Добірка наукової літератури з теми "Fully nonlinear equation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fully nonlinear equation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fully nonlinear equation"
Trudinger, Neil S. "On degenerate fully nonlinear elliptic equations in balls." Bulletin of the Australian Mathematical Society 35, no. 2 (April 1987): 299–307. http://dx.doi.org/10.1017/s0004972700013253.
Повний текст джерелаZhang, Hong-sheng, Hua-wei Zhou, Guang-wen Hong, and Jian-min Yang. "A FULLY NONLINEAR BOUSSINESQ MODEL FOR WATER WAVE PROPAGATION." Coastal Engineering Proceedings 1, no. 32 (January 31, 2011): 12. http://dx.doi.org/10.9753/icce.v32.waves.12.
Повний текст джерелаIvanov, S. K., and A. M. Kamchatnov. "WAVE PULSE EVOLUTION FOR FULLY NONLINEAR SERRE EQUATION." XXII workshop of the Council of nonlinear dynamics of the Russian Academy of Sciences 47, no. 1 (April 30, 2019): 58–60. http://dx.doi.org/10.29006/1564-2291.jor-2019.47(1).15.
Повний текст джерелаDunphy, M., C. Subich, and M. Stastna. "Spectral methods for internal waves: indistinguishable density profiles and double-humped solitary waves." Nonlinear Processes in Geophysics 18, no. 3 (June 14, 2011): 351–58. http://dx.doi.org/10.5194/npg-18-351-2011.
Повний текст джерелаTrudinger, Neil S. "Hölder gradient estimates for fully nonlinear elliptic equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 108, no. 1-2 (1988): 57–65. http://dx.doi.org/10.1017/s0308210500026512.
Повний текст джерелаCHOI, WOOYOUNG, and ROBERTO CAMASSA. "Fully nonlinear internal waves in a two-fluid system." Journal of Fluid Mechanics 396 (October 10, 1999): 1–36. http://dx.doi.org/10.1017/s0022112099005820.
Повний текст джерелаAkagi, Goro. "Local solvability of a fully nonlinear parabolic equation." Kodai Mathematical Journal 37, no. 3 (October 2014): 702–27. http://dx.doi.org/10.2996/kmj/1414674617.
Повний текст джерелаLee, H. Y. "Fully discrete methods for the nonlinear Schrödinger equation." Computers & Mathematics with Applications 28, no. 6 (September 1994): 9–24. http://dx.doi.org/10.1016/0898-1221(94)00148-0.
Повний текст джерелаTam, Luen-Fai, and Tom Yau-Heng Wan. "A fully nonlinear equation in relativistic Teichmüller theory." International Journal of Mathematics 30, no. 13 (December 2019): 1940004. http://dx.doi.org/10.1142/s0129167x19400044.
Повний текст джерелаChernitskii, Alexander A. "Born-infeld electrodynamics: Clifford number and spinor representations." International Journal of Mathematics and Mathematical Sciences 31, no. 2 (2002): 77–84. http://dx.doi.org/10.1155/s016117120210620x.
Повний текст джерелаДисертації з теми "Fully nonlinear equation"
Terrone, Gabriele. "Singular Perturbation and Homogenization Problems in Control Theory, Differential Games and fully nonlinear Partial Differential Equations." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426271.
Повний текст джерелаALESSANDRONI, ROBERTA. "Evolution of hypersurfaces by curvature functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/661.
Повний текст джерелаWe consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
Chen, Huyuan. "Fully nonlinear elliptic equations and semilinear fractional equations." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/115532.
Повний текст джерелаEsta tesis esta dividida en seis partes. La primera parte está dedicada a probar propiedades de Hadamard y teoremas del tipo de Liouville para soluciones viscosas de ecuaciones diferenciales parciales elípticas completamente no lineales con término gradiente \begin{equation}\label{eq06-10-13 1} \mathcal{M}^{-}(|x|,D^2u)+\sigma(|x|)|Du|+f(x,u)\leq 0,\quad \ x\in\Omega, \end{equation} donde $\Omega=\mathbb{R}^N$ o un dominio exterior, las funciones $\sigma:[0,\infty)\to\mathbb{R}$ y $f:\Omega\times (0,\infty)\to (0,\infty)$ son continuas las cuales satisfacen algunas condiciones extras. En la segunda parte se estudia la existencia de soluciones que explotan en la frontera para ecuaciones elípticas fraccionarias semilineales \begin{equation}\label{eq06-10-13 2} \arraycolsep=1pt \begin{array}{lll} (-\Delta)^{\alpha} u(x)+|u|^{p-1}u(x)=h(x),\quad & x\in\Omega,\\[2mm] \phantom{ (-\Delta)^{\alpha} u(x)+|u|^{p-1}} u(x)=0,\quad & x\in\bar\Omega^c,\\[2mm] \phantom{ (-\Delta)^{\alpha} \ } \lim_{x\in\Omega, x\to\partial\Omega}u(x)=+\infty, \end{array} \end{equation} donde $p>1$, $\Omega$ es un dominio abierto acotado $C^2$ de $\mathbb{R}^N(N\geq2)$, el operador $(-\Delta)^{\alpha}$ con $\alpha\in(0,1)$ es el Laplaciano fraccionario y $h:\Omega\to\R$ es una función continua la cual satisface algunas condiciones extras. Por otra parte, analizamos la unicidad y el comportamiento asimptótico de soluciones al problema (\ref{eq06-10-13 2}). El objetivo principal de la tercera parte es investigar soluciones positivas para ecuaciones elípticas fraccionarias \begin{equation}\label{eq06-10-13 3} \arraycolsep=1pt \begin{array}{lll} (-\Delta)^{\alpha} u(x)+|u|^{p-1}u(x)=0,\quad & x\in\Omega\setminus\mathcal{C},\\[2mm] \phantom{ (-\Delta)^{\alpha} u(x)+|u|^{p-1}} u(x)=0,\quad & x\in\Omega^c,\\[2mm] \phantom{ (-\Delta) \ } \lim_{x\in\Omega\setminus\mathcal{C}, \ x\to\mathcal{C}}u(x)=+\infty, \end{array} \end{equation} donde $p>1$ y $\Omega$ es un dominio abierto acotado $C^2$ de $\mathbb{R}^N(N\geq2)$, $\mathcal{C}\subset \Omega$ es el frontera de dominio $G$ que es $C^2$ y satisface $\bar G\subset\Omega$. Consideramos la existencia de soluciones positivas para el problema (\ref{eq06-10-13 3}). Mas aún, analizamos la unicidad, el comportamiento asimptótico y la no existencia al problema (\ref{eq06-10-13 3}). En la cuarta parte, estudiamos la existencia de soluciones débiles de (F) $ (-\Delta)^\alpha u+g(u)=\nu $ en un dominio $\Omega$ abierto acotado $C^2$ de $\R^N (N\ge2)$ el cual se desvanece en $\Omega^c$, donde $\alpha\in(0,1)$, $\nu$ es una medida de Radon y $g$ es una función no decreciente satisfaciendo algunas hipótesis extras. Cuando $g$ satisface una condición de integrabilidad subcrítica, probamos la existencia y unicidad de una solución débil para el problema (F) para cualquier medida. En el caso donde $\nu$ es una masa de Dirac, caracterizamos el comportamiento asimptótico de soluciones a (F). Asimismo, cuando $g(r)=|r|^{k-1}r$ con $k$ supercrítico, mostramos que una condición de absoluta continuidad de la medida con respecto a alguna capacidad de Bessel es una condición necesaria y suficiente para que (F) sea resuelta. El propósito de la quinta parte es investigar soluciones singulares débiles y fuertes de ecuaciones elípticas fraccionarias semilineales. Sean $p\in(0,\frac{N}{N-2\alpha})$, $\alpha\in(0,1)$, $k>0$ y $\Omega\subset \R^N(N\geq2)$ un dominio abierto acotado $C^2$ conteniendo a $0$ y $\delta_0$ la masa de Dirac en $0$, estudiamos que la solución débil de $(E)_k$ $ (-\Delta)^\alpha u+u^p=k\delta_0 $ en $\Omega$ la cual se desvanece en $\Omega^c$ es una solución débil singular de $(E^*)$ $ (-\Delta)^\alpha u+u^p=0 $ en $\Omega\setminus\{0\}$ con el mismo dato externo. Por otra parte, estudiamos el límite de soluciones débiles de $(E)_k$ cuando $k\to\infty$. Para $p\in(0, 1+\frac{2\alpha}{N}]$, el límite es infinito en $\Omega$. Para $p\in(1+\frac{2\alpha}N,\frac{N}{N-2\alpha})$, el límite es una solución fuertemente singular de $(E^*)$. Finalmente, en la sexta parte estudiamos la ecuación elíptica fraccionaria semilineal (E1) $(-\Delta)^\alpha u+\epsilon g(|\nabla u|)=\nu $ en un dominio $\Omega$ abierto acotado $C^2$ de $\R^N (N\ge2)$, el cual se desvanece en $\Omega^c$, donde $\epsilon=\pm1$, $\alpha\in(1/2,1)$, $\nu$ es una medida de Radon y $g:\R_+\mapsto\R_+$ es una funci\'on continua. Probamos la existencia de soluciones débiles para el problema (E1) cuando $g$ es subcrítico. Además, el comportamiento asimptótico y la unicidad de soluciones son descritas cuando $\epsilon=1$, $\nu$ es una masa de Dirac y $g(s)=s^p$ con $p\in(0,\frac)$.
Sui, Zhenan. "On Some Classes of Fully Nonlinear Partial Differential Equations." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429640709.
Повний текст джерелаLiu, Weian, Yin Yang, and Gang Lu. "Viscosity solutions of fully nonlinear parabolic systems." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2621/.
Повний текст джерелаRang, Marcus [Verfasser]. "Regularity results for nonlocal fully nonlinear elliptic equations / Marcus Rang." Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/103805026X/34.
Повний текст джерелаLai, Mijia. "Fully nonlinear flows and Hessian equations on compact Kahler manifolds." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1010.
Повний текст джерелаSotoudeh, Zahra. "Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41179.
Повний текст джерелаZhang, Wei [Verfasser]. "Asymptotics for subcritical fully nonlinear equations with isolated singularities / Wei Zhang." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1172414165/34.
Повний текст джерелаCoutinho, Francisco Edson Gama. "Universal moduli of continuity for solutions to fully nonlinear elliptic equations." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11427.
Повний текст джерелаIn this paper we provide a universal solution for continuity module in the direction of the viscosity of fully nonlinear elliptic equations considering properties of the function f integrable in different situations. Established inner estimate for the solutions of these equations based on some conditions the norm of the function f. To obtain regularity in solutions of these inhomogeneous equations and coefficients of variables we use a method of compactness, which consists essentially of approximating solutions of inhomogeneous equations for a solution of a homogeneous equation in order to "inherit" the regularity that those equations possess.
Neste trabalho fornecemos mÃdulo de continuidade universal para soluÃÃes, no sentido da viscosidade,de equaÃÃes elÃpticas totalmente nÃo lineares, considerando propriedades de integrabilidade da funÃÃo f em diferentes situaÃÃes. Estabelecemos estimativa interior para as soluÃÃes dessas equaÃÃes baseadas em algumas condiÃÃes da norma da funÃÃo f. Para se obter regularidade nas soluÃÃes dessas equacÃes nÃo homogÃneas e de coeficientes variÃveis usamos um mÃtodo de compacidade, o qual consiste, essencialmente, em aproximar soluÃÃes de equaÃÃes nÃo homogÃneas por uma soluÃÃo de uma equaÃÃo homogÃnea com o objetivo de âherdarâ a regularidade que essas equaÃÃes possuem.
Книги з теми "Fully nonlinear equation"
1966-, Cabré Xavier, ed. Fully nonlinear elliptic equations. Providence, R.I: American Mathematical Society, 1995.
Знайти повний текст джерелаFitzpatrick, Patrick. Orientation and the Leray-Schauder theory for fully nonlinear elliptic boundary value problems. Providence, R.I: American Mathematical Society, 1993.
Знайти повний текст джерелаGould, N. I. M. Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Chilton: Rutherford Appleton Laboratory, 2000.
Знайти повний текст джерелаZhang, Jianfeng. Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer, 2018.
Знайти повний текст джерелаZhang, Jianfeng. Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer, 2017.
Знайти повний текст джерелаSobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations. American Mathematical Society, 2018.
Знайти повний текст джерелаCapogna, Luca, Cristian E. Gutiérrez, Pengfei Guan, and Annamaria Montanari. Fully Nonlinear PDEs in Real and Complex Geometry and Optics : Cetraro, Italy 2012, Editors: Cristian E. Gutiérrez, Ermanno Lanconelli. Springer, 2013.
Знайти повний текст джерелаLanconelli, Ermanno, Luca Capogna, Cristian E. Gutiérrez, Pengfei Guan, Cristian E. Gutiérrez, and Annamaria Montanari. Fully Nonlinear PDEs in Real and Complex Geometry and Optics : Cetraro, Italy 2012, Editors: Cristian E. Gutiérrez, Ermanno Lanconelli. Springer, 2013.
Знайти повний текст джерелаIsett, Philip. Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691174822.001.0001.
Повний текст джерелаSemi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1986.
Знайти повний текст джерелаЧастини книг з теми "Fully nonlinear equation"
Galaktionov, Victor A., and Juan Luis Vázquez. "A Fully Nonlinear Equation from Detonation Theory." In A Stability Technique for Evolution Partial Differential Equations, 299–325. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2050-3_11.
Повний текст джерелаDyachenko, A. I., D. I. Kachulin, and V. E. Zakharov. "Freak-Waves: Compact Equation Versus Fully Nonlinear One." In Extreme Ocean Waves, 23–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21575-4_2.
Повний текст джерелаGilbarg, David, and Neil S. Trudinger. "Fully Nonlinear Equations." In Elliptic Partial Differential Equations of Second Order, 441–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-61798-0_17.
Повний текст джерелаLunardi, Alessandra. "Fully nonlinear equations." In Analytic Semigroups and Optimal Regularity in Parabolic Problems, 287–335. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9234-6_9.
Повний текст джерелаYu-jiang, Wu, and Yang Zhong-hua. "On the Error Estimates of the Fully Discrete Nonlinear Galerkin Method with Variable Modes to Kuramoto-Sivashinsky Equation." In Recent Progress in Computational and Applied PDES, 383–97. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0113-8_26.
Повний текст джерелаLions, P. L. "Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. Part II: Optimal control of Zakai's equation." In Stochastic Partial Differential Equations and Applications II, 147–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0083943.
Повний текст джерелаNirenberg, Louis. "Fully nonlinear second order elliptic equations." In Calculus of Variations and Partial Differential Equations, 239–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082899.
Повний текст джерелаLunardi, Alessandra. "Asymptotic behavior in fully nonlinear equations." In Analytic Semigroups and Optimal Regularity in Parabolic Problems, 337–98. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9234-6_10.
Повний текст джерелаSohr, Hermann. "The Full Nonlinear Navier-Stokes Equations." In The Navier-Stokes Equations, 261–353. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8255-2_5.
Повний текст джерелаSohr, Hermann. "The Full Nonlinear Navier-Stokes Equations." In The Navier-Stokes Equations, 261–353. Basel: Springer Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-0551-3_5.
Повний текст джерелаТези доповідей конференцій з теми "Fully nonlinear equation"
Christiansen, Torben B., Harry B. Bingham, Allan P. Engsig-Karup, Guillaume Ducrozet, and Pierre Ferrant. "Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10861.
Повний текст джерелаLiang, Yong, and M. Reza Alam. "Three Dimensional Fully Localized Waves on Ice-Covered Ocean." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11557.
Повний текст джерелаMousseau, Vincent A. "A Fully Implicit, Second Order in Time, Simulation of a Nuclear Reactor Core." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89737.
Повний текст джерелаSadri, Mehran, Davood Younesian, and Ebrahim Esmailzadeh. "Nonlinear Harmonic Vibration Analysis of a Fully Clamped Micro-Beam." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46862.
Повний текст джерелаChalikov, Dmitry, and Alexander V. Babanin. "Three-Dimensional Periodic Fully Nonlinear Potential Waves." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11634.
Повний текст джерелаBihs, Hans, Weizhi Wang, Tobias Martin, and Arun Kamath. "REEF3D::FNPF: A Flexible Fully Nonlinear Potential Flow Solver." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96524.
Повний текст джерелаOsborne, Alfred R. "Nonlinear Fourier Analysis for Shallow Water Waves." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-63933.
Повний текст джерелаLiu, Yun, and Junji Ohtsubo. "Period-One Oscillation in Chaotic System with Multimodal Mapping." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.fa6.
Повний текст джерелаSepehry, Naserodin, Firooz Bakhtiari-Nejad, Mahnaz Shamshirsaz, and Weidong Zhu. "Nonlinear Modeling of Cracked Beams for Impedance Based Structural Health Monitoring." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70808.
Повний текст джерелаOsborne, Alfred R. "Deterministic and Wind/Wave Modeling: A Comprehensive Approach to Deterministic and Probabilistic Descriptions of Ocean Waves." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83288.
Повний текст джерелаЗвіти організацій з теми "Fully nonlinear equation"
Crandall, Michael G. Viscosity Solutions of Fully Nonlinear Equations. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada281725.
Повний текст джерелаHahm, T. S., Lu Wang, and J. Madsen. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/938981.
Повний текст джерела