 (September 1, 2009): L54—L57. http://dx.doi.org/10.1111/j.1745-3933.2009.00709.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wagner, A. Y., G. V. Bicknell, M. Umemura, R. S. Sutherland, and J. Silk. "Galaxy-scale AGN feedback - theory." Astronomische Nachrichten 337, no. 1-2 (February 2016): 167–74. http://dx.doi.org/10.1002/asna.201512287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ciotti, Luca, Jeremiah P. Ostriker, Andrea Negri, Silvia Pellegrini, Silvia Posacki, and Greg Novak. "AGN feedback and star formation in ETGs: negative and positive feedback." Proceedings of the International Astronomical Union 11, S315 (August 2015): 224–27. http://dx.doi.org/10.1017/s1743921316007535.

Повний текст джерела
Анотація:
AbstractAGN feedback from supermassive black holes (SMBHs) at the center of early type galaxies is commonly invoked as the explanation for the quenching of star formation in these systems. The situation is complicated by the significant amount of mass injected in the galaxy by the evolving stellar population over cosmological times. In absence of feedback, this mass would lead to unobserved galactic cooling flows, and to SMBHs two orders of magnitude more massive than observed. By using high-resolution 2D hydrodynamical simulations with radiative transport and star formation in state-of-the-art galaxy models, we show how the intermittent AGN feedback is highly structured on spatial and temporal scales, and how its effects are not only negative (shutting down the recurrent cooling episodes of the ISM), but also positive, inducing star formation in the inner regions of the host galaxy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bicknell, G. V., B. R. McNamara, M. A. Nawaz, R. S. Sutherland, M. Umemura, and A. Y. Wagner. "AGN feedback by relativistic jets." Proceedings of the International Astronomical Union 10, S313 (September 2014): 101–7. http://dx.doi.org/10.1017/s174392131500201x.

Повний текст джерела
Анотація:
AbstractFeedback provided by relativistic jets may be effective in shaping the galaxy luminosity function. The quenching mode (quasar mode) at redshifts ~2-3 potentially disperses gas in star-forming galaxies. The maintenance mode (radio mode) heats the gas in galaxy clusters counteracting cooling flows. A number of authors have examined the effect of relativistic jets in dispersing clouds in the kpc-scale inhomogeneous interstellar medium of evolving galaxies. We have also investigated a particular case of maintenance-mode feedback in our simulation of the iconic radio galaxy / cooling flow cluster Hydra A. Modelling of the knots produced by the jets in the inner 10 kpc provides an estimate of 0.8 – 0.9 c for the velocities of the jets in agreement with other velocity estimates for FR1 jets. The addition of jet precession provides realistic simulations of the morphology of the Hydra A radio source and raises interesting questions as to the role of black hole and disk precession, in general, in galaxy formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shabala, Stanislav, and Paul Alexander. "RADIO SOURCE FEEDBACK IN GALAXY EVOLUTION." Astrophysical Journal 699, no. 1 (June 12, 2009): 525–38. http://dx.doi.org/10.1088/0004-637x/699/1/525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mashchenko, S., J. Wadsley, and H. M. P. Couchman. "Stellar Feedback in Dwarf Galaxy Formation." Science 319, no. 5860 (January 11, 2008): 174–77. http://dx.doi.org/10.1126/science.1148666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Galaxy feedback"

1

Bielby, Richard. "Galaxy clustering and feedback." Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2344/.

Повний текст джерела
Анотація:
I cross-correlate the WMAP third year data with the АСО, АРМ and 2MASS galaxy and cluster catalogues, confirming the presence of the SZ effect in the WMAP 3rd year data around АСО, АРМ and 2MASS clusters, showing an increase in detection significance compared to previous analyses of the 1-year WMAP data release. I compare the cross-correlation results for a number of clusters to their SZ β-model profiles estimated from ROSAT and Chandra X-ray data. I conclude that the SZ profiles estimated from the β -model over-predict the observed SZ effect in the cluster samples. Additionally, I develop colour cuts using the SDSS optical bands to photometrically select emission line galaxies at redshifts of z < 0.35, 0.35 < z < 0.55 and z > 0.55. The selections have been calibrated using a combination of photometric redshifts from the COMBO-17 survey and spectroscopic observations. I estimate correlation lengths of rо = 2.64 (^+2.64_-0.08) h (^-1) Mpc, ro = 3.62 > ± 0.06h (^-1) and rо = 5.88 ± 0.12h (^-1)Mpc for the low, mid and high redshift samples respectively. Using these photometric samples I search for the Integrated Sachs- Wolfe signal in the WMAP 5yr data, but find no significant detection. I also present a survey of star-forming galaxies at z ≈ 3. Using Lyman Break and U-dropout photometric elections, we identify a total of ≈ 21,000 candidate z > 2 galaxies and perform spectroscopic observations of a selection of these candidates with integration times of 10,000s with the VLT VIMOS. In total this survey has so far produced a total of 1149 LBGs at redshifts of 2 < z < 3.5 over a total area of l.18deg(^2), with a mean redshift of ž = 2.87 ± 0.34. Using both the photometric and spectroscopic LBG catalogues, I investigate the clustering properties of the z > 2 galaxy sample using the angular correlation function, measuring a clustering amplitude of rо = 4.32(^+0.13_-0.12)h (^-1) Mpc with a slope of ϒ2 = 1.90 (^+0.09_-0.14) at separations of r > 0.4h(+-1) Mpc. We then measure the redshift space clustering based on the spectroscopically observed sample and estimate the infall parameter, β, of the sample by fitting a redshift space distortion model to the ع (σ, π). To conclude this work, I analyze the correlation of LBGs with the Lya forest transmissivity of a number of z ~ 3 QSOs, with the aim of looking for the imprint of high velocity winds on the IGM. The data show a fall in the transmissivity in the Lya forest at scales of 5h(^-1)Mpc < r < 10h(^-1)Mpc away from LBGs, indicating an increase in gas densities at these scales. However we find no significant change from the mean transmissivity at scales of <3h(^-1)Mpc, potentially signifying the presence of low density ionised regions close to LBGs.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shabala, Stanislav. "AGN feedback in galaxy evolution." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Creasey, Peter Edward. "Simulating supernova feedback in galaxy disks." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/6349/.

Повний текст джерела
Анотація:
In this thesis I examine supernova feedback in hydrodynamical simulations of galaxy disks. Understanding this process entails the numerical evaluation of cooling in radiative shocks, and we present a set of simulations using two widely used numerical schemes: smoothed particle hydro- dynamics and adaptive mesh refinement. We obtain a similarity solution for a shock-tube problem in the presence of radiative cooling, and test how well the solution is reproduced. We interpret our findings in terms of a resolution criterion, and apply it to realistic simulations of cosmological accretion shocks onto galaxy halos, cold accretion and thermal feedback from supernovae or active galactic nuclei. To avoid numerical overcooling of accretion shocks onto halos that should develop a hot corona requires a particle or cell mass resolution of 10^6 M⊙, which is within reach of current state-of-the-art simulations. At this mass resolution, thermal feedback in the interstellar medium of a galaxy requires temperatures of supernova or AGN driven bubbles to be in excess of 10^7 K at densities of n_H = 1.0 cm−3, in order to avoid spurious suppression of the feedback by numerical overcooling. In order to improve sub-grid models of feedback we perform a series of numerical experiments to investigate how supernova explosions shape the interstellar medium in a disk galaxy and power a galactic wind. We model a simplified ISM, including gravity, hydrodynamics, radiative cooling above 10^4 K, and star formation that reproduces the Kennicutt-Schmidt relation. By simulating a small patch of the ISM in a tall box perpendicular to the disk, we obtain sub-parsec resolution allowing us to resolve individual supernova events. We run a large grid of simulations in which we vary gas surface density, gas fraction, and star formation rate in order to investigate the dependencies of the mass loading, β ≡ dot M_wind / dot M_star. In the cases with the most effective outflows we observe a β of 4, however in other cases we find β<<1. We find that outflows are more efficient in disks with lower surface densities or gas fractions. A simple model in which the warm clouds are the barriers that limit the expansion of the blast wave reproduces the scaling of outflow properties with disk parameters at high star formation rates. We extend the scaling relations derived from an ISM patch to infer an effective mass loading for a galaxy with an exponential disk, finding that the mass loading depends on circular velocity as β ∝ V −α with α ≈ 2.5 for a model which fits the Tully-Fisher relation. Such a scaling is often assumed in phenomenological models of galactic winds in order to reproduce the flat faint end slope of the mass function. Our normalisation is in approximate agreement with observed estimates of the mass loading for the Milky Way. Finally, we extend these simulations to follow the ejecta produced by these SNe, allowing us to track the distribution of metals as they are mixed into the different phases of the ISM and swept out into a galactic wind. Such calculations are important both directly in predicting the enrichment of the intergalactic medium, but also with the sister problem of understanding the enrichment of the host galaxies and the mass-metallicity relation, owing to the unique role that supernovae are believed to play both as the sources of galactic winds and the sources of galactic metals. We study the dependence of the amount of metals released per unit of star formation, β_Z ≡ dot M_z / dot M_star, and the fraction of metals released, β_Z / y. We include thermal and momentum feedback from massive stars and find these make a less significant contribution to the galactic wind than SNe. We build up a model of galactic chemical evolution and we demonstrate that these models are compatible with the metallicity distributions of faint stars and compare to closed box models of chemical evolution. We infer metal retention fractions from the observed data, although this may be complicated by recycling in the galaxy halos. We compare these rates to the fraction of metals ejected in the simulations and demonstrate approximate agreement, although the simulation data has considerable scatter, primarily due to the stochastic nature of the feedback in the limited volumes of the simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pike, Simon Robert. "Simulations of galaxy clusters with AGN feedback." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/simulations-of-galaxy-clusters-with-agn-feedback(02c5a9f6-03ad-4c80-9e7c-832db83998d8).html.

Повний текст джерела
Анотація:
Clusters of galaxies provide a unique opportunity to simultaneously study cosmology through low scatter scaling relations and the complex baryonic physics that occurs in cluster cores. As such it is of key importance to quantify the effects of the various physical processes that drive cluster evolution. In this thesis a sample of 30 clusters from the Millennium Gas Simulation, of masses 10^14/h Solar Masses < M200 < 10^15/h Solar Masses, were selected and run at a higher resolution using the re-simulation technique, using a modified version of Gadget-2, an N-body SPH code. Each cluster was run multiple times with increasing levels of sub-grid physics in order to separate the different effects that govern cluster evolution. The models implemented starting with non-radiative (NR), simulations then added cooling and star formation (CSF), supernova feedback (SFB) and AGN feedback model (AGN) respectively. In order to best match observations a study of supernova and AGN feedback parameters was conducted. The sample of clusters were also used to quantify the magnitude of biases created when observing clusters, in an attempt to classify the accuracy of these measurements of clusters. Additionally, the effects of the biases were also included in the estimation of the cluster mass using hydrostatic equilibrium. The best match to the observed gas, star and baryon fractions, scaling relations and gas profiles was found when powerful supernova feedback was included, which heats gas particles to 10^7K, and an AGN model whose heating temperature scales with the final virial temperature of the cluster, so that particles in a 10^14/h Solar masses and 10^15/h Solar Masses cluster are heated to 10^8K and 10^8.5 K respectively. Outside the core, this model successfully matches all the observed profiles and scaling relations excluding the spectrascopic-like temperature. The core region is simulated with come success, with pressures matching those observed but gas that is too cool and dense, resulting in an inability to reproduce the non cool core entropy profiles. Cold dense gas is more heavily weighted in the spectrascopic-like temperature, allowing significant contributions from gas in substructures and cold dense clumps of gas that are un-ascociated with any substructures and seems to be an artificial construct of SPH. When this gas is removed using the method outlines in \cite{Roncarelli2006}, temperatures outside the core match observations, but the core region is still too dense and cool. Clearly this core region requires more complex physics, possibly through implementation of an improved SPH code or more complex sub-grid physics such as that associated with the AGN feedback. The bias profiles also exhibit a similar sensitivity to the cool dense gas clumps, having a profound effect on the observed profiles and creating significant scatter in the mass estimated using hydrostatic equilibrium. Removing this cold dense gas using the Roncarelli method results in reduced biases and hydrostatic mass estimates closer to the true values. The resulting scaling relations and profiles including the effects of biases differ from those without the biases, but not significantly. It is clear that biases can affect the observed profiles and scaling relations, but this effect is minimised by excluding the coldest densest gas. As the choice of how much gas is removed is somewhat arbitrary, it is clear that further work in this field would require better SPH implementations that do not produce the erroneous dense gas clumps and the generation of mock observations using the simulated data.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bieri, Rebekka. "The Role of AGN Feedback in Galaxy Formation." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066292/document.

Повний текст джерела
Анотація:
L’objectif de ma thèse porte sur les interactions entre les noyaux actifs de galaxies et le milieu interstellaire des galaxies. En particulier, je mets l’accent sur les deux mécanismes possibles responsables de la production des vents par les trous noirs : les jets et les vents produits par le rayonnement de ces trous noirs. Les simulations hydrodynamiques de haute résolution des galaxies comprenant la rétroac- tion d’un jet ont montré que l’activité des noyaux actifs peut conduire à une pression exces- sive sur les régions denses de formation stellaire dans les galaxies, et donc à augmenter la formation d’étoiles, conduisant à un effet positif de rétroaction. Je montre que ces noyaux actifs induits par pression régulée et formation d’étoiles peuvent aussi être une explica- tion possible des taux de formation stellaire élevés observés dans l’Univers à haut décalage spectral. De plus, j’ai également étudié en détails comment le rayonnement émis à partir d’un disque d’accrétion autour du trou noir agit efficacement avec le milieu interstellaire et entraîne un fort vent galactique, en simulant la propagation des photons à partir des équations hydrodynamiques du rayonnement. Les simulations montrent que la grande luminosité d’un quasar est en effet capable de conduire des vents à grande échelle et à grande vitesse. Le rayonnement infrarouge est nécessaire pour transérer efficacement le gaz par multi-diffusion sur la poussière dans les nuages denses. Le nombre typique de multi-diffusion diminue rapidement quand le nuage central de gaz central se dilate et se rompt, ce qui permet au rayonnement de s’échapper à travers les canaux à faible densité
Supermassive black holes (SMBHs) are known to reside in the centres of most large galaxies. The masses of these SMBHs are known to correlate with large-scale properties of the host galaxy suggesting that the growth of the BHs and large-scale structures are tightly linked. A natural explanation for the observed correlation is to invoke a self-regulated mechanism involving feedback from Active Galactic Nuclei (AGN). The focus of this thesis is on the interactions between AGN outflows and the ISM and how the feedback impacts the host galaxy. In particular, it focuses on the two possible mechanism of outflows, namely, outflows related to AGN jets and outflows produced by AGN radiation. High resolution, galaxy scale hydrodynamical simulations of jet-driven feedback have shown that AGN activity can over-pressurise dense star-formation regions of galaxies and thus enhance star formation, leading to a positive feedback effect. I propose, that such AGN-induced pressure-regulated star formation may also be a possible explanation of the high star formation rates recently found in the high-redshift Universe. In order to study in more detail the effects of over-pressurisation of the galaxy, I have performed a large set of isolated disc simulations with varying gas-richness in the galaxy. I found that even moderate levels of over-pressurisation of the galaxy boosts the global star formation rate by an order of magnitude. Additionally, stable discs turn unstable which leads to significant fragmentation of the gas content of the galaxy, similar to what is observed in high-redshift galaxies. The observed increase in the star formation rate of the galaxy is in line with theoretical predictions. I have also studied in detail how radiation emitted from a thin accretion disc surrounding the BH effectively couples to the surrounding ISM and drives a large scale wind. Quasar activity is typically triggered by extreme episodes of gas accretion onto the SMBH, in particular in high-redshift galaxies. The photons emitted by a quasar eventually couple to the gas and drive large scale winds. In most hydrodynamical simulations, quasar feedback is approximated as a local thermal energy deposit within a few resolution elements, where the efficiency of the coupling between radiation of the gas is represented by a single parameter tuned to match global observations. In reality, this parameter conceals various physical processes that are not yet fully un- derstood as they rely on a number of assumptions about, for instance, the absorption of photons, mean free paths, optical depths, and shielding. To study the coupling between the photons and the gas I simulated the photon propagation using radiation-hydrodynamical equations (RHD), which describe the emission, absorption and propagation of photons with the gas and dust. Such an approach is critical for a better understanding of the coupling between the radiation and gas and how hydrodynamical sub-grid models can be improved in light of these results
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pearson, Richard John. "Mass estimation, dynamics and feedback in galaxy groups." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5676/.

Повний текст джерела
Анотація:
Accurate mass estimates for galaxy groups and clusters are important for understanding the evolution of matter within the universe. In this thesis we first discuss methods of mass estimation currently used within the literature, and introduce a set of scaling relations for mass estimation in cases where literature methods are not applicable. We find that methods based on group richness provide the best (i.e. lowest scatter) mass estimator. Secondly, we study the impact of feedback on hot group gas for a sample of optically selected groups. We refine the group selection using their dynamical state, identified through substructure in the distribution of member galaxies. We find this sample to be underluminous compared to an X-ray selected sample. Furthermore, with two groups showing high 2σ lower limits on entropy, the population of high entropy groups predicted by hydrodynamical simulations may have been detected. Finally, we combine measures of dynamical state and mass estimation scaling relations to understand how the presence of substructure can impact upon the ability to reliably estimate group and cluster masses. We find that substructure introduced through poor group identification has the largest effect on the quality of the final mass estimates.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huarte-Espinosa, Martín. "Modelling feedback and magnetic fields in radio galaxy evolution." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stinson, Gregory. "Supernova feedback in smoothed particle hydrodynamics simulations of galaxy formation /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Collet, Cédric. "Role of AGN feedback in galaxy evolution at high-redshift." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01061155.

Повний текст джерела
Анотація:
There is growing evidence that supermassive black holes may play a crucial role for galaxy evolution, in particular during the formation of massive galaxies at high redshift (z ~ 2 - 3). Our work focuses on quantifying the effects of jets of radiogalaxies and of large bolometric luminosities of quasars on the interstellar gas in their host galaxies. To this end, we studied the kinematics of the ionized gas in 12 moderately powerful radio galaxies and 11 quasars (6 radio-loud and 5 radio-quiet) at high redshifts with rest-frame optical imaging spectroscopy obtained at the VLT with SINFONI. We searched for outflows and other signatures of feedback from the supermassive black holes in the centers of these galaxies to evaluate if the AGN may plausibly quench star formation. In our sample of moderately powerful radiogalaxies, we observe velocity dispersions nearly as large as those observed in the most powerful ones (with FWHM ~ 1000 km/s), but the quantity of ionized gas is decreased by one order of magnitude (Mion gas ~ 10^8 - 10^9 Msun) and velocity gradients tend to be less dramatic (Δv < 400 km/s), when they are observed. In our sample of quasars, we had to carefully subtract the broad spectral component of emission lines to have access to its narrow, and spatially extended, component. We detect truly extended emission line regions in 4/6 sources of our radio-loud subsample and in 1/5 source of our radio-quiet subsample. We estimate that masses of ionized gas in these sources are smaller than in our sample of high-redshift radiogalaxies (with Mion gas ~ 10^7 - 10^8 Msun) and kinematics tend to be more quiescent, akin to what is observed in local quasars. Finally, detailed observations of two outliers among our sample of high-redshift radiogalaxies revealed that one of them is closely surrounded by 14 companions galaxies, hence lying in an overdensity. We therefore interpret the presence and morphology of ionized gas around these galaxies as evidence for repeated cycles ouf AGN outbursts, akin to what can be observed in local clusters of galaxies, which are prime examples of AGN feedback in the nearby Universe.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Panagoulia, Electra Kalliopi. "AGN feedback in local X-ray galaxy groups and clusters." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Galaxy feedback"

1

Antonuccio-Delogu, Vincenzo, and Joseph Silk, eds. AGN Feedback in Galaxy Formation. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511761386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guillermo Haro Conference on Astrophysics (3rd 1999 Puebla, Pue., Mexico). Cosmic evolution and galaxy formation: Structure, interactions, and feedback : the 3rd Guillermo Haro Astrophysics Conference. San Francisco, Calif: Astronomical Society of the Pacific, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Antonuccio-Delogu, V. AGN feedback in galaxy formation: Proceedings of the workshop held in Vulcano, Italy, May 18--22, 2008. New York: Cambridge University Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Silk, Joseph, and Vincenzo Antonuccio-Delogu. AGN Feedback in Galaxy Formation. Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Silk, Joseph, and Vincenzo Antonuccio-Delogu. Agn Feedback in Galaxy Formation. Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Silk, Joseph, and Vincenzo Antonuccio-Delogu. AGN Feedback in Galaxy Formation. Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Silk, Joseph, and Vincenzo Antonuccio-Delogu. AGN Feedback in Galaxy Formation. Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Foreman, William, Thaisa Storchi Bergmann, Roderik Overzier, and Rogério Riffel. Galaxy Evolution and Feedback Across Different Environments (IAU S359). University of Cambridge ESOL Examinations, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Galaxy feedback"

1

Silk, Joseph. "Feedback in Galaxy Formation." In Structure Formation in the Universe, 295–302. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0540-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silk, Joseph. "Feedback in Star and Galaxy Formation." In Galaxies and their Masks, 399–408. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7317-7_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

García-Burillo, Santiago, Françoise Combes, J. Graciá-Carpio, and A. Usero. "AGN Feeding and AGN Feedback." In Mapping the Galaxy and Nearby Galaxies, 150–55. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72768-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pizzolato, F. "Cold Feedback in Cooling–Flow Galaxy Clusters." In Eso Astrophysics Symposia, 243–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73484-0_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Borgani, Stefano, and L. Tornatore. "Hydro Simulations of the ICM: The Effect of Energy Feedback." In Galaxy Evolution in Groups and Clusters, 225–28. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0107-6_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mühle, Stefanie, E. R. Seaquist, S. Hüttemeister, U. Klein, and E. M. Wilcots. "The Feedback Between the Starburst and the ISM in NGC1569." In Mapping the Galaxy and Nearby Galaxies, 356. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72768-4_92.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Haiman, Zoltan. "Radiative Feedback From the First Objects and the End of the Cosmological Dark Age." In Toward a New Millennium in Galaxy Morphology, 191–99. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4114-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Loeb, Abraham, and Steven R. Furlanetto. "Stellar Feedback and Galaxy Formation." In The First Galaxies in the Universe. Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691144917.003.0006.

Повний текст джерела
Анотація:
This chapter studies radiative, mechanical, and chemical feedback in the earliest gaseous clouds, taking up the thread of discussion in the previous chapter to consider the influences placed on the formation of second-generation stars. While the feedback effects are sufficiently complex that a complete description of them is well beyond the capabilities of present-day computer simulations, the general principles that underlie them are well known. Therefore, the chapter focuses on these principles and then briefly sketches the global picture. Feedback is important in all galaxies, and many of the principles that are discussed in this chapter apply on a much wider scale than just the first stars and galaxies.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Chapter Six. Stellar Feedback and Galaxy Formation." In The First Galaxies in the Universe, 174–216. Princeton: Princeton University Press, 2013. http://dx.doi.org/10.1515/9781400845606.174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Loeb, Abraham, and Steven R. Furlanetto. "The First Stars." In The First Galaxies in the Universe. Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691144917.003.0005.

Повний текст джерела
Анотація:
This chapter considers the emergence of the complex chemical and radiative processes during the first stages of galaxy formation. It studies the appearance of the first stars, their feedback processes, and the resulting ionization structures that emerged during and shortly after the cosmic dawn. The formation of the first stars tens or hundreds of millions of years after the Big Bang had marked a crucial transition in the early Universe. Before this point, the Universe was elegantly described by a small number of parameters. But as soon as the first stars formed, more complex processes entered the scene. To illustrate this, the chapter provides a brief outline of the prevailing (though observationally untested) theory for this cosmological phase transition.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Galaxy feedback"

1

Parrish, I. J., E. Quataert, P. Sharma, Sebastian Heinz, and Eric Wilcots. "Beyond MHD in Galaxy Clusters." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Riabokin, Melania, Sebastian Heinz, and Eric Wilcots. "Emission in Gravitationally Heated Galaxy Groups." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gralla, Megan B., Mike D. Gladders, Sebastian Heinz, and Eric Wilcots. "Radio Sources in RCS Galaxy Clusters." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Short, C. J., P. A. Thomas, Sebastian Heinz, and Eric Wilcots. "Combining Semi-Analytic Models of Galaxy Formation with Simulations of Galaxy Clusters: the Need for AGN Heating." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rasmussen, J., T. J. Ponman, R. Johnson, A. Finoguenov, Sebastian Heinz, and Eric Wilcots. "The Impact of AGN Feedback in Galaxy Groups." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bellovary, Jillian, Fabio Governato, Tom Quinn, Greg Stinson, James Wadsley, Sebastian Heinz, and Eric Wilcots. "The Distribution of Black Holes in Galaxy Halos." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Puchwein, Ewald, Debora Sijacki, Volker Springel, Sebastian Heinz, and Eric Wilcots. "Simulations of AGN Feedback in Galaxy Clusters and Groups." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, H. Y., P. M. Ricker, P. M. Sutter, Sebastian Heinz, and Eric Wilcots. "The Influence of AGN Feedback on Galaxy Cluster Observables." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bicknell, Geoffrey. "Relativistic Jet Feedback in Galaxy Formation." In 25th Texas Symposium on Relativistic Astrophysics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.123.0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tran, Kim-Vy H., Amélie Saintonge, Sebastian Heinz, and Eric Wilcots. "The Importance of AGN in an Assembling Galaxy Cluster." In THE MONSTER’S FIERY BREATH: FEEDBACK IN GALAXIES, GROUPS, AND CLUSTERS. AIP, 2009. http://dx.doi.org/10.1063/1.3293038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії