Добірка наукової літератури з теми "Functional Safety, Cyber-Physical Systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Functional Safety, Cyber-Physical Systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Functional Safety, Cyber-Physical Systems"
Shukalov, A. V., I. O. Zharinov, and O. O. Zharinov. "The cyber-physical production conveyor industrial safety." IOP Conference Series: Earth and Environmental Science 839, no. 4 (September 1, 2021): 042089. http://dx.doi.org/10.1088/1755-1315/839/4/042089.
Повний текст джерелаMoradkhani, Farzaneh, and Martin Fränzle. "Functional verification of cyber-physical systems containing machine-learnt components." it - Information Technology 63, no. 5-6 (October 1, 2021): 277–87. http://dx.doi.org/10.1515/itit-2021-0009.
Повний текст джерелаBalador, Ali, Anis Kouba, Dajana Cassioli, Fotis Foukalas, Ricardo Severino, Daria Stepanova, Giovanni Agosta, et al. "Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems." Sensors 18, no. 11 (November 21, 2018): 4075. http://dx.doi.org/10.3390/s18114075.
Повний текст джерелаXie, Guoqi, Yang Bai, Wei Wu, Yanwen Li, Renfa Li, and Keqin Li. "Human-Interaction-aware Adaptive Functional Safety Processing for Multi-Functional Automotive Cyber-Physical Systems." ACM Transactions on Cyber-Physical Systems 3, no. 4 (October 12, 2019): 1–25. http://dx.doi.org/10.1145/3337931.
Повний текст джерелаGharib, Mohamad, Andrea Ceccarelli, Paolo Lollini, and Andrea Bondavalli. "A cyber–physical–social approach for engineering Functional Safety Requirements for automotive systems." Journal of Systems and Software 189 (July 2022): 111310. http://dx.doi.org/10.1016/j.jss.2022.111310.
Повний текст джерелаŚliwiński, M., E. Piesik, and J. Piesik. "Integrated functional safety and cyber security analysis." IFAC-PapersOnLine 51, no. 24 (2018): 1263–70. http://dx.doi.org/10.1016/j.ifacol.2018.09.572.
Повний текст джерелаXie, Guoqi, Hao Peng, Zhetao Li, Jinlin Song, Yong Xie, Renfa Li, and Keqin Li. "Reliability Enhancement Toward Functional Safety Goal Assurance in Energy-Aware Automotive Cyber-Physical Systems." IEEE Transactions on Industrial Informatics 14, no. 12 (December 2018): 5447–62. http://dx.doi.org/10.1109/tii.2018.2854762.
Повний текст джерелаMubeen, Saad, Elena Lisova, and Aneta Vulgarakis Feljan. "Timing Predictability and Security in Safety-Critical Industrial Cyber-Physical Systems: A Position Paper." Applied Sciences 10, no. 9 (April 30, 2020): 3125. http://dx.doi.org/10.3390/app10093125.
Повний текст джерелаPetrenko, Vyacheslav, and Mikhail Gurchinskiy. "Multi-agent deep reinforcement learning concept for mobile cyber-physical systems control." E3S Web of Conferences 270 (2021): 01036. http://dx.doi.org/10.1051/e3sconf/202127001036.
Повний текст джерелаKriaa, Siwar, Marc Bouissou, and Youssef Laarouchi. "A new safety and security risk analysis framework for industrial control systems." Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 233, no. 2 (April 19, 2018): 151–74. http://dx.doi.org/10.1177/1748006x18765885.
Повний текст джерелаДисертації з теми "Functional Safety, Cyber-Physical Systems"
Іванович, Рудик Юрій, Victor Kuts, Andrii Gavryliuk, Roman Naumchuk, and Rudyk Yuriy. "Required safety component of automotive cyber - physical systems." Thesis, IEEЕ, 2020. http://hdl.handle.net/123456789/7112.
Повний текст джерелаSajjad, Imran. "Autonomous Highway Systems Safety and Security." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/5696.
Повний текст джерелаAmarasinghe, Kasun. "Explainable Neural Networks based Anomaly Detection for Cyber-Physical Systems." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6091.
Повний текст джерелаCHRISTOFORAKIS, IOANNIS. "Protection and safety framework for on-chip communications and Mixed-Critical Cyber-Physical Systems." Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/279598.
Повний текст джерелаThe Internet of Things (IoT), an emerging global network of uniquely identifiable embedded computing devices within the existing Internet infrastructure, is transforming how we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. In addition to increased communication efficiency between connected objects, the IoT also brings new security and privacy challenges. The security requirements for the huge base of connected embedded devices are distinct on account of their limited memory, constrained middleware, and low computing power. Security is the new differentiator for embedded and IoT devices. At the on-chip level, several security features enhance the protection of a system by implementing access control to critical resources, by tamper and fault detection, by side-channel protection, and by protection against reverse engineering and IP theft. The thesis targets the design of on-chip system by implementing a methodology that ensures safety and security by design. This methodology is enabled by a framework developed to extend system capabilities so as to control the concurrent effects of security threats on the system behavior focusing on hardware level protection. We present the hardware architecture Framework, that combines Translation and Allocation Memory Management Unit (TAMMU) utilized in heterogeneous SoCs that support full virtualization integrated with a hardware protection architecture (MSU). These hardware enhancements focus on isolating physical memory compartments by applying access rules; thus, we allow dynamic security policies to be enforced at the hardware for protection against untrustworthy hardware or software components. On the other hand, Networks-on-Chip manage the traffic injection rate mainly by employing complex techniques; either back-pressure based low-control mechanisms or rate-control of traffic load (i.e. traffic shaping). This work proposes such a Traffic Shaper Module that supports both monitoring and traffic control at the on-chip network interface or the memory controller. The advantage of this Traffic Shaper Module is that proposed security framework provides guaranteed memory bandwidth to the critical applications by limiting traffic of non-critical tasks. The system is developed in the Xilinx ZYNQ7000 System-on-Chip while the measurements were captured on a Zed-board development board. By enabling the Traffic Shaper in our architecture, we achieved ne-grain bandwidth control with negligible overhead, while providing bandwidth of only 0.5-5 percent less than the theoretical specified bandwidth The proposed TAMMU architecture offers unique innovative features supporting multiple concurrently active virtual machine instances (VMs) with zero-latency world-context switching and enabling address translation services for up to a thousand virtual domains while serving multiple devices. At the same the proposed design allows for serving multiple address translation requests in parallel and per domain Translation Look-aside Buffer (TLB) invalidation. Proposed architecture is innovative in relation to the state of the art as it combines enabling address translation services with the capability that the proposed security framework provides guaranteed memory bandwidth and memory protection. The combination of these two complex features is not supported in previous systems. We prove that despite the increased need for hardware, our design manages to keep resource utilization at least at the same level as other known technologies implemented in modern systems. Significant differentiation, favorable to our architecture, is also achieved in performance compared to the state of the art. The need for comparisons with alternative architectures made it necessary to integrate our system into the Xilinx XC5VLX110T FPGA platform as well. The thesis is organized as follows. An overview of state of the art is given in Introduction section. The techniques that our framework include and its features are described in Section 2, followed by full system overview in Section 3. In Section 4, the testing of Framework and the performance and resource requirements are discussed. In Section 5, comparison with the State of the Art presented. A healthcare example is given in Section 6. Finally, Section 7 concludes the thesis.
Asplund, Fredrik. "Risks Related to the Use of Software Tools when Developing Cyber-Physical Systems : A Critical Perspective on the Future of Developing Complex, Safety-Critical Systems." Doctoral thesis, KTH, Mekatronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152672.
Повний текст джерелаDen ökande komplexiteten och storleken på Cyber-Fysiska System (CPS) har lett till att produktiviteten i utvecklingen av CPS har minskat kraftigt. Krav på att CPS ska vara säkra att använda förvärrar problemet ytterligare, då dessa ofta är svåra att säkerställa och samtidigt av stor vikt för samhället. Mjukvaruverktyg, eller egentligen alla insatser för att automatisera utvecklingen av CPS, är en central komponent i många innovationer menade att lösa detta problem. Även om forskningen endast delvis studerat säkerhetsrelaterade konsekvenser av att automatisera produktutveckling, så är det känt att automation har haft en kraftig (och subtil) inverkan på operationella system. Om verktyg ska lösa problemet med en ökande komplexitet hos säkerhetskritiska CPS, så måste verktygens påverkan på produktutveckling, och i förlängningen på det säkra användandet av slutprodukterna, vara känd. Den här boken ger en översikt av forskningsfronten gällande säkerhetsrelaterade konsekvenser av verktygsanvändning. Denna kommer från en litteraturstudie i områdena systemsäkerhet, mjukvaruutveckling och verktygsintegration. Industriella säkerhetsstandarder identifieras som en viktig informationskälla. Då riskerna med användandet av enskilda verktyg har undersökts i stor utsträckning hos producenter av produkter relaterade till transport, studeras flera välkända säkerhetsstandarder från denna domän. Enligt de utvalda standarderna bör automation primärt utvärderas utifrån dess förmåga att självständigt utföra enskilda processteg på ett robust sätt. Automation som stödjer operatörers egna handlingar ses som tämligen oviktig. En konceptuell modell och en referensmodell har utvecklats baserat på litteraturstudien. Den förstnämnda definierar vilka entiteter och relationer som är av vikt för säkerhetsrelaterade konsekvenser av verktygsanvändning. Den sistnämnda beskriver olika aspekter av verktygsintegration och hur dessa relaterar till varandra. Genom att kombinera modellerna och utföra en riskanalys har egenskaper hos verktygskedjor som måste säkerställas för att undvika risk identifierats. Tio sådana säkerhetsrelaterade egenskaper beskrivs. Dessa säkerhetsrelaterade egenskaper möjliggör ett systematiskt sätt att begränsa vad som måste beaktas under studier av risker relaterade till verktygsanvändning. Hypotesen att ett stort antal faktorer relaterade till verktygsanvändning innebär risk kunde därför testas i en empirisk studie. Denna studie identifierade säkerhetsrelaterade svagheter i utvecklingsmiljöer knutna både till höga och låga nivåer av automation. Slutsatsen är att ett brett perspektiv, som inkluderar fler faktorer än de som beaktas av de utvalda standarderna, kommer att behövas i framtiden. Tre möjliga orsaker till att ett bredare perspektiv ändå skulle vara irrelevant analyseras, nämligen egenskaper specifika för CPS-domänen, egenskaper hos säkerhetskritiska CPS och möjligheten att lita på en beprövad, manuell process. Slutsatsen blir att ett bredare perspektiv är motiverat, och att den framtida utvecklingen av utvecklingsmiljöer för CPS sannolikt kommer att öka denna betydelse. Baserat på detta breda perspektiv läggs förslag fram för hur de mentala modellerna som bärs fram av de utvalda säkerhetstandarderna (och andra standarder som dem) kan utvecklas.
QC 20141001
von, Wenckstern Michael [Verfasser]. "Verification of Structural and Extra-Functional Properties in Component and Connector Models for Embedded and Cyber-Physical Systems / Michael von Wenckstern." Düren : Shaker, 2020. http://d-nb.info/1208599623/34.
Повний текст джерелаLaarouchi, Mohamed Emine. "A safety approach for CPS-IoT." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAS010.
Повний текст джерелаFor several years, we have been witnessing a convergence between cyber-physical systems (CPS) and the Internet of Things (IoT). CPS integrate embedded systems with their physical and human environment by ensuring communication between different sensors and actuators. The IoT targets the network and communication protocols between connected objects. This convergence offers prospects for various applications ranging from connected vehicles to smart grids and the factories of the future. The aim of this thesis is to ensure and guarantee the operational safety of CPS-IoT systems. For this, we have considered a specific case study throughout the thesis which is UAVs. Initially, we focused on the different methods of analysis of operational safety that already exist. These methods have proved their worth for the design and implementation of on-board systems. Throughout this process, we tried to answer the following question: are these existing methods adequate to perform the necessary safety analyses for CPS-IoT? It was concluded that new approaches to analyse the safety of operation of CPS-IoT systems are needed due to the significant complexity of these systems. As a second step, a methodology for predictive analysis of the resilience of CPS-IoTs was proposed. Resilience is defined as being the ability of a system to tolerate failures, to continue to provide the requested service while considering the various internal and external constraints of the system. Two different types of resilience have been differentiated: endogenous and exogenous resilience. Endogenous resilience is the inherent ability of the system to detect and deal with internal faults and malicious attacks. Exogenous resilience is the ongoing ability of the system to maintain safe operation in its surrounding environment. The last part of our work was to investigate the impact of artificial intelligence on the safe operation of CPS-IoTs. More specifically, we looked at how artificial intelligence could be used to enhance UAV safety in the path planning phase. The results obtained were compared with existing planning algorithms
Kim, Hyoseung. "Towards Predictable Real-Time Performance on Multi-Core Platforms." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/836.
Повний текст джерелаKriaa, Siwar. "Modélisation conjointe de la sûreté et de la sécurité pour l’évaluation des risques dans les systèmes cyber-physiques." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC014/document.
Повний текст джерелаCyber physical systems (CPS) denote systems that embed programmable components in order to control a physical process or infrastructure. CPS are henceforth widely used in different industries like energy, aeronautics, automotive, medical or chemical industry. Among the variety of existing CPS stand SCADA (Supervisory Control And Data Acquisition) systems that offer the necessary means to control and supervise critical infrastructures. Their failure or malfunction can engender adverse consequences on the system and its environment.SCADA systems used to be isolated and based on simple components and proprietary standards. They are nowadays increasingly integrating information and communication technologies (ICT) in order to facilitate supervision and control of the industrial process and to reduce exploitation costs. This trend induces more complexity in SCADA systems and exposes them to cyber-attacks that exploit vulnerabilities already existent in the ICT components. Such attacks can reach some critical components within the system and alter its functioning causing safety harms.We associate throughout this dissertation safety with accidental risks originating from the system and security with malicious risks with a focus on cyber-attacks. In this context of industrial systems supervised by new SCADA systems, safety and security requirements and risks converge and can have mutual interactions. A joint risk analysis covering both safety and security aspects would be necessary to identify these interactions and optimize the risk management.In this thesis, we give first a comprehensive survey of existing approaches considering both safety and security issues for industrial systems, and highlight their shortcomings according to the four following criteria that we believe essential for a good model-based approach: formal, automatic, qualitative and quantitative and robust (i.e. easily integrates changes on system into the model).Next, we propose a new model-based approach for a safety and security joint risk analysis: S-cube (SCADA Safety and Security modeling), that satisfies all the above criteria. The S-cube approach enables to formally model CPS and yields the associated qualitative and quantitative risk analysis. Thanks to graphical modeling, S-cube enables to input the system architecture and to easily consider different hypothesis about it. It enables next to automatically generate safety and security risk scenarios likely to happen on this architecture and that lead to a given undesirable event, with an estimation of their probabilities.The S-cube approach is based on a knowledge base that describes the typical components of industrial architectures encompassing information, process control and instrumentation levels. This knowledge base has been built upon a taxonomy of attacks and failure modes and a hierarchical top-down reasoning mechanism. It has been implemented using the Figaro modeling language and the associated tools. In order to build the model of a system, the user only has to describe graphically the physical and functional (in terms of software and data flows) architectures of the system. The association of the knowledge base and the system architecture produces a dynamic state based model: a Continuous Time Markov Chain. Because of the combinatorial explosion of the states, this CTMC cannot be exhaustively built, but it can be explored in two ways: by a search of sequences leading to an undesirable event, or by Monte Carlo simulation. This yields both qualitative and quantitative results.We finally illustrate the S-cube approach on a realistic case study: a pumped storage hydroelectric plant, in order to show its ability to yield a holistic analysis encompassing safety and security risks on such a system. We investigate the results obtained in order to identify potential safety and security interactions and give recommendations
Fraccaroli, Enrico. "A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems." Doctoral thesis, 2019. http://hdl.handle.net/11562/995239.
Повний текст джерелаКниги з теми "Functional Safety, Cyber-Physical Systems"
Furrer, Frank J. Safety and Security of Cyber-Physical Systems. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37182-1.
Повний текст джерелаFerrari, Riccardo M. G., and André M. H. Teixeira, eds. Safety, Security and Privacy for Cyber-Physical Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65048-3.
Повний текст джерелаSayed-Mouchaweh, Moamar, ed. Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74962-4.
Повний текст джерелаGriffor, Edward. Handbook of System Safety and Security: Cyber Risk and Risk Management, Cyber Security, Threat Analysis, Functional Safety, Software Systems, and Cyber Physical Systems. Elsevier Science & Technology Books, 2016.
Знайти повний текст джерелаGriffor, Edward. Handbook of System Safety and Security: Cyber Risk and Risk Management, Cyber Security, Threat Analysis, Functional Safety, Software Systems, and Cyber Physical Systems. Elsevier Science & Technology Books, 2016.
Знайти повний текст джерелаFerrari, Riccardo M. G., and André M. H. Teixeira. Safety, Security and Privacy for Cyber-Physical Systems. Springer International Publishing AG, 2022.
Знайти повний текст джерелаFerrari, Riccardo M. G., and André M. H. Teixeira. Safety, Security, and Privacy for Cyber-Physical Systems. Springer International Publishing AG, 2021.
Знайти повний текст джерелаWard, David, and Paul Wooderson. Automotive Cybersecurity: An Introduction to ISO/SAE 21434. SAE International, 2021. http://dx.doi.org/10.4271/9781468600810.
Повний текст джерелаDiagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems. Springer, 2018.
Знайти повний текст джерелаSayed-Mouchaweh, Moamar. Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems. Springer International Publishing AG, 2018.
Знайти повний текст джерелаЧастини книг з теми "Functional Safety, Cyber-Physical Systems"
Duracz, Adam, Ayman Aljarbouh, Ferenc A. Bartha, Jawad Masood, Roland Philippsen, Henrik Eriksson, Jan Duracz, Fei Xu, Yingfu Zeng, and Christian Grante. "Advanced Hazard Analysis and Risk Assessment in the ISO 26262 Functional Safety Standard Using Rigorous Simulation." In Cyber Physical Systems. Model-Based Design, 108–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41131-2_6.
Повний текст джерелаGharib, Mohamad, Paolo Lollini, Andrea Ceccarelli, and Andrea Bondavalli. "Dealing with Functional Safety Requirements for Automotive Systems: A Cyber-Physical-Social Approach." In Critical Information Infrastructures Security, 194–206. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99843-5_18.
Повний текст джерелаBroy, Manfred, Wolfgang Böhm, and Bernhard Rumpe. "Advanced Systems Engineering." In Model-Based Engineering of Collaborative Embedded Systems, 353–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62136-0_19.
Повний текст джерелаFurrer, Frank J. "Cyber-Physical Systems." In Safety and Security of Cyber-Physical Systems, 9–76. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37182-1_2.
Повний текст джерелаGkioulos, Vasileios. "Safety in Cyber-Physical Systems." In Encyclopedia of Cryptography, Security and Privacy, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27739-9_1730-2.
Повний текст джерелаJuhász, Dávid, László Domoszlai, and Barnabás Králik. "Rea: Workflows for Cyber-Physical Systems." In Central European Functional Programming School, 479–506. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15940-9_14.
Повний текст джерелаPlatzer, André. "Safety & Contracts." In Logical Foundations of Cyber-Physical Systems, 95–136. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63588-0_4.
Повний текст джерелаHaddadin, Sami. "Physical Safety in Robotics." In Formal Modeling and Verification of Cyber-Physical Systems, 249–71. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09994-7_9.
Повний текст джерелаFurrer, Frank J. "Principles for Safety." In Safety and Security of Cyber-Physical Systems, 433–48. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37182-1_10.
Повний текст джерелаBukunov, Alexander. "Functional Modeling of an Integration Information System for Building Design." In Cyber-Physical Systems and Control, 525–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34983-7_51.
Повний текст джерелаТези доповідей конференцій з теми "Functional Safety, Cyber-Physical Systems"
Fraccaroli, Enrico, Davide Quaglia, and Franco Fummi. "Simulation-based Holistic Functional Safety Assessment for Networked Cyber-Physical Systems." In 2018 Forum on specification & Design Languages (FDL). IEEE, 2018. http://dx.doi.org/10.1109/fdl.2018.8524050.
Повний текст джерелаGharib, Mohamad, Paolo Lollini, Andrea Ceccarelli, and Andrea Bondavalli. "Engineering Functional Safety Requirements for Automotive Systems: A Cyber-Physical-Social Approach." In 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). IEEE, 2019. http://dx.doi.org/10.1109/hase.2019.00021.
Повний текст джерелаMadala, Kaushik, and Hyunsook Do. "Functional Safety Hazards for Machine Learning Components in Autonomous Vehicles." In 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). IEEE, 2021. http://dx.doi.org/10.1109/icps49255.2021.9468143.
Повний текст джерелаAceituna, Daniel, Kaushik Madala, and Hyunsook Do. "Deriving Functional Safety Requirements Using Undesired Combination State Templates." In 2018 4th International Workshop on Requirements Engineering for Self-Adaptive, Collaborative, and Cyber Physical Systems (RESACS). IEEE, 2018. http://dx.doi.org/10.1109/resacs.2018.00006.
Повний текст джерелаGu, Ai, Zhenyu Yin, Yue Li, Bo Su, and Lan Shen. "Functional Safety Assessment and Security Protection Framework of Cyber Physical Machine Tool System." In 2018 IEEE 4th International Conference on Computer and Communications (ICCC). IEEE, 2018. http://dx.doi.org/10.1109/compcomm.2018.8780915.
Повний текст джерелаYang, Anyi. "Discussion on Functional Safety and Cyber Security of I&C System in Nuclear Facilities." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-90807.
Повний текст джерелаJin, Jianghong, Zhicong Zhao, and Yutian Wang. "Coordination Method of Functional Safety and Cyber Security for Industrial Control Systems." In 2021 China Automation Congress (CAC). IEEE, 2021. http://dx.doi.org/10.1109/cac53003.2021.9727479.
Повний текст джерелаTian, Yukun, Jianghai Li, and Xiaojin Huang. "Integrated Risk Analysis of Function Safety and Cyber Security on I&C System of HTP-PM With STPA-SafeSec." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93395.
Повний текст джерелаSvoboda, Jiří, and Vladislav Kocián. "Framework for Virtual and Physical Testing of Automated Vehicle Systems." In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2020-acm-046.
Повний текст джерелаZelinko, Ilona, Vyacheslav Kharchenko, and Konstantin Leontiev. "Cyber Security Assessment of Component Off-the-Shelf Based NPP I&C System Using IMECA Technique." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67120.
Повний текст джерела