Добірка наукової літератури з теми "Fuel-air mixture"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fuel-air mixture".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fuel-air mixture"

1

Shayler, P. J., R. M. Isaacs, and T. H. Ma. "The variation of in-Cylinder Mixture Ratios during Engine Cranking at Low Ambient Temperatures." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 206, no. 1 (January 1992): 55–62. http://dx.doi.org/10.1243/pime_proc_1992_206_160_02.

Повний текст джерела
Анотація:
The development of mixture conditions in the cylinder of a fuel-injected spark ignition engine during engine cranking has been investigated at ambient temperatures down to —20°C. Mixtures near to the spark plug location were sampled and analysed to determine the air-fuel ratio and the relative proportions of light, medium and heavy components in the fuel. At low temperatures, the local air-fuel ratio varies substantially during the compression stroke, as does mixture composition. The change in mixture ratio over successive cycles of cranking depends on the fuel injected per cycle and the fuel-transfer characteristics of the intake port. The success or failure of combustion initiation is observed to depend only on the mixture air-fuel ratio at the spark plug. The upper limit on this mixture ratio for successful first-fire appears to be near to 35 : 1 by mass. Air-borne fuel in the cylinder accounts for only a small percentage of that supplied by the injector.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raide, Veljo, Risto Ilves, and Jüri Olt. "Air-Fuel Mixture Temperatures with Light and Heavy Fuels for Effective Spark Ignition Engine Work." Advances in Military Technology 16, no. 2 (December 15, 2021): 289–307. http://dx.doi.org/10.3849/aimt.01501.

Повний текст джерела
Анотація:
This research resulted from military interest in finding methods to provide distributed electricity generation in order to support comprehensive state defence measures. The aim of the study was to investigate the effect of a heated air-fuel mixture on the combustion process of a spark ignition (SI) engine, and to highlight the maximum temperatures to be applied to air-fuel mixtures with different fuel fractions in order to avoid any detonation of the fuel mixture in the engine. Tests were carried out with a petrol engine generator (GENSET) so that an investigation could be conducted into the effect of the air-fuel mixture on the engine’s combustion. It turned out that heating the air-fuel mixture permits the use of heavier fraction fuels than engine petrol in SI engines does, including diesel fuel and biodiesel fuel, and also that the use of heavy fraction fuels in SI engines is effective mainly under low and middle loads.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Булат, П. В., К. Н. Волков, Л. П. Грачев, И. И. Есаков та П. Б. Лавров. "Воспламенение топливной смеси с помощью многоточечного импульсного искрового разряда при различных начальных условиях". Журнал технической физики 91, № 9 (2021): 1339. http://dx.doi.org/10.21883/jtf.2021.09.51212.92-21.

Повний текст джерела
Анотація:
The development of efficient and reliable systems for the ignition of air/fuel mixtures is of interest for many practical applications associated with the use of combustion devices. To increase the total surface of the flame, ensure the reliability of ignition, increase the rate of combustion in the volume of the chamber and the completeness of combustion of the combustible mixture, multi-point ignition of the air/fuel mixture using several pulsed spark discharges is used. A comparison of the characteristics of combustion products in the working chamber when using different numbers of igniting spark discharges is made based on the data of a physical experiment. Measurements are carried out at various ignition points of the mixture, initial mixture pressures, and air/fuel ratios. The values of the air/fuel ratio used in the experiment are in the range, the boundaries of which are the lower and upper concentration limits of the ignition of the propane-air mixture.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamidi, Nurkholis. "Carbon Dioxide Effects on the Flammability Characteristics of Biogas." Applied Mechanics and Materials 493 (January 2014): 129–33. http://dx.doi.org/10.4028/www.scientific.net/amm.493.129.

Повний текст джерела
Анотація:
Flammability limits and flame speed of methane-carbon dioxide-air mixtures have been studied to understand the effect of carbondioxide on the flammability characteristic of biogas. The fuel of biogas discussed in this study was made by mixing gases of methane and carbon dioxide. The carbon dioxide was varied from 0% (by volume) untill reach the flammability limit of the stoikhiometri biogas-air mixtures. The observation was done using a cubic combustion bomb with the dimension of 500 mm x 200 mm x 10 mm with the initial condition being at room temperature and atmospheric pressure. The ignitor was set at the top of combustion bomb, so the flame propagated downward. Base on the observation results, the presence of carbon dioxide in the fuel ofbiogas caused the flammability limits of biogasair mixture narrower. The biogas-air mixture was still flammable with the highest content of carbon dioxide of 62.5 %vol when the mixture was sthoichiometri. Compared to methane-air mixture, the presence of carbon dioxide in biogas caused a reduction in the flame speed. The stoichiometri mixture has the highest flame speed when the carbon dioxide was not present in the fuel. However, when the carbon dioxide was added in the fuel, the rich mixture has the highest flame speed. This is a consequence of the rich biogas-air mixture having a higher fraction of the carbon dioxide components from the fuel compared to the stoichiometri and lean biogas-air mixture. The result also indicated that at the upper limit the flame still propagated downward to closed to the endwall. However, at the lower limit (lean mixtures), the flame did not intend to propagate downward, it was just at the top and propagate sideward.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Asoyan, Arthur R., Igor K. Danilov, Igor A. Asoyan, and Georgy M. Polishchuk. "Hydrogen application in internal combustion engines." RUDN Journal of Engineering Researches 21, no. 1 (December 15, 2020): 14–19. http://dx.doi.org/10.22363/2312-8143-2020-21-1-14-19.

Повний текст джерела
Анотація:
A technical solution has been proposed to reduce the consumption of basic hydrocarbon fuel, to improve the technical, economic and environmental performance of internal combustion engines by affecting the combustion process of the fuel-air mixture with a minimum effective mass fraction of hydrogen additive in the fuel-air mixture. The burning rate of hydrogen-air mixtures is an order of magnitude greater than the burning rate of similar mixtures based on gasoline or diesel fuel, compared with the former, they are favorably distinguished by their greater detonation stability. With minimal additions of hydrogen to the fuel-air charge, its combustion time is significantly reduced, since hydrogen, having previously mixed with a portion of the air entering the cylinder and burning itself, effectively ignites the mixture in its entirety. Issues related to the accumulation of hydrogen on board the car, its storage, explosion safety, etc., significantly inhibit the development of mass production of cars using hydrogen fuel. The described technical solution allows the generation of hydrogen on board the car and without accumulation to use it as an additive to the main fuel in internal combustion engines. The technical result is to reduce the consumption of hydrocarbon fuels (of petroleum origin) and increase the environmental friendliness of the car due to the reduction of the emission of harmful substances in exhaust gases.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cernat, Alexandru, Constantin Pana, and Niculae Negurescu. "Aspects of in-Cylinder Mixture Formation Study for a Diesel Engine Fuelled with LPG by Diesel-Gas Method." Applied Mechanics and Materials 809-810 (November 2015): 1043–48. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.1043.

Повний текст джерела
Анотація:
The Liquid Petroleum Gas can be use for diesel engine fuelling with significant result in term of pollutant emissions improvement, with important reduction of nitrous oxides and smoke for a LPG dual fuelled diesel engine. Beside this the LPG fuelling affects the combustion process inside the cylinder and also the mixture forming. High degree of homogeneity of the air-LPG mixtures will accelerate the in-cylinder mixture forming between air-LPG and diesel fuel jets, since the LPG-air mixture combustion starts. The paper presents the results of a zero-dimensional, one-zone thermodynamic model developed by authors for diesel fuel jets vaporization and combustion at dual fuelling. The model shows the diesel fuel jet characteristic, the break-up period, the mass flow of vaporized substance on the particle surface, drops vaporization time, air-fuel mixture forming speed, drops combustion time and flame position, showing a significant influence of LPG cycle dose on their characteristic parameters. The drops vaporization and combustion duration decrease for dual fuelling and the flame radius increases. Thus, based on the experimental data, an evaluation model for mixture forming was developed for an automotive diesel engine fuelled with LPG and diesel fuel by diesel-gas method.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kessler, D. A., V. N. Gamezo, and E. S. Oran. "Gas-phase detonation propagation in mixture composition gradients." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1960 (February 13, 2012): 567–96. http://dx.doi.org/10.1098/rsta.2011.0342.

Повний текст джерела
Анотація:
The propagation of detonations through several fuel–air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon–air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Korohodskyi, Volodymyr, Andrii Rogovyi, Oleksandr Voronkov, Andrii Polivyanchuk, Pavlo Gakal, Oleksii Lysytsia, Igor Khudiakov, Tamara Makarova, Mariіa Hnyp, and Yevhen Haiek. "Development of a three-zone combustion model for stratified-charge spark-ignition engine." Eastern-European Journal of Enterprise Technologies 2, no. 5 (110) (April 30, 2021): 46–57. http://dx.doi.org/10.15587/1729-4061.2021.228812.

Повний текст джерела
Анотація:
A thermodynamic model for calculating the operating process in the cylinder of a spark-ignition engine with internal mixture formation and stratified air-fuel charge based on the volume balance method was developed. The model takes into account the change in the working fluid volume during the piston movement in the cylinder. The equation of volume balance of internal mixture formation processes during direct fuel injection into the engine cylinder was compiled. The equation takes into account the adiabatic change in the volume of the stratified air-fuel charge, consisting of fuel-air mixture volume and air volume. From the heat balance equation, the change in the fuel-air mixture volume during gasoline evaporation in the fuel stream and from the surface of the fuel film due to external heat transfer was determined. Basic equations of combustion-expansion processes of the stratified air-fuel charge were derived, taking into account three zones corresponding to combustion products, fuel-air mixture and air volumes. The equation takes into account the change in the working fluid volume due to heat transfer and heat exchange between the zones and the walls of the above-piston volume. Dependences for determining the temperature in the three considered zones and pressure in the cylinder were obtained. Graphs of changes in the volumes of the combustion products, fuel-air mixture and air zones with the change of the above-piston volume in partial load modes (n=3,000 rpm) were plotted. With increasing load from bmep=0.144 MPa to bmep=0.322 MPa, at the moment of fuel ignition, the volume of the fuel-air mixture increases from 70 % to 92 % of the above-piston volume. At the same time, the air volume decreases from 30 % to 8 %. Analysis of theoretical and experimental indicator diagrams showed that discrepancies in the maximum combustion pressure do not exceed 5 %
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Green, H. G., J. H. Whitelaw, and K. Y. Wong. "Air-Fuel Mixture Characteristics of Reciprocating Engines." Combustion Science and Technology 59, no. 4-6 (June 1988): 225–46. http://dx.doi.org/10.1080/00102208808947098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

OKAJIMA, Satoshi. "Measurement of burning velocity on DME fuel-air mixtures using microgravity technique." Combustion Engines 122, no. 3 (July 1, 2005): 56–60. http://dx.doi.org/10.19206/ce-117400.

Повний текст джерела
Анотація:
Experiment has been carried out to examine the fundamental combustion characteristics of DME fuel-air mixtures using micro-gravity technique, which is achieved in freely falling chamber. The initial conditions of temperature and pressure are 293 K and 0.10 MPa, respectively and the equivalence ratio is the range from stoichiometoric proportion to near the lower flammability limit. The results obtained in the study are as follows:(1) micro-gravity technique is very useful to analyze the flame behavior even at very lean mixtures, and (2) the burning velocity of DME fuel- air mixture is nearly the same with that of methane-air mixture at the range of all the equivalence ratios investigated and those values of DME fuel are 10.0 cm/s and 32.0 cm/s at 0.62 and 0.90 of equivalence ratio, respectively, and (3) from these experimental data it is suggested that the application to the engine combustion of DME fuel is not so impossible.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Fuel-air mixture"

1

Zaporozhets, А., and А. Redko. "Effect of changing oxygen concentration on formation of air-fuel mixture in aviation engines." Thesis, Ceteman Printing and Copying Center, 2017. http://er.nau.edu.ua/handle/NAU/32981.

Повний текст джерела
Анотація:
The effect of air composition on the formation of a stoichiometric fuel -air mixture for combustion in aircraft engines is showed. A method for increasing the efficiency of burning aviation fuel, based on the actualization of information on the current concentration of oxygen in the atmosphere is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Turcu, Viorel. "Combustion of the fuel/air mixture in the vicinity of a cantilevered ramp fuel injector in a hypervelocity flow." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58732.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lim, Bryan Neo Beng. "Computational simulations of fuel/air mixture flow in the intake port of a SI engine." Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jackson, Simon David. "Mixture preparation process in S.I. engines with particular reference to an air assisted fuel vaporiser." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Василенко, Олег Вадимович. "Совершенствование рабочего процесса двухтактного двигателя с искровым зажиганием и непосредственным впрыском топлива". Thesis, Украинский государственный университет железнодорожного транспорта, 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21849.

Повний текст джерела
Анотація:
Диссертация на соискание ученой степени кандидата технических наук по специальности 05.05.03 – двигатели и энергетические установки. Национальный технический университет "Харьковский политехнический институт", Харьков, 2016 г. Диссертация посвящена улучшению эколого-экономических показателей двухтактных ДВС с искровым зажиганием путем применение системы непосредственного впрыска топлива в камеру сгорания. На двигателе ДН-4М проведены экспериментальные исследования с расслоением и обеднением топливновоздушного заряда при непосредственном впрыске топлива. Для обеспечения организации расслоенного топливновоздушного заряда применяется клапанная форсунка с модернизированным распылителем (техническая новизна защищена патентом Украины на изобретение), обеспечивающим кумулятивную топливную струю, направленную на поверхность камеры сгорания возле электродов свечи зажигания. На такте сжатия воздушный поток движется над топливной пленкой, где организуется обогащенная топливновоздушная смесь, которая направляется к электродам свечи зажигания. При этом на режимах холостого хода и на частичных нагрузках на момент подачи искры зажигания на периферии топливновоздушной смеси, возле стенок надпоршневого объема, располагается воздушный заряд с продуктами сгорания. Выявлено, что резервами повышения показателей работы двигателя являются снижение тепловых потерь с отработавшими газами и в систему охлаждения. В двухтактных двигателях с искровым зажиганием при непосредственном впрыскивании топлива и с расслоением топливновоздушного заряда при использовании бензо-этанольных смесей обеспечивается устойчивая работа во всем диапазоне нагрузок без изменений регулировочных параметров с более высокими экономическими и экологическими показателями, чем в аналогичных двигателях с внешним смесеобразованием.
Thesis to obtain scientific degree of Candidate of Engineering sciences on the speciality 05.05.03 – engines and power plants. National Technical University "Kharkiv Polytechnic Institute", Kharkov, 2015. The dissertation is devoted to improving environmental and economic performance two-stroke internal combustion engines with spark ignition by the use of direct fuel injection. Determined that a promising way of internal mixing with direct fuel injection is the organization layered fuel-air charge, providing improved environmental and economic performance. The criterion L, which characterizes the stratification of the fuel-air charge, can qualitatively assess the effect of mixing process on the performance of the engine as a whole. A factor Z, which is deter-mined using indicator efficiency two-stroke engine with external mixture formation, which takes into account only that fuel which is involved in the combustion cylinder engine. The use of direct injection petrol bundle of fuel-air charge modes for loading characteristic at n = 3000 rev/min enabled the reduction in fuel con-sumption of 1.83 times at the effective efficiency rjfmax = 0,31, 7-10 times lower harmful substances (CO, CH) in exhaust gases, the use of gasoline-ethanol blends ensured stable operation of the engine in all load range and a high economic and environmental performance than when using carburetor system power.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Василенко, Олег Вадимович. "Удосконалення робочого процесу двотактного двигуна з іскровим запалюванням і безпосереднім вприскуванням палива". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21826.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки. Національний технічний університет "Харківський політехнічний інститут". – Харків, 2016 р. Дисертація присвячена поліпшенню еколого-економічних показників двотактних ДВЗ з іскровим запалюванням шляхом застосування безпосереднього вприскування палива. Визначено, що перспективним способом внутрішнього сумішоутворення при безпосередньому вприскуванні палива є організація розшарованого паливоповітряного заряду, що забезпечує покращення еколого-економічних показників. Запропоновано критерій L, який характеризує рівень розшарування паливоповітряного заряду, дозволяє якісно оцінити вплив процесів сумішоутворення на показники двигуна в цілому. Запропоновано коефіцієнт Z, за допомогою якого визначається індикаторний ККД двотактного двигуна із зовнішнім сумішоутворенням, який враховує тільки те паливо, яке згоряє в циліндрі ДВЗ. Застосування безпосереднього вприскування бензину з розшаруванням паливоповітряного заряду на режимах навантажувальній характеристиці при n = 3000 хв-1 дозволило зменшити в 1,83 рази витрати палива при значенні ефективного ККД ηе max = 0,31, в 7–10 раз знизити вміст шкідливих речовин (СО, СН) у відпрацьованих газах, також використання бензо-етанольних сумішей забезпечило стійку роботу двигуна у всьому діапазоні навантажень та більш високі економічні і екологічні показники, чим при використанні карбюраторної системи живлення.
Thesis to obtain scientific degree of Candidate of Engineering sciences on the speciality 05.05.03 – engines and power plants. National Technical University "Kharkiv Polytechnic Institute", Kharkov, 2015. The dissertation is devoted to improving environmental and economic performance two-stroke internal combustion engines with spark ignition by the use of direct fuel injection. Determined that a promising way of internal mixing with direct fuel injection is the organization layered fuel-air charge, providing improved environmental and economic performance. The criterion L, which characterizes the stratification of the fuel-air charge, can qualitatively assess the effect of mixing process on the performance of the engine as a whole. A factor Z, which is deter-mined using indicator efficiency two-stroke engine with external mixture formation, which takes into account only that fuel which is involved in the combustion cylinder engine. The use of direct injection petrol bundle of fuel-air charge modes for loading characteristic at n = 3000 rev/min enabled the reduction in fuel con-sumption of 1.83 times at the effective efficiency rjfmax = 0,31, 7-10 times lower harmful substances (CO, CH) in exhaust gases, the use of gasoline-ethanol blends ensured stable operation of the engine in all load range and a high economic and environmental performance than when using carburetor system power.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bokhary, Ahmad Y. F. "CFD modelling of the flow through a 4 valve I.C engine with late intake valve closure." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chan, Edward C. "Spark ignition of partially stratified gaseous fuel-air mixtures." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/29566.

Повний текст джерела
Анотація:
The Partially Stratified Charge (PSC) strategy aims to stabilize the spark ignition of lean-burn natural gas fueled internal combustion engines. This results in an extension of unthrottled load control, as well as a reduction in regulated pollutant and carbon dioxide emissions. While engine experiments demonstrated the feasibility of this technology, its fundamental enabling mechanisms have yet to be identified. An experimental / numerical approach was taken for the current investigation, using an idealized PSC ignition system. The PSC injection took place in a constant volume combustion chamber (CVCC) into an initially quiescent bulk mixture. A customized injection system was also developed. Experimental results indicated that stable combustion could be achieved with PSC at an air-to-fuel ratio of λ = 2.0. Furthermore, the use of double PSC injection facilitated additional consumption of the bulk fuel. The experiments also identified three primary enabling mechanisms under which PSC assists in ultra-lean spark ignited combustion. Additional insights were provided through numerical modeling. The PSC jet was modeled using the standard k−epsilon model and was found to be in excellent agreement with the experimental results in terms of penetration and entrainment. Meanwhile, the Eddy Dissipation Concept (EDC) model was used to simulate the combustion under PSC. While the computational model lacked the ability to properly predict combustion rates in the turbulent-to-laminar flame transition, the ignition and early combustion phases were properly captured. The numerical framework was applied to engine conditions, and the modeled data were validated using existing experimental results. A semi-analytical ignition model was developed using detailed chemical kinetic mechanisms. A turbulent ignition parameter was derived accordingly to characterize the likelihood of an ignition event leading to combustion. The engine simulation results also provided further information in PSC charge formation, as well as flame propagation. The results of this research gave rise to an improved design for future generation PSC injection / ignition devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sharad, Kittur Rohan. "Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232481.

Повний текст джерела
Анотація:
Forskning inom motorutveckling bedrivs för att möta kommande emissionskrav och samtidigt minska bränsleförbrukningen. Kommande förbud mot dieseldrivna fordon planeras i flera städer runt om i världen. Alternativa bränsle som exempelvis naturgas ses som en lovande ersättning även för tunga fordon. Metan som är huvudkomponenten av naturgas har en fördelaktigt förhållande mellan väte och kol vilket gör den attraktiv för CO2-reducering. Hur som helst, bränslets låga cetantal och den höga aktiveringsenergin som krävs för att tända naturgas förutsätter tändstiftsantändning.En fördel av att använda en encylindrig motor inom forskning är möjligheten att studera fenomen utan negativa gasväxlingsinteraktioner från intilliggande cylindrar. Jämfört med en fullmotor möjliggörs även ett snabbare utbyte av motordelar samt lägre bränsleförbrukning.Fokus för detta examensarbete var genomförandet av ett flexibelt bränslesystem för en tändstiftsantänd encylindrig motor. Motorn är en tändstiftsantänd Scania 9 liters som modifieras för encylinder körning. Flexibilitet som t.ex. laddningshomogenitet, selektiv fyllning av inloppsporter och förberedelser för direktinsprutning av flytande bränsle realiserades. För enkel användning är motorn styrd av en eftermarknadsmotorstyrenhet som använder ett användarvänligt grafiskt gränssnitt för ändring av driftsparametrar. Säkerhetshänsyn vid blandning av gasformiga bränsle och luft långt innan inloppsporterna har implementerats.
Most of the fundamental research in internal combustion engines is driven by the ever-increasing stringency of emissions regulations along with the need for increased fuel economy. The proposed ban on diesel vehicles in several cities around the world combined with extensive availability, has made natural gas a promising substitute even for heavy-duty applications. The high hydrogen-to-carbon ratio of methane, the major component of natural gas, makes it attractive from an emissions reduction perspective. CO2 emissions from natural gas combustion are particularly low. However, the low cetane number and high activation energy required to ignite natural gas, requires spark-ignition.In a research setting, it is often advantageous to have a single cylinder engine. The main benefit is the ability to study phenomena without adverse interactions which multi-cylinder operation may cause. This is especially important for gas-exchange studies. Quicker replacement of parts and lower fuel consumption are secondary benefits.The focus of this thesis was the implementation of a flexible fueling system for a single cylinder spark-ignited engine. The engine is a Scania 9-liter spark-ignited engine modified for single cylinder operation. Flexibility in terms of charge homogeneity, selective intake port filling and provisions for liquid fuel direct injection have been provided. For ease of use, the engine is controlled by an aftermarket engine control unit with a graphical user interface for configuration. Safety considerations when mixing gaseous fuels and air well upstream of the intake ports have been implemented.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Clarke, Andrew. "Measurement of laminar burning velocity of air/fuel/diluent mixtures in zero gravity." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Fuel-air mixture"

1

Hui, Timothy H. Y. Investigation of pre-mature ignition of a hypervelocity fuel/air mixture with nitrogen injection. Ottawa: National Library of Canada, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hui, Timothy H. Y. Investigation of pre-mature ignition of a hypervelocity fuel/air mixture with nitrogen injection. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Turcu, Viorel. Combustion of the fuel/air mixture in the vicinity of a cantilevered ramp fuel injector in a hypervelocity flow. Ottawa: National Library of Canada, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mihaylov, Vyacheslav, Elena Sotnikova, and Nina Kalpina. Eco-friendly air protection systems for motor transport facilities. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1093106.

Повний текст джерела
Анотація:
The textbook considers the issue of assessing the heat and humidity state of air in the processes of its processing in various systems, provides requirements for air protection means, taking into account their environmental friendliness, shows ways of energy saving in cooling, heating and year-round air conditioning systems, as well as when protecting the atmosphere from harmful emissions. The way of energy saving with individual thermal protection of the operator by means of local cooling during air treatment in an irrigated intensified nozzle is shown and recommendations for reducing its material consumption are developed. The method and means of reducing the toxicity of emissions of tractor internal combustion engines during its operation in rooms of limited volume by water vapor humidification of the fuel-air mixture are demonstrated. The ways of noise reduction of air protection systems are shown. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students studying in the specialties "Ground transport and technical means", "Operation of transport and technological machines and complexes", "Power engineering", "Ground transport and technological complexes", "Refrigeration, cryogenic equipment and life support systems", "Technosphere safety", "Ecology and nature management".
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karim, G. A. Fire spread through stratified fuel-air mixtures. [Edmonton]: Alberta Occupational Health and Safety Heritage Grant Program, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Perkins, Hugh Douglas. Effects of fuel distribution on detonation tube performance. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zaporozhets, A. O., and V. P. Babak. Control of fuel combustion in small and medium power boilers. PH “Akademperiodyka”, 2020. http://dx.doi.org/10.15407/akademperiodyka.418.128.

Повний текст джерела
Анотація:
The monograph deals with the problems of increasing the effi ciency of fuel combustion and reducing emissions of harmful substances in boilers with a capacity of up to 3.5 MW. Approaches for the formation of stoichiometric air-fuel mixtures in boilers are developed. Th e method for indirect determination of the concentration of air components was developed, which allows to increase the metrological characteristics of gas-analyzing devices. Methods, algorithms and programs to automate the combustion control process, while ensuring the reliability of the data, are created. A system for monitoring the fuel combustion process was developed, and it was implemented on the basis of the NIISTU-5 boiler unit. For researchers, engineers, as well as lecturers and postgraduates of higher educational institutions and scientifi c institutions, working in the fi eld of engineering and optimization in the energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Effects of fuel distribution on detonation tube performance. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fuel-air mixture"

1

Vats, Ankur, Vivek Kumar, and Saquib Reza. "Experimental Investigation of Flame Speed of Fuel–Air Mixture for Varying Air/Fuel Ratio." In Lecture Notes in Mechanical Engineering, 13–20. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5849-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guskov, V. F., and A. N. Gots. "Duration of Ignition Delay of Fuel–Air Mixture in Diesel Engines." In Lecture Notes in Mechanical Engineering, 795–803. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22063-1_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rotter, Frank, Jochen Scholz, Jens Müller, Tim Wiersbinski, Markus Röhl, Paul Ruhnau, Daniel Kondermann, Christoph S. Garbe, and Volker Beushausen. "Simultaneous, Planar Determination of Fuel/Air Ratio and Velocity Field in Single Phase Mixture Formation Processes." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 165–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01106-1_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hélie, Jérôme, and Arnaud Trouvé. "A Model Description of the Effects of Variable Fuel-Air Mixture Composition on Turbulent Flame Propagation." In IUTAM Symposium on Turbulent Mixing and Combustion, 169–79. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1998-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Du, Yang, Jian Feng Gao, and Xin Sheng Jiang. "Studies of Fuel-Air Mixture Explosion Characteristics and Structure Fracture and Damage in Large-Scale Metal Oil Storage Tank." In Fracture and Damage Mechanics V, 1031–34. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.1031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Büchner, H., and W. Leuckel. "The influence of Fuel/Air Mixture Oscillations on the Formation of Self-Sustained Combustion Instabilities in Premixed Combustion Systems." In Unsteady Combustion, 71–82. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1620-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liang, Xingxing, Zhongqi Wang, Pengyi Li, and Fuquan Zhang. "Computational Study the Effects of Venting Pressure and Ignition Location on the Fuel-Air Mixture Explosion Load in Vented Chamber." In Advances in Smart Vehicular Technology, Transportation, Communication and Applications, 239–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04585-2_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ospanov, O. B., D. L. Alontseva, and A. L. Krasavin. "Temperature Field Reconstruction of Flame from Images for Optimal Energy-Efficient Control of the Air-Fuel Mixture Making in Steam – Driven Boilers." In Communications in Computer and Information Science, 171–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12203-4_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fieweger, K., H. Ciezki, and G. Adomeit. "Comparison of Shock-Tube Ignition Characteristics of Various Fuel-Air Mixtures at High Pressures." In Shock Waves @ Marseille II, 161–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78832-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Ziyu, Guangying Yu, and Hameed Metghalchi. "Laminar Burning Speed Study of Alternative Fuel Air Diluent Mixtures at High Pressures and Temperatures." In Innovations in Sustainable Energy and Cleaner Environment, 195–218. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9012-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Fuel-air mixture"

1

Ishii, Eiji, Kazuki Yoshimura, Yoshihito Yasukawa, and Hideharu Ehara. "Effects of Opening and Closing Fuel-Injector Valve on Air/Fuel Mixture." In ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icef2016-9309.

Повний текст джерела
Анотація:
Lower engine emissions and improved fuel efficiency have recently become more necessary in automobile engines. Fuel injectors need to be designed to decrease late fuel during valve closing and to deal with multiple injections. Fuel-spray behaviors are controlled by the valve-lifts of fuel injectors; therefore, air/fuel mixture simulations that integrate with inner flow simulations in fuel injectors during the opening and closing of valves are essential for studying the effects of valve motions on air/fuel mixtures. We previously developed a late-fuel simulation near the nozzle outlets of a fuel injector during valve closing; fuel flows within the flow paths of the fuel injector were simulated by a front capturing method, and fuel breakups near the nozzle outlets were mainly simulated by a particle method. The inlet boundary of the fuel injector was controlled in order to affect the valve motions on the late-fuel behavior. In this study, we improved the late-fuel simulation by adding a valve opening function. The motion of droplets within the air/fuel mixture region was calculated by using a discrete droplet model (DDM). The injection conditions for the DDM were defined with the results of the improved late-fuel simulation; positions and velocities of droplets at the injection point were defined by using the results of the late-fuel simulation. The simulation results were validated by comparing the simulated fuel breakup near the nozzle outlets and the air/fuel mixtures in the air region with the measured ones, revealing good agreement between them. The effects of opening and closing the valve on the air/fuel mixtures were also studied; the opening and closing of the valve affected the front and rear behaviors of the air/fuel mixture and also affected spray penetrations. The developed simulation was found to be an effective tool for studying the effects of valve motions on the air/fuel mixtures.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Takahashi, Eiichi. "Laser ignition in flowing air-fuel mixture." In Laser Ignition Conference. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/lic.2017.lfa2.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holthaus, B. E., R. M. Wagner, and J. A. Drallmeier. "Measurements of Intake Port Fuel/Air Mixture Preparation." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yoon, Sung Pil, Hyun Jae Kim, Byung-Tak Park, Suk Woo Nam, Jonghee Han, Tae-Hoon Lim, and Seong-Ahn Hong. "Mixed-Fuels Fuel Cell Running on Methane-Air Mixture." In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74081.

Повний текст джерела
Анотація:
In order to develop SOFC running on hydrocarbon fuels, we have focused on a new method of improving electrode performance and reducing carbon deposition by coating thin films of samaria-doped ceria (SDC) within the pores of electrode by a sol-gel coating technique. The SDC coating on the pores of anode made it possible to have a good stability for long-term operation due to low carbon deposition and nickel sintering. In this study, we demonstrated a new method of improving electrode performance and reducing carbon deposition by coating thin films of samaria-doped ceria (SDC) and applied the modification technique to two different types of fuel cell structures, anode-supported SOFC and comb-shaped SOFC. From our results, the maximum power density of an anode-supported cell (electrolyte; 8 mol% YSZ and thickness of 30 μm, and cathode; La0.85Sr0.15MnO3) with the modified anode was about 300 mW/cm2 at 700 °C in the mixture of methane (25%) and air (75%) as the fuel and air as the oxidant. The cell was operated for 500 h without significant degradation of cell performance. For the comb-shaped SOFCs operated in the mixed-fuels fuel cell (MFFC) conditions, the cell performance was 40 mW/cm2 at 700 °C in the CH4/O2 ratio of 1.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ishii, Eiji, Yoshihito Yasukawa, Yoshihiro Sukegawa, and Hiroshi Yamada. "A Fuel-Spray Simulation Considering Fuel-Jet Breakup Near Fuel Injector and Composition of Air/Fuel Mixture." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12380.

Повний текст джерела
Анотація:
To simulate multi-scale free surfaces in the fuel spray of an injector for automobile engine, we combined a liquid-film-breakup simulation and an air/fuel-mixture simulation. The liquid-film breakup near the injector outlet was simulated by using a particle method, and the air/fuel mixture after the liquid-film breakup was simulated by using a “discrete droplet model” (DDM). Distributions of droplet diameters and velocities, calculated in the liquid-film breakup simulation, were used as the injection condition of DDM. We applied our new method to simulate the spray from a collision fuel injector. The simulation results were verified by comparing them with measurements. The liquid-film breakup near the injector outlet and the behavior of the air/fuel mixture qualitatively agreed with the measurements. We found that out new method was useful to the fuel-spray simulation for automobile engines.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chernikov, V., S. Chuvashev, A. Ershov, V. Shibkov, B. Timofeev, and I. Timofeev. "Formation of gas discharges in supersonic flows of air and fuel-air mixture." In 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brunocilla, Marcello F., and Fernando Lepsch. "Influence of hot fuel injection on air/fuel mixture preparation and effects on Flex Fuel Engines." In 2006 SAE Brasil Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-2619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ibrahim, Uzair, and Sarah Farrukh. "Optimization of Fuel in Saturated Steam Boiler through Preheating of Controlled Air-Fuel Mixture." In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, 2019. http://dx.doi.org/10.1109/icomet.2019.8673398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mehdi, Ghazanfar, Maria Grazia De Giorgi, Donato Fontanarosa, Sara Bonuso, and Antonio Ficarella. "Ozone Production With Plasma Discharge: Comparisons Between Activated Air and Activated Fuel/Air Mixture." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60167.

Повний текст джерела
Анотація:
Abstract This study focused on the comparative analysis about the production of ozone and active radicals in presence of nanopulsed plasma discharge on air and on fuel/air mixture to investigate its effect on combustion enhancement. This analysis is based on numerical modeling of air and methane/air plasma discharge with different repetition rates (100 Hz, 1000 Hz and 10000 Hz). To this purpose, a two-step approach has been proposed based on two different chemistry solvers: a 0-D plasma chemistry solver (ZDPlasKin toolbox) and a combustion chemistry solver (CHEMKIN software suite). Consequently, a comprehensive chemical kinetic scheme was generated including both plasma excitation reactions and gas phase reactions. Validation of air and methane/air mechanisms was performed with experimental data. Kinetic models of both air and methane/air provides good fitting with experimental data of O atom generation and decay process. ZDPlasKin results were introduced in CHEMKIN in order to analyze combustion enhancement. It was found that the concentrations of O3 and O atom in air are higher than the methane/air activation. However, during the air activation peak concentration of ozone was significantly increased with repetition rates and maximum was observed at 10000 Hz. Furthermore, ignition timings and flammability limits were also improved with air and methane/air activation but the impact of methane/air activation was comparatively higher.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Suh, Edward S., and Christopher J. Rutland. "Numerical Study of Fuel/Air Mixture Preparation in a GDI Engine." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-3657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Fuel-air mixture"

1

Green, H., J. Whitelaw, and K. Wong. Air-fuel mixture characteristics of reciprocating engines. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/6411264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lim, Ock Taeck, and Norimasa Iida. The Analysis of the Effect of n-Heptane-Based equivalence Ratio on the HCCI Combustion Characteristics of n-Heptane and Iso-Octane Fuel/Air Mixture Using a Rapid Compression Machine. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії