Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Fuego volcano.

Статті в журналах з теми "Fuego volcano"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Fuego volcano".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Aldeghi, Carn, Escobar-Wolf, and Groppelli. "Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala." Remote Sensing 11, no. 18 (September 16, 2019): 2151. http://dx.doi.org/10.3390/rs11182151.

Повний текст джерела
Анотація:
Fuego volcano (Guatemala) is one of the most active and hazardous volcanoes in the world. Its persistent activity generates lava flows, pyroclastic density currents (PDCs), and lahars that threaten the surrounding areas and produce frequent morphological change. Fuego’s eruption deposits are often rapidly eroded or remobilized by heavy rains and its constant activity and inaccessible terrain makes ground-based assessment of recent eruptive deposits very challenging. Earth-orbiting satellites can provide unique observations of volcanoes during eruptive activity, when ground-based techniques may be too hazardous, and also during inter-eruptive phases, but have typically been hindered by relatively low spatial and temporal resolution. Here, we use a new source of Earth observation data for volcano monitoring: high resolution (~3 m pixel size) images acquired from a constellation of over 150 CubeSats (‘Doves’) operated by Planet Labs Inc. The Planet Labs constellation provides high spatial resolution at high cadence (<1–72 h), permitting space-based tracking of volcanic activity with unprecedented detail. We show how PlanetScope images collected before, during, and after an eruption can be applied for mapping ash clouds, PDCs, lava flows, or the analysis of morphological change. We assess the utility of the PlanetScope data as a tool for volcano monitoring and rapid deposit mapping that could assist volcanic hazard mitigation efforts in Guatemala and other active volcanic regions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roca, Amilcar, Edgar Roberto Mérida Boogher, Carla Maria Fernanda Chun Quinillo, Dulce María Esther González Domínguez, Gustavo Adolfo Chigna Marroquin, Francisco Javier Juárez Cacao, and Peter Darwin Argueta Ordoñez. "Volcano observatories and monitoring activities in Guatemala." Volcanica 4, S1 (November 1, 2021): 203–22. http://dx.doi.org/10.30909/vol.04.s1.203222.

Повний текст джерела
Анотація:
The tectonic and volcanic environment in Guatemala is large and complex. Three major tectonic plates constantly interacting with each other, and a volcanic arc that extends from east to west in the southern part of the country, demand special attention in terms of monitoring and scientific studies. The Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) is the institute in charge of executing these actions at the national and civil level.In recent years, INSIVUMEH has formed a volcanology team consisting of multi-disciplinary personnel that conducts the main volcanological monitoring and research activities. These activities include: seismic and acoustic signal analysis, evaluation and analysis of the volcanic hazards, installation and maintenance of monitoring equipment, and the socialization and dissemination of volcanic knowledge. Of all the volcanic structures in Guatemala, three volcanoes (Fuego, Pacaya, and Santiaguito) are in constant eruption and require all of the available resources (economic and human). These volcanoes present a wide range of volcanic hazards (regarding type and magnitude) that make daily monitoring a great challenge. One of the greatest goals achieved by the volcanology team has been the recent development of a Relative Threat Ranking of Guatemala Volcanoes, taking into account different parameters that allow improved planning in the future, both in monitoring and research. El ambiente tectónico y volcánico de Guatemala es extenso y complejo. Tres grandes placas tectónicas, que interactúan constantemente entre sí, y un arco volcánico, que se extiende de este a oeste en la parte sur del país, exigen especial atención en términos de monitoreo y estudios científicos. El Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) es el instituto encargado de ejecutar estas acciones a nivel nacional y civil. En los últimos años, INSIVUMEH ha formado un equipo de vulcanología conformado por personal multidisciplinario que realiza las principales actividades de seguimiento e investigación vulcanológica. Estas actividades incluyen: análisis de señales sísmicas y acústicas, evaluación y análisis de peligros volcánicos, instalación y mantenimiento de equipos de monitoreo, y socialización y difusión del conocimiento volcánico. De todas las estructuras volcánicas de Guatemala, tres volcanes (Fuego, Pacaya y Santiaguito) están en constante erupción y requieren todos los recursos disponibles (económicos y humanos). Estos volcanes presentan una amplia gama de peligros volcánicos (en cuanto a tipo y magnitud), haciendo que el monitoreo diario sea un gran desafío. Uno de los mayores logros del equipo de vulcanología ha sido el desarrollo reciente de un Ranking de Peligrosidad Relativa de los Volcanes de Guatemala, tomando en cuenta diferentes parámetros que permitan una mejor planificación en el futuro, tanto en el monitoreo como en la investigación.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Castro Carcamo, Rodolfo Antonio, and Eduardo Gutiérrez. "Volcanic monitoring and hazard assessment in El Salvador." Volcanica 4, S1 (November 1, 2021): 183–201. http://dx.doi.org/10.30909/vol.04.s1.183201.

Повний текст джерела
Анотація:
The Salvadorean volcanic range forms part of Central America Volcanic Arc and is located on the Pacific ring of fire. El Salvador is a country with at least twenty Holocene-active volcanic structures and where most of the population, including the metropolitan area of San Salvador, live near a volcanic complex. Currently, there are six active volcanoes that are continuously monitored by the Observatorio de Amenazas y Recursos Naturales, which is part of the Ministerio del Medio Ambiente y Recursos Naturales. Volcano monitoring involves seismic, geochemical, and visual monitoring techniques, among others. In addition to volcano monitoring and with the aim of early warning of future eruptions, volcanic hazard maps and networks of local observers have been developed. These initiatives together with the general directorate of civil protection, seek to meet the goal of reducing risk from volcanic activity in El Salvador. La cadena volcánica salvadoreña forma parte del Arco Volcánico de América Central y está localizada dentro de la zona conocida como cinturón de fuego del Pacífico. El Salvador es un país donde se encuentran al menos 20 estructuras volcánicas que han estado activas durante el Holoceno y donde la mayor parte de la población, incluyendo la ciudad capital San Salvador, está ubicada en las proximidades de algún complejo volcánico. Actualmente, seis volcanes activos son continuamente monitoreados por el Observatorio de Amenazas y Recursos Naturales, que es parte del Ministerio del Medio Ambiente y Recursos Naturales. El monitoreo volcánico se realiza mediante técnicas de monitoreo sísmicas, geoquímicas, visuales, entre otras. Como complemento del trabajo de monitoreo, se han desarrollado mapas de amenaza volcánica y redes de observadores locales constituyendo así sistemas de alerta temprana ante futuras erupciones. Estas iniciativas, en conjunto con la dirección general de la protección civil, persiguen el objetivo de reducir el riesgo por actividad volcánica en El Salvador.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Flynn, Ian T. W., and Michael S. Ramsey. "Pyroclastic Density Current Hazard Assessment and Modeling Uncertainties for Fuego Volcano, Guatemala." Remote Sensing 12, no. 17 (August 27, 2020): 2790. http://dx.doi.org/10.3390/rs12172790.

Повний текст джерела
Анотація:
On 3 June 2018, Fuego volcano experienced a VEI = 3 eruption, which produced a pyroclastic density current (PDC) that devastated the La Réunion resort and the community of Los Lotes, resulting in over 100 deaths. To evaluate the potential hazard to the population centers surrounding Fuego associated with future PDC emplacement, we used an integrated remote sensing and flow modeling-based approach. The predominate PDC travel direction over the past 15 years was investigated using thermal infrared (TIR) data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument validated with ground reports from the National Institute of Seismology, Volcanology, Meteorology, and Hydrology (INSIVUMEH), the government agency responsible for monitoring. Two different ASTER-derived digital elevation model (DEM) products with varying levels of noise were also used to assess the uncertainty in the VolcFlow model results. Our findings indicate that the recent historical PDC travel direction is dominantly toward the south and southwest. Population centers in this region of Fuego that are within ~2 km of one of the volcano’s radial barrancas are at the highest risk during future large eruptions that produce PDCs. The ASTER global DEM (GDEM) product has the least random noise and where used with the VolcFlow model, had a significant improvement on its accuracy. Results produced longer flow runout distances and therefore better conveys a more accurate perception of risk. Different PDC volumes were then modeled using the GDEM and VolcFlow to determine potential inundation areas in relation to local communities.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cando-Jácome, Marcelo, and Antonio Martínez-Graña. "Determination of Primary and Secondary Lahar Flow Paths of the Fuego Volcano (Guatemala) Using Morphometric Parameters." Remote Sensing 11, no. 6 (March 26, 2019): 727. http://dx.doi.org/10.3390/rs11060727.

Повний текст джерела
Анотація:
On 3 June 2018, a strong eruption of the Fuego volcano in Guatemala produced a dense cloud of 10-km-high volcanic ash and destructive pyroclastic flows that caused nearly 200 deaths and huge economic losses in the region. Subsequently, due to heavy rains, destructive secondary lahars were produced, which were not plotted on the hazard maps using the LAHAR Z software. In this work we propose to complement the mapping of this type of lahars using remote-sensing (Differential Interferometry, DINSAR) in Sentinel images 1A and 2A, to locate areas of deformation of the relief on the flanks of the volcano, areas that are possibly origin of these lahars. To determine the trajectory of the lahars, parameters and morphological indices were analyzed with the software System for Automated Geoscientific Analysis (SAGA). The parameters and morphological indices used were the accumulation of flow (FCC), the topographic wetness index (TWI), the length-magnitude factor of the slope (LS). Finally, a slope stability analysis was performed using the Shallow Landslide Susceptibility software (SHALSTAB) based on the Mohr–Coulomb theory and its parameters: internal soil saturation degree and effective precipitation, parameters required to destabilize a hillside. In this case, the application of this complementary methodology provided a more accurate response of the areas destroyed by primary and secondary lahars in the vicinity of the volcano.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Robin, Claude, Guy Camus, and Alain Gourgaud. "Eruptive and magmatic cycles at Fuego de Colima volcano (Mexico)." Journal of Volcanology and Geothermal Research 45, no. 3-4 (April 1991): 209–25. http://dx.doi.org/10.1016/0377-0273(91)90060-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Trickl, T., H. Giehl, H. Jäger, and H. Vogelmann. "35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond." Atmospheric Chemistry and Physics 13, no. 10 (May 24, 2013): 5205–25. http://dx.doi.org/10.5194/acp-13-5205-2013.

Повний текст джерела
Анотація:
Abstract. Lidar measurements at Garmisch-Partenkirchen (Germany) have almost continually delivered backscatter coefficients of stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt Pinatubo (Philippines, 1991). Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa. We conclude that the increase of our integrated backscatter coefficients starting in 2008 is mostly due to volcanic eruptions with explosivity index 4, penetrating strongly into the stratosphere. Most of them occurred in the mid-latitudes. A key observation for judging the role of eruptions just reaching the tropopause region was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash above the volcano was reported just as 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.3 km. Our analysis suggests for two or three of the four measurement days the presence of a stratospheric contribution from Iceland related to quasi-horizontal transport, differing from the strong descent of the layers entering Central Europe at low altitudes. The backscatter coefficients within the first 2 km above the tropopause exceed the stratospheric background by a factor of four to five. In addition, Asian and Saharan dust layers were identified in the free troposphere, Asian dust most likely even in the stratosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Valade, Sébastien, Andreas Ley, Francesco Massimetti, Olivier D’Hondt, Marco Laiolo, Diego Coppola, David Loibl, Olaf Hellwich, and Thomas R. Walter. "Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System." Remote Sensing 11, no. 13 (June 27, 2019): 1528. http://dx.doi.org/10.3390/rs11131528.

Повний текст джерела
Анотація:
Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for a comprehensive monitoring of volcanic hazards. We here present the volcano monitoring platform MOUNTS (Monitoring Unrest from Space), which aims for global monitoring, using multisensor satellite-based imagery (Sentinel-1 Synthetic Aperture Radar SAR, Sentinel-2 Short-Wave InfraRed SWIR, Sentinel-5P TROPOMI), ground-based seismic data (GEOFON and USGS global earthquake catalogues), and artificial intelligence (AI) to assist monitoring tasks. It provides near-real-time access to surface deformation, heat anomalies, SO2 gas emissions, and local seismicity at a number of volcanoes around the globe, providing support to both scientific and operational communities for volcanic risk assessment. Results are visualized on an open-access website where both geocoded images and time series of relevant parameters are provided, allowing for a comprehensive understanding of the temporal evolution of volcanic activity and eruptive products. We further demonstrate that AI can play a key role in such monitoring frameworks. Here we design and train a Convolutional Neural Network (CNN) on synthetically generated interferograms, to operationally detect strong deformation (e.g., related to dyke intrusions), in the real interferograms produced by MOUNTS. The utility of this interdisciplinary approach is illustrated through a number of recent eruptions (Erta Ale 2017, Fuego 2018, Kilauea 2018, Anak Krakatau 2018, Ambrym 2018, and Piton de la Fournaise 2018–2019). We show how exploiting multiple sensors allows for assessment of a variety of volcanic processes in various climatic settings, ranging from subsurface magma intrusion, to surface eruptive deposit emplacement, pre/syn-eruptive morphological changes, and gas propagation into the atmosphere. The data processed by MOUNTS is providing insights into eruptive precursors and eruptive dynamics of these volcanoes, and is sharpening our understanding of how the integration of multiparametric datasets can help better monitor volcanic hazards.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lyons, John J., Gregory P. Waite, William I. Rose, and Gustavo Chigna. "Patterns in open vent, strombolian behavior at Fuego volcano, Guatemala, 2005–2007." Bulletin of Volcanology 72, no. 1 (July 7, 2009): 1–15. http://dx.doi.org/10.1007/s00445-009-0305-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brill, K. A., and G. P. Waite. "Characteristics of Repeating Long‐Period Seismic Events at Fuego Volcano, January 2012." Journal of Geophysical Research: Solid Earth 124, no. 8 (August 2019): 8644–59. http://dx.doi.org/10.1029/2019jb017902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Massaro, Silvia, Antonio Costa, Roberto Sulpizio, Diego Coppola, and Lucia Capra. "Cyclic activity of the Fuego de Colima volcano (Mexico): insights from satellite thermal data and nonlinear models." Solid Earth 10, no. 4 (August 29, 2019): 1429–50. http://dx.doi.org/10.5194/se-10-1429-2019.

Повний текст джерела
Анотація:
Abstract. The Fuego de Colima volcano (Mexico) shows a complex eruptive behavior, with periods of rapid and slow lava dome growth punctuated by explosive activity. We reconstructed the weekly discharge rate average between 1998 and 2018 by means of satellite thermal data integrated with published discharge rate data. By using spectral and wavelet analysis, we found a multiyear long-term, multi-month intermediate-term, and multi-week short-term cyclic behavior during the period of the investigated eruptive activity like that of many other dome-forming volcanoes. We use numerical modeling in order to investigate the nonlinear cyclic eruptive behavior considering a magma feeding system composed of a dual or a single magma chamber connected to the surface through an elastic dyke developing into a cylinder conduit in the shallowest part. We investigated cases in which the periodicity is controlled by (i) the coupled deep–shallow magma reservoirs, (ii) the single shallow chamber, and (iii) the elastic shallow dyke when it is fed by a fixed influx rate or constant pressure. Due to the limitations of the current modeling approach, there is no single configuration that can reproduce all the periodicities on the three different timescales. The model outputs indicate that the observed multiyear periodicity (1.5–2.5 years) can be described by the fluctuations controlled by a shallow magma chamber with a volume of 20–50 km3 coupled with a deep reservoir of ca. 500 km3, connected through a deep elastic dyke. The multi-month periodicity (ca. 5–10 months) appears to be controlled by the shallow magma chamber for the same range of volumes. The short-term multi-week periodicity (ca. 2.5–5 weeks) can be reproduced considering a fixed influx rate or constant pressure at the base of the shallower dyke. This work provides new insights on the nonlinear cyclic behavior of Fuego de Colima and a general framework for comprehension of the eruptive behavior of andesitic volcanoes.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Robin, Claude, and Alain Potrel. "Multi-stage magma mixing in the pre-caldera series of Fuego de Colima volcano." Geofísica Internacional 32, no. 4 (October 1, 1993): 605–15. http://dx.doi.org/10.22201/igeof.00167169p.1993.32.4.606.

Повний текст джерела
Анотація:
Datos geoquímicos y petrográficos acerca de las lavas anteriores de la caldera del Volcán de Fuego de Colima indican dos procesos magmáticos; cristalización fraccionada y mezcla de magma. Estos procesos pudieron suceder juntos, de tal manera que sus efectos se adicionan. Se distinguen tres tipos de mezcla: (i): mezcla entre nuevas inyecciones de magma profundo y minerales máficos acumulados en la parte inferior de la cámara magmática somera (ii): Mezcla, en la cámara, entre este magma juvenil (anteriormente diferenciado o no en una cámara más profunda, contaminando por olivino y clinopiroxeno o no) y un magma diferenciado de composición andesítica o dacítica. (iii) Mezcla por convección entre magmas ya diferenciados, por separación de minerales, o mezcla, o por ambos procesos, a diferentes niveles en la cámara somera.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Waite, Gregory P., Patricia A. Nadeau, and John J. Lyons. "Variability in eruption style and associated very long period events at Fuego volcano, Guatemala." Journal of Geophysical Research: Solid Earth 118, no. 4 (April 2013): 1526–33. http://dx.doi.org/10.1002/jgrb.50075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Waite, Gregory P., and Federica Lanza. "Nonlinear inversion of tilt-affected very long period records of explosive eruptions at Fuego volcano." Journal of Geophysical Research: Solid Earth 121, no. 10 (October 2016): 7284–97. http://dx.doi.org/10.1002/2016jb013287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Suter, Max. "Macroseismic Study of the Devastating 22–23 October 1749 Earthquake Doublet in the Northern Colima Graben (Trans‐Mexican Volcanic Belt, Western Mexico)." Seismological Research Letters 90, no. 6 (October 9, 2019): 2304–17. http://dx.doi.org/10.1785/0220190162.

Повний текст джерела
Анотація:
ABSTRACT This detailed macroseismic study of a locally devastating earthquake doublet in the western part of the Trans‐Mexican volcanic belt, north of Fuego de Colima Volcano, on 22 and 23 October 1749 is based on contemporary documentary sources. The shocks razed the towns of Zapotlán el Grande (now Ciudad Guzmán) and Sayula and caused major damage in Amacueca and Atoyac. A first mainshock on 22 October 1749 at 4 p.m. was devastating in Sayula and Zapotlán el Grande and caused some damage in Amacueca. A stronger second mainshock ∼20 hr later, on 23 October 1749 at about noon, was destructive in Sayula, Amacueca, and Zapotlán el Grande where only three residential buildings remained standing. Estimates of the intensity magnitude MI of the mainshocks range between 5.7 and 6.0, with a preferred magnitude of 5.8. The macroseismic intensity distribution, limited area of destruction, and prolonged sequence of aftershocks, lasting at least until August 1750, indicate a local earthquake source in the northern Colima graben, most likely on the major fault bounding the Sayula half‐graben in the west.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Trickl, T., H. Giehl, H. Jäger, and H. Vogelmann. "35 years of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond." Atmospheric Chemistry and Physics Discussions 12, no. 9 (September 6, 2012): 23135–93. http://dx.doi.org/10.5194/acpd-12-23135-2012.

Повний текст джерела
Анотація:
Abstract. The powerful backscatter lidar at Garmisch-Partenkirchen (Germany) has almost continually delivered backscatter coefficients of the stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt. Pinatubo (Philippines, 1991). The volcanic aerosol disappears within about five years, the removal from the stratosphere being modulated by the phase of the quasi-biennial oscillation. Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa or Boulder. This suggests being careful with invoking Asian air pollution as the main source as found in the literature. Rather an impact of previously missed volcanic eruptions on the stratospheric aerosol must be taken into consideration. A key observation in this regard was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash next to the source was reported just as roughly 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.5 km. Our analysis suggests for two, perhaps three, of the four measurement days the presence of a stratospheric contribution from Iceland related to quasi-horizontal transport, contrasting the strongly descending lower layers entering Central Europe. The backscatter coefficients within the first 2 km above the tropopause exceed the stratospheric background by a factor of three to four. In addition, Asian and Saharan dust layers were identified in the free troposphere, Asian dust most likely even in the stratosphere. The number of minor mid-latitude eruptions has gradually increased during the past ten years. We conclude that, although their stratospheric contribution could not be clearly identified above our site they can sum up for forming some minor background. Clear stratospheric signatures were only seen in the case of eruptions reaching higher altitudes.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Roggensack, Kurt. "Unraveling the 1974 eruption of Fuego volcano (Guatemala) with small crystals and their young melt inclusions." Geology 29, no. 10 (2001): 911. http://dx.doi.org/10.1130/0091-7613(2001)029<0911:uteofv>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Cecil, Daniel J., Dennis E. Buechler, John R. Mecikalski, and Xuanli Li. "Rapid Scan Visible Imagery from the Geostationary Lightning Mapper (GLM) at 2.5-Minute Intervals." Monthly Weather Review 148, no. 12 (December 2020): 5105–12. http://dx.doi.org/10.1175/mwr-d-20-0079.1.

Повний текст джерела
Анотація:
AbstractThe Geostationary Lightning Mapper (GLM) is an instrument designed to continuously monitor lightning. It is on the GOES-16 and GOES-17 satellites, viewing much of the Western Hemisphere equatorward of 55°. Besides recording lightning-flash information, it transmits background visible-band images of its field of view every 2.5 min. The background images are not calibrated or geolocated, and they only have ~10-km grid spacing, but their 2.5-min sampling can potentially fill temporal gaps between full-disk imagery from the GOES satellites’ Advanced Baseline Imager. This paper applies an initial calibration and geolocation of the GLM background images and focuses on animations for two cases: a volcanic eruption in Guatemala and a severe thunderstorm complex in Argentina. Those locations typically have 10-min intervals between full-disk scans. Prior to April 2019, the interval was 15 min. Despite coarse horizontal resolution, the rapid updates from GLM background images appear to be useful in these cases. The 3 June 2018 eruption of Fuego Volcano appears in the GLM background imagery as an initial darkening of the pixels very near the volcano and then an outward expansion of the dark ash cloud. The GLM background imagery lacks horizontal textural detail but compensates for this lack with temporal detail. The ash cloud resembles a dark blob steadily expanding from frame to frame. Animation of the severe thunderstorm scene reveals vertical wind shear, with northerly low-level flow across a growing cumulus field and west-northwesterly upper-level flow at anvil level. Convective initiation is seen, as are propagating outflow boundaries and overshooting convective cloud tops.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Webley, P. W., M. J. Wooster, W. Strauch, J. A. Saballos, K. Dill, P. Stephenson, J. Stephenson, R. Escobar Wolf, and O. Matias. "Experiences from near‐real‐time satellite‐based volcano monitoring in Central America: case studies at Fuego, Guatemala." International Journal of Remote Sensing 29, no. 22 (October 28, 2008): 6621–46. http://dx.doi.org/10.1080/01431160802168301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lyons, John J., Gregory P. Waite, Mie Ichihara, and Jonathan M. Lees. "Tilt prior to explosions and the effect of topography on ultra-long-period seismic records at Fuego volcano, Guatemala." Geophysical Research Letters 39, no. 8 (April 2012): n/a. http://dx.doi.org/10.1029/2012gl051184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Pardini, F., M. Queißer, A. Naismith, I. M. Watson, L. Clarisse, and M. R. Burton. "Initial constraints on triggering mechanisms of the eruption of Fuego volcano (Guatemala) from 3 June 2018 using IASI satellite data." Journal of Volcanology and Geothermal Research 376 (May 2019): 54–61. http://dx.doi.org/10.1016/j.jvolgeores.2019.03.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Prieto, Alfredo, Charles R. Stern, and Jordi E. Estévez. "The peopling of the Fuego-Patagonian fjords by littoral hunter–gatherers after the mid-Holocene H1 eruption of Hudson Volcano." Quaternary International 317 (December 2013): 3–13. http://dx.doi.org/10.1016/j.quaint.2013.06.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Layana, Susana, Felipe Aguilera, Germán Rojo, Álvaro Vergara, Pablo Salazar, Juan Quispe, Pablo Urra, and Diego Urrutia. "Volcanic Anomalies Monitoring System (VOLCANOMS), a Low-Cost Volcanic Monitoring System Based on Landsat Images." Remote Sensing 12, no. 10 (May 16, 2020): 1589. http://dx.doi.org/10.3390/rs12101589.

Повний текст джерела
Анотація:
The practice of monitoring active volcanoes, includes several techniques using either direct or remote measurements, the latter being more important for volcanoes with limited accessibility. We present the Volcanic Anomalies Monitoring System (VOLCANOMS), a new, online, low-cost and semiautomatic system based on Landsat imagery. This system can detect permanent and/or temporal thermal anomalies in near-infrared (NIR), short-wave infrared (SWIR), and thermal infrared (TIR) bands. VOLCANOMS allows researchers to calculate several thermal parameters, such as thermal radiance, effective temperature, anomaly area, radiative, gas, convective, and total heat, and mass fluxes. We study the eruptive activity of five volcanoes including Krakatau, Stromboli, Fuego, Villarrica and Lascar volcanoes, comparing field and eruptive data with thermal radiance. In the case of Villarrica and Lascar volcanoes, we also compare the thermal radiance and eruptive activity with seismic data. The thermal radiance shows a concordance with the eruptive activity in all cases, whereas a correlation is observed between thermal and seismic data both, in Villarrica and Lascar volcanoes, especially in the case of long-period seismicity. VOLCANOMS is a new and powerful tool that, combined with other techniques, generates robust information for volcanic monitoring.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Albino, F., J. Biggs, R. Escobar-Wolf, A. Naismith, M. Watson, J. C. Phillips, and G. A. Chigna Marroquin. "Using TanDEM-X to measure pyroclastic flow source location, thickness and volume: Application to the 3rd June 2018 eruption of Fuego volcano, Guatemala." Journal of Volcanology and Geothermal Research 406 (November 2020): 107063. http://dx.doi.org/10.1016/j.jvolgeores.2020.107063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Amura, Mario. "Napoli Explosion." Ecozon@: European Journal of Literature, Culture and Environment 9, no. 1 (April 28, 2018): 134–38. http://dx.doi.org/10.37536/ecozona.2018.9.1.2416.

Повний текст джерела
Анотація:
Napoli Explosionis the combinatorial synthesis of an emotional transition. A year dies flowing and vanishing into the new one. A reckless eye shuttles as fast as a blink from far away in the City of Naples with no human shape in sight. An invisible Humanity as a whole, a hundred thousand lights in their illusion of challenging the immense power of Nature, embodied by the still and silent menace of the Vesuvius Volcano. It seems like a war zone seen in the distance: the constellation of myriads of fireworks of the City seem an anti-aircraft fire against the imaginary menace of the passing of Time. On one side, a minuscule, invisible multitude of human beings obsessed and eaten up by Time celebrates its death and resurrection in the New Year’s Day fireworks mess. On the other side stands the Volcano, ironically waiting quietly in the shade for the moment to explode unannounced its fury: out of Time, guided by earth’s breath and beat, synchronized with the rhythm of Universe. The City surrounds it, lights-bombing it while motionless and mute: an enormous deep blue shadow of an overturned cone whose roots plunge into the chaos of fire and energy boiling in the earth bowels It seems to live out of Human Time. The City of Naples explodes in the impermanent constellation of fireworks. The faraway eye, standing on the Faito Mountain just in front of the City, catches all its raging sense of vengeance against the deathly power of Vesuvius, as a sort of exhibition of euphoria in a state of trance, in the momentary victory over Death symbolized by the passage to a new year of Life. It’s an exorcism, a rite. New Year’s Day in Naples is something more than a simple celebration. It’s a state of mind: the city is notorious all over the world for its black market of illegal, dangerous fireworks, a hidden business which reveals all the iconoclastic fury of its inhabitants against Time and History. At midnight a kind of cyclic Potlatch begins, in which people get rid of everything belonging to the Past, throwing out of the windows furniture, objects, old stuff not worthy of surviving the Big Fire, aiming for the illusion of an eternal Present Time of everlasting Youth. Amura gives a human soul to what is lifeless: the city itself explodes, challenging Nature (Serafino Murri). Napoli Explosion is a project started in 2006. From 2006 to 2015 the photos were shot solo by Amura. Since 2016, a "polyphonic" team was formed including Christian Arpaia, Claudia Ascione, Eleonora Grieco, Raffaele Losco, Marco Rambaldi, Marco Ricci, Armando Serrano, Maurizio Valsania. Original music by Louis Siciliano. (https://it.wikipedia.org/wiki/Louis_Siciliano).Resumen Explosión en Nápoles es la síntesis combinatoria de una transición emocional. Un año muere fluyendo y desvaneciéndose en uno nuevo. Un ojo temerario viaja tan rápido como un parpadeo desde la lejanía en la ciudad de Nápoles sin una forma humana a la vista. Una Humanidad invisible como un todo, cien mil luces en su ilusión de desafiar el inmenso poder de la naturaleza, personificado en la tranquila y silenciosa amenaza del volcán Vesubio. Parece una escena de guerra en la distancia: la constelación de una miríada de fuegos artificiales de la Ciudad como si se tratara de un bombardeo antiaéreo contra la amenaza imaginaria que yace en el paso del tiempo. Por un lado, una minúscula multitud invisible de seres humanos obsesionados con, y devorados por, el Tiempo celebran su muerte y resurrección en el caos de los fuegos artificiales de Año Nuevo. Por otro lado, está el volcán, esperando silenciosamente en la sombra el momento en que su furia explote sin aviso: fuera del Tiempo, guiado por la respiración y latido de la tierra, sincronizado con el ritmo del universo. La Ciudad lo rodea, las luces lo iluminan mientras permanece quieto y mudo: una enorme sombra azul de un cono volcado cuyas raíces se sumergen en las entrañas de la tierra, en su caos de fuego y energía. Parece vivir fuera del Tiempo Humano. La Ciudad de Nápoles explota en la constelación temporal de fuegos artificiales. El ojo lejano, situado en la montaña Faito justo frente a la ciudad, capta todo su iracundo sentido de venganza frente al poder mortal del Vesubio, como una especia de exhibición de euforia en un estado de trance, en la victoria momentánea sobre la Muerte simbolizada por el paso a un año nuevo de Vida. Es un exorcismo, un rito. El día de Año Nuevo en Nápoles es algo más que una simple celebración. Es un estado mental: la ciudad es conocida en todo el mundo por su mercado negro de fuegos artificiales peligrosos e ilegales, un negocio escondido que revela la furia iconoclasta de sus habitantes contra el Tiempo y la Historia. A medianoche una especie de Potlatch cíclico comienza, en el que la gente se deshace de todo lo que pertenece al pasado, lanzando por las ventanas muebles, objetos, cosas viejas que no merecen sobrevivir el Gran Fuego, con la ilusión de un Tiempo Presente eterno de Juventud interminable. Amura da un alma humana a lo que no tiene vida: la ciudad misma explota, desafiando a la Naturaleza (Serafino Murri). Explosión en Nápoles es un proyecto que comenzó en 2006. De 2006 a 2015 sólo Amura tomó las fotos. Desde 2016, se formó un equipo “polifónico” incluyendo a Christian Arpaia, Claudia Ascione, Eleonora Grieco, Raffaele Losco, Marco Rambaldi, Marco Ricci, Armando Serrano, Maurizio Valsania. Música original de Louis Siciliano (https://it.wikipedia.org/wiki/Louis_Siciliano).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Schill, G. P., K. Genareau, and M. A. Tolbert. "Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy." Atmospheric Chemistry and Physics Discussions 15, no. 2 (January 16, 2015): 1385–420. http://dx.doi.org/10.5194/acpd-15-1385-2015.

Повний текст джерела
Анотація:
Abstract. Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui euption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225–235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Schill, G. P., K. Genareau, and M. A. Tolbert. "Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash." Atmospheric Chemistry and Physics 15, no. 13 (July 10, 2015): 7523–36. http://dx.doi.org/10.5194/acp-15-7523-2015.

Повний текст джерела
Анотація:
Abstract. Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Liu, Emma J., Katharine V. Cashman, Ellen Miller, Hannah Moore, Marie Edmonds, Barbara E. Kunz, Frances Jenner, and Gustavo Chigna. "Petrologic monitoring at Volcán de Fuego, Guatemala." Journal of Volcanology and Geothermal Research 405 (November 2020): 107044. http://dx.doi.org/10.1016/j.jvolgeores.2020.107044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Schellenberg, Ben, Tom Richardson, Arthur Richards, Robert Clarke, and Matt Watson. "On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments." Sensors 19, no. 19 (September 21, 2019): 4085. http://dx.doi.org/10.3390/s19194085.

Повний текст джерела
Анотація:
A team from the University of Bristol have developed a method of operating fixed wing Unmanned Aerial Vehicles (UAVs) at long-range and high-altitude over Volcán de Fuego in Guatemala for the purposes of volcanic monitoring and ash-sampling. Conventionally, the mission plans must be carefully designed prior to flight, to cope with altitude gains in excess of 3000 m, reaching 9 km from the ground control station and 4500 m above mean sea level. This means the climb route cannot be modified mid-flight. At these scales, atmospheric conditions change over the course of a flight and so a real-time trajectory planner (RTTP) is desirable, calculating a route on-board the aircraft. This paper presents an RTTP based around a genetic algorithm optimisation running on a Raspberry Pi 3 B+, the first of its kind to be flown on-board a UAV. Four flights are presented, each having calculated a new and valid trajectory on-board, from the ground control station to the summit region of Volcań de Fuego. The RTTP flights are shown to have approximately equivalent efficiency characteristics to conventionally planned missions. This technology is promising for the future of long-range UAV operations and further development is likely to see significant energy and efficiency savings.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Schellenberg, Ben, Tom Richardson, Matt Watson, Colin Greatwood, Robert Clarke, Rick Thomas, Kieran Wood, et al. "Remote sensing and identification of volcanic plumes using fixed‐wing UAVs over Volcán de Fuego, Guatemala." Journal of Field Robotics 36, no. 7 (July 24, 2019): 1192–211. http://dx.doi.org/10.1002/rob.21896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Bosa, Ashley, Jeffrey Johnson, Silvio De Angelis, John Lyons, Amilcar Roca, Jacob Anderson, and Armando Pineda. "Tracking secondary lahar flow paths and characterizing pulses and surges using infrasound array networks at Volcán de Fuego, Guatemala." Volcanica 4, no. 2 (October 25, 2021): 239–56. http://dx.doi.org/10.30909/vol.04.02.239256.

Повний текст джерела
Анотація:
Lahars are one of the greatest hazards at many volcanoes, including Volcán de Fuego (Guatemala). On 1 December 2018 at 8:00pm local Guatemala time (2:00:00 UTC), an hour-long lahar event was detected at Volcán de Fuego by two permanent seismo-acoustic stations along the Las Lajas channel on the southeast side. To establish the timing, duration, and speed of the lahar, infrasound array records were examined to identify both the source direction(s) and the correlated energy fluctuations at the two stations. Co-located seismic and acoustic signals were also examined, which indicated at least 5 distinct energy pulses within the lahar record. We infer that varying sediment load and/or changes in flow velocity is shown by clear fluctuations in the acoustic and seismic power recorded at one of the stations. This particular event studied with infrasound provides insight into how lahars occur around Volcán de Fuego.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Proaño Avilés, Juan Sebastián, Esteban Nicolás Trujillo Hidalgo, and Ral Alejandro López Pazmiño. "Simulación de la propagación de incendios forestales utilizando barreras cortafuegos en el Volcán Ilaló, Quito – Ecuador." ACI Avances en Ciencias e Ingenierías 13, no. 2 (November 4, 2021): 20. http://dx.doi.org/10.18272/aci.v13i2.2328.

Повний текст джерела
Анотація:
Los incendios forestales provocan pérdidas materiales cuantiosas para la gente que vive en el sector afectado e inseguridad para la población. En este proyecto se propuso simular la propagación del fuego en el incendio forestal ocurrido el día 14 de septiembre de 2015 en el Volcán Ilaló – Sector La Toglla, Quito – Ecuador, utilizando los programas QGIS y FARSITE, además de estudiar soluciones alternativas para contener la propagación del fuego. Utilizando información topográfica y meteorológica, se construyó en FARSITE una simulación de la propagación del fuego y las repercusiones que se vieron reflejadas en varias hectáreas de naturaleza quemadas y la producción de gases de combustión. Los resultados del estudio de FARSITE pudieron ser validados con la información oficial de los contaminantes expulsados a la atmósfera. Finalmente, los métodos de contención desarrollados mostraron una disminución del área afectada y toneladas de contaminantes expulsados al ambiente, en comparación con las condiciones reales en el Volcán Ilaló correspondientes al incendio estudiado. Esta herramienta puede guiar los esfuerzos de diseño de cortafuegos y reforestación en zonas erosionadas, como el Ilaló.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

GELOS, EDGARDO MARTÍN, JORGE OSVALDO SPAGNUOLO, and FEDERICO IGNACIO ISLA. "Características Tectónicas de Áreas de Aporte para Arenas de Playas de Tierra del Fuego y Península Antártica, Argentina." Pesquisas em Geociências 27, no. 1 (June 30, 2000): 69. http://dx.doi.org/10.22456/1807-9806.20181.

Повний текст джерела
Анотація:
Sand mineralogical analysis from 22 beaches were performed within the southernmost area of Argentina (Isla Grande de Tierra del Fuego), the Antarctic Peninsula and the Scotia Arc (South Orkney, South Shetland and James Ross islands included). Composition triangles of light and heavy minerals were considered in order to relate them to depocenters, sediment sources and tectonic setting. 71% of the sediments would have been transported from magmatic arcs, 24% from elevated crystalline basements and only 5% from recycled orogene. In regard to the heavy mineral distribution, 70% were assigned to a suite from an active continental margin and the remaining 30% would correspond to areas outside the continental margins (volcanic arcs). In a general way, sediment sources were related to active margins or volcanic island arcs. As an anomalous fact, it is stressed that the coasts of Tierra del Fuego and the western sector of the Antarctic Peninsula and adjacent islands, contain sediments from a Pacific margin but lying on a passive Atlantic margin. Finally, it should be adviced about the convenience to know the source areas when ice is the transport agent, as it avoids a selective ability and it does not modify the original mineralogical composition.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Rodríguez-Pérez, Quetzalcoatl, F. Ramón Zúñiga, and Carlos M. Valdés-González. "Statistical earthquake characterization from relocated seismicity at Volcan de Fuego, Colima Western Mexico." Journal of Volcanology and Geothermal Research 431 (November 2022): 107662. http://dx.doi.org/10.1016/j.jvolgeores.2022.107662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sánchez Dirzo, Rafael. "Chan Kiin: las fuentes de la energía renovables." Educación Química 9, no. 4 (August 30, 2018): 190. http://dx.doi.org/10.22201/fq.18708404e.1998.4.66540.

Повний текст джерела
Анотація:
<span>Desde hace siglos se sabe que a las máquinas hay que alimentarlas con hidrocarburos para que puedan funcionar. En otras palabras, se conoce que la energía motriz que producen se origina con el calor de la combustión. El hombre conoce el fuego desde que comenzó a respirar sobre la Tierra. Los volcanes y los relámpagos seguramente fueron los primeros dioses en mostrarle lo caliente de las llamas sobre todo cuando su furia caía sobre su cabeza y su morada, y las incendiaba.</span>
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Han, Changhee, Laurie J. Burn, Paul Vallelonga, Soon Do Hur, Claude F. Boutron, Yeongcheol Han, Sanghee Lee, Ahhyung Lee, and Sungmin Hong. "Lead Isotopic Constraints on the Provenance of Antarctic Dust and Atmospheric Circulation Patterns Prior to the Mid-Brunhes Event (~430 kyr ago)." Molecules 27, no. 13 (June 30, 2022): 4208. http://dx.doi.org/10.3390/molecules27134208.

Повний текст джерела
Анотація:
A lead (Pb) isotopic record, covering the two oldest glacial–interglacial cycles (~572 to 801 kyr ago) characterized by lukewarm interglacials in the European Project for Ice Coring in Antarctica Dome C ice core, provides evidence for dust provenance in central East Antarctic ice prior to the Mid-Brunhes Event (MBE), ~430 kyr ago. Combined with published post-MBE data, distinct isotopic compositions, coupled with isotope mixing model results, suggest Patagonia/Tierra del Fuego (TdF) as the most important sources of dust during both pre-MBE and post-MBE cold and intermediate glacial periods. During interglacials, central-western Argentina emerges as a major contributor, resulting from reduced dust supply from Patagonia/TdF after the MBE, contrasting to the persistent dominance of dust from Patagonia/TdF before the MBE. The data also show a small fraction of volcanic Pb transferred from extra-Antarctic volcanoes during post-MBE interglacials, as opposed to abundant transfer prior to the MBE. These differences are most likely attributed to the enhanced wet removal efficiency with the hydrological cycle intensified over the Southern Ocean, associated with a poleward shift of the southern westerly winds (SWW) during warmer post-MBE interglacials, and vice versa during cooler pre-MBE ones. Our results highlight sensitive responses of the SWW and the associated atmospheric conditions to stepwise Antarctic warming.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Biondi, Franco, Ignacio Galindo Estrada, Juan Carlos Gavilanes Ruiz, and Alejandro Elizalde Torres. "Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico." Quaternary Research 59, no. 3 (May 2003): 293–99. http://dx.doi.org/10.1016/s0033-5894(03)00034-6.

Повний текст джерела
Анотація:
AbstractThe impact of volcanic eruptions on forest ecosystems can be investigated using dendrochronological records. While long-range effects are usually mediated by decreased air temperatures, resulting in frost rings or reduced maximum latewood density, local effects include abrupt suppression of radial growth, occasionally followed by greater than normal growth rates. Annual rings in Mexican mountain pine (Pinus hartwegii Lindl.) on Nevado de Colima, at the western end of the Mexican Neovolcanic Belt, indicate extremely low growth in 1913 and 1914, following the January 1913 Plinian eruption of Volcán de Fuego, 7.7 km to the south. That event, which is listed among the largest explosive eruptions since A.D. 1500, produced ashflow deposits up to 40 m thick and blanketed our study area on Nevado de Colima with a tephra fallout 15–30 cm deep. Radial growth reduction in 1913–14 was ≥30% in 73% of the sampled trees. We geostatistically investigated the ecological impact of the eruption by mapping the decrease in xylem increment and found no evidence of a spatial structure in growth reduction. Little information has been available to date on forest species as biological archives of past environments in the North American tropics, yet this historical case study suggests that treeline tropical sites hold valuable records of prehistoric phenomena, including volcanic eruptions.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Romano, Luis Ernesto. "14 observaciones que surgen del reciente desastre en el Volcán de Fuego, 2018, Guatemala." REDER 3, no. 2 (August 13, 2019): 109. http://dx.doi.org/10.55467/reder.v3i2.36.

Повний текст джерела
Анотація:
El 3 de junio de 2018 se registró una nueva erupción del Volcán de Fuego en Guatemala, una elevación de más 3700 m.s.n.m. en cuyas faldas se desarrolla una intensa actividad agropecuaria y donde pueden encontrarse una amplia diversidad de cabeceras municipales, pueblos, aldeas, comunidades, pequeños asentamientos humanos aislados así como empresas industriales y terciarias de toda escala. Un importante porcentaje de estos asentamientos humanos se ubican en partes altas del citado volcán, donde predominan las plantaciones de café de altura y estricta altura.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Hutchison, A. A., K. V. Cashman, C. A. Williams, and A. C. Rust. "The 1717 eruption of Volcán de Fuego, Guatemala: Cascading hazards and societal response." Quaternary International 394 (February 2016): 69–78. http://dx.doi.org/10.1016/j.quaint.2014.09.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Alva-Valdivia, L. M., J. A. González-Rangel, A. M. Soler-Arechalde, S. L. López-Varela, and H. López-Loera. "Archaeological calibration of remagnetized volcanic rocks from pottery firing kilns in Cuentepec, Morelos, Mexico." Geofísica Internacional 45, no. 4 (October 1, 2006): 231–41. http://dx.doi.org/10.22201/igeof.00167169p.2006.45.4.160.

Повний текст джерела
Анотація:
Investigaciones etnoarqueológicas en Cuentepec incluyen experimentos durante la producción de cerámica, de donde es posible extraer conocimientos sociales a partir de la aplicación de técnicas arqueométricas. En este caso, el experimento trata sobre la confiabilidad de técnicas de fechamiento en arqueología. En Cuentepec, se usan pequeños hornos a cielo abierto para la fabricación de cerámica (comales de barro). Se tomaron muestras de roca volcánica que conformaban los hornos para verificar la confiabilidad de la dirección magnética registrada por las mismas y compararla con datos del Observatorio Geomagnético de Teoloyucan localizado cerca a la ciudad de México. Con el objeto de medir sus propiedades magnéticas se perforaron/obtuvieron en el laboratorio 47 núcleos pertenecientes a ocho muestras de bloque orientadas. Las curvas continuas de susceptibilidad magnética con altas temperaturas resultaron en muchos casos razonablemente reversibles, con puntos de Curie sugiriendo titanomagnetita de rica a pobre en titanio. Los parámetros de histéresis indican que todas las muestras caen en la región de tamaño de grano pseudo-dominio-simple, indicando probablemente una mezcla de granos multidominio más una cantidad significante de granos de dominio simple. Las curvas de adquisición de magnetización remanente isotermal fueron muy similares para casi todas las muestras. La saturación se alcanzó en campos moderados del orden de 100-120 mT, lo cual indica algunas espinelas como portadores de la remanencia. Concluimos que las muestras obtenidas de la parte interna de los bloques que forman los hornos, las más cercanas al fuego, guardan los registros más confiables del campo geomagnético. Esto significa que el calor producido por el fuego probablemente sólo remagnetizó las partes internas de los bloques.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

MacKenzie, Shannon M., and Ralph D. Lorenz. "Prospects for Detecting Volcanic Events with Microwave Radiometry." Remote Sensing 12, no. 16 (August 7, 2020): 2544. http://dx.doi.org/10.3390/rs12162544.

Повний текст джерела
Анотація:
Identifying volcanic activity on worlds with optically thick atmospheres with passive microwave radiometry has been proposed as a means of skirting the atmospheric interference that plagues near infrared observations. By probing deeper into the surface, microwave radiometers may also be sensitive to older flows and thus amenable for investigations where repeat observations are infrequent. In this investigation we explore the feasibility of this tactic using data from the Soil Moisture Active Passive (SMAP) mission in three case studies: the 2018 Kilauea eruption, the 2018 Oct-Nov eruption at Fuego, and the ongoing activity at Erta Ale in Ethiopia. We find that despite SMAP’s superior spatial resolution, observing flows that are small fractions of the observing footprint are difficult to detect—even in resampled data products. Furthermore, the absorptivity of the flow, which can be temperature dependent, can limit the depths to which SMAP is sensitive. We thus demonstrate that the lower limit of detectability at L-band (1.41 GHz) is in practice higher than expected from first principles.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Islas Madrid, Gloria Elena, Dante Arturo Rodríguez Trejo, and Pedro Arturo Martínez Hernández. "DIVERSIDAD DEL SOTOBOSQUE Y RADIACIÓN SOLAR EN UN BOSQUE DE Pinus hartwegii Lindl. CON QUEMA PRESCRITA." Revista Mexicana de Ciencias Forestales 4, no. 15 (October 19, 2018): 025–40. http://dx.doi.org/10.29298/rmcf.v4i15.446.

Повний текст джерела
Анотація:
Los bosques de Pinus hartwegii son beneficiados cuando presentan regímenes de fuego apropiados; si esto no ocurre, el uso de quemas prescritas es una alternativa para corregirlos; por lo anterior es relevante el estudio de la ecología del fuego. En el caso particular del Distrito Federal, los bosques proveen de servicios ambientales a los habitantes de la zona sur. Por lo tanto, sobre una ladera del volcán Ajusco se establecieron tres parcelas con quema prescrita de baja intensidad (largo de llama <1 m, velocidad de propagación <3 m min-1), y tres parcelas no quemadas, como testigo; en un diseño experimental completamente al azar (3.6 ha por parcela en promedio). Al año siguiente se obtuvieron datos del sotobosque para calcular la riqueza de especies, los índices de diversidad de Shannon-Wiener y de Simpson, así como los valores de importancia. Los análisis de varianza multivariados y univariados mostraron aumento de la riqueza y diversidad de especies en las parcelas quemadas. Muhlenbergia quadridentata aumentó su densidad y dominancia a mayor radiación, pero Penstemon gentianoides redujo esta última al incrementarse la radiación, lo cual puede relacionarse con una mayor humedad en sitios parcialmente sombreados. La diversidad se eleva por la disminución en la competencia con los zacates, que dominan las localidades no quemadas.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

SØCHTING, Ulrik, Majbrit Zeuthen SØGAARD, John A. ELIX, Ulf ARUP, Arve ELVEBAKK, and Leopoldo G. SANCHO. "Catenarina (Teloschistaceae, Ascomycota), a new Southern Hemisphere genus with 7-chlorocatenarin." Lichenologist 46, no. 2 (February 11, 2014): 175–87. http://dx.doi.org/10.1017/s002428291300087x.

Повний текст джерела
Анотація:
AbstractA new genus, Catenarina (Teloschistaceae, Ascomycota), with three species is described from the Southern Hemisphere, supported by molecular data. All species contain the secondary metabolite 7-chlorocatenarin, previously unknown in lichens. Catenarinadesolata is a non-littoral, lichenicolous species found on volcanic and soft sedimentary rock at 190–300 m in and near steppes in southernmost Chile and on the subantarctic island, Kerguelen. Catenarina vivasiana grows on maritime rocks and on rock outcrops in lowland Nothofagus forests, but has also been found at altitudes up to c. 580 m on moss and detritus on outcrops in Tierra del Fuego. The Antarctic species Caloplaca iomma is transferred to Catenarina based on chemical data; it grows on rocks near the coast in maritime Antarctica.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Olivero, Eduardo B., and Daniel R. Martinioni. "Late Albian inoceramid bivalves from the Andes of Tierra del Fuego: Age implications for the closure of the Cretaceous marginal basin." Journal of Paleontology 70, no. 2 (March 1996): 272–74. http://dx.doi.org/10.1017/s0022336000023349.

Повний текст джерела
Анотація:
At the southernmost tip of South America, a thick pile of deep marine volcaniclastic rocks called the Yahgan Formation (Kranck, 1932) was deposited during the Early Cretaceous in a small marginal basin developed between the continent and a Pacific-facing volcanic arc (Katz, 1972; Dalziel et al., 1974). North and northwest of Tierra del Fuego, in the adjacent Austral or Magallanes basin, this unit is laterally replaced by coeval, fine-grained deposits representing basinal, slope, and platform marine settings (Winslow, 1982; Biddle et al., 1986; Wilson, 1991). The geometry of the basins changed markedly with a compressional event that produced the tectonic inversion of the marginal basin and the formation of a retroarc foreland basin in front of the rising cordillera. Closure of the marginal basin and strong deformation of the Yahgan Formation apparently occurred in the mid-Cretaceous (Halpern and Rex, 1972; Dalziel et al., 1974; Wilson, 1991); however, the timing of the opening and closing of the basin is poorly constrained because of the scarcity of fossil evidence. So far, a Late Jurassic-Neocomian age was favored for the Yahgan Formation on the basis of the record of belemnites and ammonites (Aguirre Urreta and Suárez, 1985; Halpern and Rex, 1972; Winn, 1978). Halpern and Rex (1972) mentioned the Hauterivian genus Favrella in Gardiner Island, but this record has been questioned by Thomson et al. (1982) who considered the ammonite imprint to be some kind of heteromorph. Also, the timing of the transition from marginal to foreland basin is not well documented. On the basis of indirect evidence the initiation of the foreland basin stage was assigned to the Albian in the Ultima Esperanza region of Chile (Wilson, 1991) and to the Late Cretaceous in northern Tierra del Fuego (Biddle et al., 1986). Recent field work by the authors in the area of No Top Mountain-Moat River, Tierra del Fuego (Figure 1), has resulted in the first record of diagnostic late Albian inoceramids in the Yahgan Formation. The objective of this note is to document this fauna and to briefly discuss its implications on the control of the timing of the transition from marginal to foreland basin in the area.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Potoy Mejía, Oswlin Snayder. "El Charco Verde: Un lugar encantado." Raíces: Revista Nicaragüense de Antropología 5, no. 9 (July 9, 2021): 44–54. http://dx.doi.org/10.5377/raices.v5i9.11975.

Повний текст джерела
Анотація:
El presente relato introduce a los lectores en la cotidianidad de las personas oriundas de la Isla de Ometepe, quienes fiel a las leyendas de sus ancestros guardaban como palabra divina cada cosa que les contaban. Ometepe, pertenece al departamento de Rivas, Nicaragua y es considerada una de las siete maravillas del mundo por la belleza de sus playas, flora, fauna y la riqueza cultural de la misma. La isla, además, tiene dos volcanes activos (El Concepción y el Maderas) uno de fuego y otro de agua; islotes y lagunas que hacen resaltar aún más su esplendor, entre ellos el asonado Charco Verde. Así mismo, el texto, nos narra una de las leyendas que tiene mayor relevancia en la Isla y que se ha extendido en algunos departamentos de Nicaragua debido a que muchos han abandonado sus tierras en busca de nuevas oportunidades de vida. Además, este trabajo, le da riqueza y recreación a la leyenda que naturalmente se conoce permitiendo situarse en el tiempo y lugar donde sucedieron los hechos.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Jardim de Carvalho Jr., Ilton, and J. M. Salmerón Muñoz. "Análisis de la amenaza sísmica en Nicaragua: el caso de la ciudad de Managua." Investigaciones Geográficas, no. 52 (December 30, 2016): 121. http://dx.doi.org/10.5354/0719-5370.2016.44732.

Повний текст джерела
Анотація:
Nicaragua, país centroamericano de 6.2 millones de habitantes, conocido por sus grandes lagos y volcanes activos, se encuentra en el cinturón de fuego del Pacífico, en la zona de subducción de la Placa Coco bajo la Placa Caribe. El país tiene un amplio historial de destrucción causado por sucesivos terremotos de fuerte magnitud. Centenas de fallas geológicas causan sismos frecuentes en la capital, Managua. El propósito de este trabajo es analizar el caso singular de Managua y su alto riesgo de sufrir pérdidas y daños por desastres naturales catastróficos, presentando para eso, el escenario tectónico-volcánico del país; el estudio se enfoca en los episodios más extremos ocurridos, analizando la amenaza sísmica en Managua. Como resultado de este trabajo se entrega un panorama general de los tipos de amenazas geológicas que desafían Nicaragua, concentrándose en las amenazas sísmicas y algunos episodios trágicos en el historial de desastres naturales geológicos, contribuyendo así con la difusión de conocimientos necesarios al planteamiento de políticas de mitigación y prevención de desastres geológicos sísmicos y volcánicos.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Rose, W. I., S. Self, P. J. Murrow, C. Bonadonna, A. J. Durant, and G. G. J. Ernst. "Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala." Bulletin of Volcanology 70, no. 9 (December 11, 2007): 1043–67. http://dx.doi.org/10.1007/s00445-007-0187-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Nava, F. A., and R. E. García Arthur. "Obtención de correcciones de estación para redes sismológicas locales; correcciones para la red RESCO de Colima." Geofísica Internacional 33, no. 2 (April 1, 1994): 211–21. http://dx.doi.org/10.22201/igeof.00167169p.1994.33.2.470.

Повний текст джерела
Анотація:
La correcta localización de los hipocentros sísmicos es esencial para los estudios de microsismicidad que se llevan a cabo con base en datos de redes sismológicas locales. La distribución espacio-temporal de las fuentes sísmicas refleja la distribución y la evolución de esfuerzos en volcanes y fallas activas, y aporta información importante para la evaluación de riesgos. Las redes sismológicas que localizan con programas que suponen modelos de velocidades homogéneos lateralmente, particularmente aquellas situadas en regiones de topografía accidentada, requieren de correcciones de estación para la obtención de localizaciones precisas. Se presenta un método para la obtención de correcciones de estación para redes locales, basado en una determinación preliminar a partir de tiempos de arribo de señales telesísmicas, modificada mediante prueba y error y ajuste promedio en localizaciones de sismos locales. El método se aplica a la obtención de correcciones para las estaciones de la Red Sismológica de Colima que monitorean la actividad sísmica asociada con el Volcán de Fuego. Estas correcciones tienen valores de -0.200 s a +0.360 s y, aplicadas a la localización de 30 sismos volcánicos someros, reducen los errores totales promedio hipocentrales de 0.092 km a 0.063 km. los de tiempo origen de 0.038 s a 0.026 s, y aumentan considerablemente la estabilidad y robustez de las localizaciones.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Malvina, Serra, Carlos Gabriel Herrera, and Adriana Ediht Niz. "Teledetección aplicada al mapeo geomorfológico de los volcanes de la cuenca alta del río Chaschuil, provincia de Catamarca, Argentina." Tecnura 23, no. 60 (April 1, 2019): 13–26. http://dx.doi.org/10.14483/22487638.14642.

Повний текст джерела
Анотація:
Contexto: La cuenca alta del río Chaschuil se encuentra en las provincias geomorfológicas de codillera Frontal y sistema de Famatina, se extiende desde el límite superior de la cuenca, a los 26° 45' 6,35" de latitud S y 68° 2'22 15" de longitud O, hasta el volcán Aguas Calientes, a los 27° 13' 25,81" de latitud S y 68° 19'5 48" de longitud O. La zona se inserta en el Cinturón de Fuego del Pacífico, que se caracteriza por concentrar algunas zonas de subducción más importantes del mundo, donde se genera una intensa actividad sísmica y volcánica. Método: A través de operaciones estadísticas y numéricas aplicadas sobre los datos de las matrices que componen una imagen satelital, se generó la cartografía geomorfológica volcánica. Para dicho análisis, se utilizó el software libre SoPI 3.0, en el que se procesaron las imágenes satelitales Landsat 7 y 8, de los años 2002 y 2015. La cartografía fue elaborada en el software libre QGIS 3.2.2, con el apoyo del software libre Google Earth Pro. Resultados: Los mejores resultados del procesamiento digital se dieron en las bandas de rango visible y mediante distintas combinaciones de bandas en RGB. Se describen 13 aparatos volcánicos principales, altamente erosionados, con lavas pahoehoe asociadas; y erupciones secundarias, con lavas rugosas tipo aa sobrepuestas a las lavas más fluidas. Conclusiones: La aplicación del procesamiento digital de imágenes satelitales es una herramienta óptima para el estudio de estructuras volcánicas, que permite su delimitación y clasificación.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Hayward, Bruce W., Hugh R. Grenfell, Ashwaq T. Sabaa, and Rhiannon Daymond-King. "Biogeography and ecological distribution of shallow-water benthic foraminifera from the Auckland and Campbell Islands, subantarctic southwest Pacific." Journal of Micropalaeontology 26, no. 2 (October 1, 2007): 127–43. http://dx.doi.org/10.1144/jm.26.2.127.

Повний текст джерела
Анотація:
Abstract. One hundred and forty-eight species of benthic foraminifera are recorded from depths shallower than 80 m around the subantarctic Auckland (130 spp.) and Campbell (71 spp.) Islands, southwest Pacific. Comparisons with other circum-polar, subantarctic island groups suggest that they all have relatively low diversity, shallow-water benthic, foraminiferal faunas, with their sheltered harbours dominated by species of Elphidium, Notorotalia, Cassidulina, Haynesina and Nonionella-Nonionellina. More exposed environments are dominated by a small number of species of Cibicides, Miliolinella, Rosalina, Quinqueloculina and Glabratellidae. The extremely low species richness (three species) in high-tidal grass-dominated salt marsh on Campbell Island is similar to that reported from Tierra del Fuego at a similar latitude. The faunas of Auckland and Campbell Islands have their strongest affinities (70–75% species in common) with New Zealand’s three main islands, 460–700 km away. Ten percent of their fauna has not been recorded from mainland New Zealand, reflecting one endemic species and a small element of apparently subantarctic and bipolar-restricted species. Since there have been no shallow-water (<500 m) links to other lands since these two Miocene volcanic islands were formed, it is concluded that most benthic foraminiferal species have arrived in suspension in eddies of surface water, many since the peak of the Last Glacial.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії