Дисертації з теми "Fully nonlinear equation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-28 дисертацій для дослідження на тему "Fully nonlinear equation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Terrone, Gabriele. "Singular Perturbation and Homogenization Problems in Control Theory, Differential Games and fully nonlinear Partial Differential Equations." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426271.
Повний текст джерелаALESSANDRONI, ROBERTA. "Evolution of hypersurfaces by curvature functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/661.
Повний текст джерелаWe consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
Chen, Huyuan. "Fully nonlinear elliptic equations and semilinear fractional equations." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/115532.
Повний текст джерелаEsta tesis esta dividida en seis partes. La primera parte está dedicada a probar propiedades de Hadamard y teoremas del tipo de Liouville para soluciones viscosas de ecuaciones diferenciales parciales elípticas completamente no lineales con término gradiente \begin{equation}\label{eq06-10-13 1} \mathcal{M}^{-}(|x|,D^2u)+\sigma(|x|)|Du|+f(x,u)\leq 0,\quad \ x\in\Omega, \end{equation} donde $\Omega=\mathbb{R}^N$ o un dominio exterior, las funciones $\sigma:[0,\infty)\to\mathbb{R}$ y $f:\Omega\times (0,\infty)\to (0,\infty)$ son continuas las cuales satisfacen algunas condiciones extras. En la segunda parte se estudia la existencia de soluciones que explotan en la frontera para ecuaciones elípticas fraccionarias semilineales \begin{equation}\label{eq06-10-13 2} \arraycolsep=1pt \begin{array}{lll} (-\Delta)^{\alpha} u(x)+|u|^{p-1}u(x)=h(x),\quad & x\in\Omega,\\[2mm] \phantom{ (-\Delta)^{\alpha} u(x)+|u|^{p-1}} u(x)=0,\quad & x\in\bar\Omega^c,\\[2mm] \phantom{ (-\Delta)^{\alpha} \ } \lim_{x\in\Omega, x\to\partial\Omega}u(x)=+\infty, \end{array} \end{equation} donde $p>1$, $\Omega$ es un dominio abierto acotado $C^2$ de $\mathbb{R}^N(N\geq2)$, el operador $(-\Delta)^{\alpha}$ con $\alpha\in(0,1)$ es el Laplaciano fraccionario y $h:\Omega\to\R$ es una función continua la cual satisface algunas condiciones extras. Por otra parte, analizamos la unicidad y el comportamiento asimptótico de soluciones al problema (\ref{eq06-10-13 2}). El objetivo principal de la tercera parte es investigar soluciones positivas para ecuaciones elípticas fraccionarias \begin{equation}\label{eq06-10-13 3} \arraycolsep=1pt \begin{array}{lll} (-\Delta)^{\alpha} u(x)+|u|^{p-1}u(x)=0,\quad & x\in\Omega\setminus\mathcal{C},\\[2mm] \phantom{ (-\Delta)^{\alpha} u(x)+|u|^{p-1}} u(x)=0,\quad & x\in\Omega^c,\\[2mm] \phantom{ (-\Delta) \ } \lim_{x\in\Omega\setminus\mathcal{C}, \ x\to\mathcal{C}}u(x)=+\infty, \end{array} \end{equation} donde $p>1$ y $\Omega$ es un dominio abierto acotado $C^2$ de $\mathbb{R}^N(N\geq2)$, $\mathcal{C}\subset \Omega$ es el frontera de dominio $G$ que es $C^2$ y satisface $\bar G\subset\Omega$. Consideramos la existencia de soluciones positivas para el problema (\ref{eq06-10-13 3}). Mas aún, analizamos la unicidad, el comportamiento asimptótico y la no existencia al problema (\ref{eq06-10-13 3}). En la cuarta parte, estudiamos la existencia de soluciones débiles de (F) $ (-\Delta)^\alpha u+g(u)=\nu $ en un dominio $\Omega$ abierto acotado $C^2$ de $\R^N (N\ge2)$ el cual se desvanece en $\Omega^c$, donde $\alpha\in(0,1)$, $\nu$ es una medida de Radon y $g$ es una función no decreciente satisfaciendo algunas hipótesis extras. Cuando $g$ satisface una condición de integrabilidad subcrítica, probamos la existencia y unicidad de una solución débil para el problema (F) para cualquier medida. En el caso donde $\nu$ es una masa de Dirac, caracterizamos el comportamiento asimptótico de soluciones a (F). Asimismo, cuando $g(r)=|r|^{k-1}r$ con $k$ supercrítico, mostramos que una condición de absoluta continuidad de la medida con respecto a alguna capacidad de Bessel es una condición necesaria y suficiente para que (F) sea resuelta. El propósito de la quinta parte es investigar soluciones singulares débiles y fuertes de ecuaciones elípticas fraccionarias semilineales. Sean $p\in(0,\frac{N}{N-2\alpha})$, $\alpha\in(0,1)$, $k>0$ y $\Omega\subset \R^N(N\geq2)$ un dominio abierto acotado $C^2$ conteniendo a $0$ y $\delta_0$ la masa de Dirac en $0$, estudiamos que la solución débil de $(E)_k$ $ (-\Delta)^\alpha u+u^p=k\delta_0 $ en $\Omega$ la cual se desvanece en $\Omega^c$ es una solución débil singular de $(E^*)$ $ (-\Delta)^\alpha u+u^p=0 $ en $\Omega\setminus\{0\}$ con el mismo dato externo. Por otra parte, estudiamos el límite de soluciones débiles de $(E)_k$ cuando $k\to\infty$. Para $p\in(0, 1+\frac{2\alpha}{N}]$, el límite es infinito en $\Omega$. Para $p\in(1+\frac{2\alpha}N,\frac{N}{N-2\alpha})$, el límite es una solución fuertemente singular de $(E^*)$. Finalmente, en la sexta parte estudiamos la ecuación elíptica fraccionaria semilineal (E1) $(-\Delta)^\alpha u+\epsilon g(|\nabla u|)=\nu $ en un dominio $\Omega$ abierto acotado $C^2$ de $\R^N (N\ge2)$, el cual se desvanece en $\Omega^c$, donde $\epsilon=\pm1$, $\alpha\in(1/2,1)$, $\nu$ es una medida de Radon y $g:\R_+\mapsto\R_+$ es una funci\'on continua. Probamos la existencia de soluciones débiles para el problema (E1) cuando $g$ es subcrítico. Además, el comportamiento asimptótico y la unicidad de soluciones son descritas cuando $\epsilon=1$, $\nu$ es una masa de Dirac y $g(s)=s^p$ con $p\in(0,\frac)$.
Sui, Zhenan. "On Some Classes of Fully Nonlinear Partial Differential Equations." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429640709.
Повний текст джерелаLiu, Weian, Yin Yang, and Gang Lu. "Viscosity solutions of fully nonlinear parabolic systems." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2621/.
Повний текст джерелаRang, Marcus [Verfasser]. "Regularity results for nonlocal fully nonlinear elliptic equations / Marcus Rang." Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/103805026X/34.
Повний текст джерелаLai, Mijia. "Fully nonlinear flows and Hessian equations on compact Kahler manifolds." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1010.
Повний текст джерелаSotoudeh, Zahra. "Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41179.
Повний текст джерелаZhang, Wei [Verfasser]. "Asymptotics for subcritical fully nonlinear equations with isolated singularities / Wei Zhang." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1172414165/34.
Повний текст джерелаCoutinho, Francisco Edson Gama. "Universal moduli of continuity for solutions to fully nonlinear elliptic equations." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11427.
Повний текст джерелаIn this paper we provide a universal solution for continuity module in the direction of the viscosity of fully nonlinear elliptic equations considering properties of the function f integrable in different situations. Established inner estimate for the solutions of these equations based on some conditions the norm of the function f. To obtain regularity in solutions of these inhomogeneous equations and coefficients of variables we use a method of compactness, which consists essentially of approximating solutions of inhomogeneous equations for a solution of a homogeneous equation in order to "inherit" the regularity that those equations possess.
Neste trabalho fornecemos mÃdulo de continuidade universal para soluÃÃes, no sentido da viscosidade,de equaÃÃes elÃpticas totalmente nÃo lineares, considerando propriedades de integrabilidade da funÃÃo f em diferentes situaÃÃes. Estabelecemos estimativa interior para as soluÃÃes dessas equaÃÃes baseadas em algumas condiÃÃes da norma da funÃÃo f. Para se obter regularidade nas soluÃÃes dessas equacÃes nÃo homogÃneas e de coeficientes variÃveis usamos um mÃtodo de compacidade, o qual consiste, essencialmente, em aproximar soluÃÃes de equaÃÃes nÃo homogÃneas por uma soluÃÃo de uma equaÃÃo homogÃnea com o objetivo de âherdarâ a regularidade que essas equaÃÃes possuem.
Guo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.
Повний текст джерелаGalise, Giulio. "Maximum principles, entire solutions and removable singularities of fully nonlinear second order equations." Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/928.
Повний текст джерелаThis PhD thesis is devoted to some qualitative aspect of viscosity solutions of nonlinear second order elliptic partial di erential equations of the form F(x; u(x);Du(x);D2u(x)) = f(x)... [edited by author]
XI n.s.
Prazeres, Disson Soares dos. "Improved regularity estimates in nonlinear elliptic equations." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13536.
Повний текст джерелаConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
In this work we establish local regularity estimates for at solutions to non-convex fully nonlinear elliptic equations and we study cavitation type equations modeled within coef- icients bounded and measurable.
Neste trabalho estabelecemos estimativas de regularidade local para soluÃÃes "flat" de equaÃÃes elÃpticas totalmente nÃo-lineares nÃo-convexas e estudamos equations do tipo cavidade com coeficientes meramente mensurÃveis.
Chen, Huyuan. "Fully linear elliptic equations and semilinear fractionnal elliptic equations." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Повний текст джерелаThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Neji, Ali. "Existence unicité et régularité de solutions de problèmes non linéaires et complètement non linéaires elliptiques singuliers." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1017.
Повний текст джерелаWe studied in this thesis the properties of existence and regularity for various nonlinear partial differential equations of elliptic type. We proved the existence of weak solutions to certain problems involving the p-Laplacian operator using critical point theory and the mountain pass theorem . We have also showed the existence of viscosity solutions for singular equations involving fully nonlinear operators
Girard, Réjean. "Relativistic nonlinear wave equations with groups of internal symmetry." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75688.
Повний текст джерелаvon, Nessi Gregory Thomas, and greg vonnessi@maths anu edu au. "Regularity Results for Potential Functions of the Optimal Transportation Problem on Spheres and Related Hessian Equations." The Australian National University. Mathematical Sciences Institute, 2008. http://thesis.anu.edu.au./public/adt-ANU20081215.120059.
Повний текст джерелаMichelis, Katina. "A sequential eigenfunction expansion approach for certain nonlinear integral equations /." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20588.
Повний текст джерелаSamurkas, Tony. "Nonlinear viscoelastic behaviour of linear polyethylene : molecular weight effects and constitutive equation evaluations." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41766.
Повний текст джерелаBradley, Aoibhinn Maire. "Analysis of nonlinear spatio-temporal partial differential equations : applications to host-parasite systems and bubble growth." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24405.
Повний текст джерелаFilippini, Andrea Gilberto. "Free surface flow simulation in estuarine and coastal environments : numerical development and application on unstructured meshes." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0404/document.
Повний текст джерелаCes dernières décennies, une attention particulière a été portée sur la modélisation mathématique et la simulation numérique de la propagation de vagues en environnements côtiers. Une description physiquement correcte des phénomènes à grande échelle, qui apparaissent dans les régions d'eau peu profonde, doit prendre en compte de forts effets non-linéaires et dispersifs, ainsi que l'interaction avec des bathymétries complexes. Dans un premier temps, une étude du comportement en régime non linéaire de différents modèles de type Boussinesq est proposée, démontrant l'avantage d'utiliser des modèles fortement non-linéaires par rapport à des modèles faiblement non-linéaires et faiblement dispersifs (couramment utilisés). Ensuite, une nouvelle approche flexible pour résoudre les équations fortement non-linéaires et faiblement dispersives de Green-Naghdi est présentée. Cette stratégie permet d'améliorer un code "shallow water" existant par le simple ajout d'un terme algébrique dans l'équation du moment et est particulièrement adapté à l'utilisation de techniques hybrides pour le déferlement des vagues. De plus, la première discrétisation des équations de Green-Naghdi sur maillage non structuré est proposée via des schémas hybrides Volume Fini/Élément Fini. Finalement, les modèles et méthodes développés dans la thèse sont appliqués à l'étude du problème physique de la formation du mascaret dans des estuaires convergents et alluviaux. Cela a amené à la première caractérisation d'estuaire naturel en terme d'apparition de mascaret
Labutin, Denis. "Potential theory for fully nonlinear elliptic equations." Phd thesis, 1999. http://hdl.handle.net/1885/147899.
Повний текст джерелаHoltby, Derek William. "Higher order estimates for fully nonlinear difference equations." Phd thesis, 1996. http://hdl.handle.net/1885/145341.
Повний текст джерелаReye, Stephen James. "Fully non-linear parabolic differential equations of second order." Phd thesis, 1985. http://hdl.handle.net/1885/138487.
Повний текст джерелаNeilan, Michael Joseph. "Numerical methods for fully nonlinear second order partial differential equations." 2009. http://etd.utk.edu/2009/Spring2009Dissertations/NeilanMichaelJoseph.pdf.
Повний текст джерелаChang, Lara Hector Andres. "Regularity for solutions of nonlocal fully nonlinear parabolic equations and free boundaries on two dimensional cones." 2013. http://hdl.handle.net/2152/21668.
Повний текст джерелаtext
LIN, PO-AN, and 林柏安. "A Survey on The Book ”Fully Nonlinear Elliptic Equations” By Luis.A. Caarelli and Xavier Cabr´e." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/5449up.
Повний текст джерелаvon, Nessi Gregory Thomas. "Regularity Results for Potential Functions of the Optimal Transportation Problem on Spheres and Related Hessian Equations." Phd thesis, 2008. http://hdl.handle.net/1885/49370.
Повний текст джерела