Добірка наукової літератури з теми "Frequency of oscillation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Frequency of oscillation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Frequency of oscillation"

1

DANA, SYAMAL KUMAR, and SATYABRATA CHAKRABORTY. "GENERATION OF HOMOCLINIC OSCILLATION IN THE PHASE SYNCHRONIZATION REGIME IN COUPLED CHUA'S OSCILLATORS." International Journal of Bifurcation and Chaos 14, no. 04 (April 2004): 1375–83. http://dx.doi.org/10.1142/s0218127404009958.

Повний текст джерела
Анотація:
An experimental method for generating homoclinic oscillations using two nonidentical Chua's oscillators coupled in unidirectional mode is described here. A homoclinic oscillation is obtained at the response oscillator in the weaker coupling limit of phase synchronization. Different phase locking phenomena of homoclinic oscillations with external periodic pulse have been observed when the frequency of the pulse is close to the natural frequency of the homoclinic oscillation or its subharmonics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mureşan, Raul C., Ovidiu F. Jurjuţ, Vasile V. Moca, Wolf Singer, and Danko Nikolić. "The Oscillation Score: An Efficient Method for Estimating Oscillation Strength in Neuronal Activity." Journal of Neurophysiology 99, no. 3 (March 2008): 1333–53. http://dx.doi.org/10.1152/jn.00772.2007.

Повний текст джерела
Анотація:
We present a method that estimates the strength of neuronal oscillations at the cellular level, relying on autocorrelation histograms computed on spike trains. The method delivers a number, termed oscillation score, that estimates the degree to which a neuron is oscillating in a given frequency band. Moreover, it can also reliably identify the oscillation frequency and strength in the given band, independently of the oscillation in other frequency bands, and thus it can handle superimposed oscillations on multiple scales ( theta, alpha, beta, gamma, etc.). The method is relatively simple and fast. It can cope with a low number of spikes, converging exponentially fast with the number of spikes, to a stable estimation of the oscillation strength. It thus lends itself to the analysis of spike-sorted single-unit activity from electrophysiological recordings. We show that the method performs well on experimental data recorded from cat visual cortex and also compares favorably to other methods. In addition, we provide a measure, termed confidence score, that determines the stability of the oscillation score estimate over trials.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

HIROKI, Fujio, Keijiro YAMAMOTO, and Taiji MASUDA. "Oscillation Frequency of Supersonic Fluidic Oscillator." Transactions of the Society of Instrument and Control Engineers 28, no. 3 (1992): 358–65. http://dx.doi.org/10.9746/sicetr1965.28.358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SHUTTLEWORTH, Trevor J., and Jill L. THOMPSON. "Ca2+ entry modulates oscillation frequency by triggering Ca2+ release." Biochemical Journal 313, no. 3 (February 1, 1996): 815–19. http://dx.doi.org/10.1042/bj3130815.

Повний текст джерела
Анотація:
As in many cells, the frequency of agonist-induced cytosolic Ca2+ concentration ([Ca2+]i) oscillations in exocrine avian nasal gland cells is dependent on the rate of Ca2+ entry. Experiments reveal that the initiation of each oscillatory spike is independent of the relative fullness of the stores and, furthermore, the oscillating pool is normally fully refilled by the end of each [Ca2+]i spike. Therefore, contrary to current models, the interspike interval (which essentially sets the frequency) does not reflect the time taken to recharge the oscillating stores. Instead, the data show that it is the previously demonstrated role that Ca2+ entry plays in triggering the repetitive release of Ca2+ from the oscillating stores, rather than the recharging of those stores, that provides the basis for the observed effects of Ca2+ entry rate on oscillation frequency.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bao, Weili, and Jian-Young Wu. "Propagating Wave and Irregular Dynamics: Spatiotemporal Patterns of Cholinergic Theta Oscillations in Neocortex In Vitro." Journal of Neurophysiology 90, no. 1 (July 2003): 333–41. http://dx.doi.org/10.1152/jn.00715.2002.

Повний текст джерела
Анотація:
Neocortical “theta” oscillation (5–12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (∼8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike,” a “regular” period (with relatively stable frequency and amplitude), and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation, one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ∼50 mm/s. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about ≤300 μm wide horizontally. During irregular oscillations, the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Беляев, М. А., та А. А. Величко. "Исследование динамических пороговых характеристик VO-=SUB=-2-=/SUB=--переключателя в осцилляторном контуре". Письма в журнал технической физики 46, № 3 (2020): 38. http://dx.doi.org/10.21883/pjtf.2020.03.48991.17890.

Повний текст джерела
Анотація:
This paper investigates the dependence of the dynamic threshold characteristics of a VO2-switch on the oscillation frequency of a self-oscillating circuit. A transitional oscillation regime related to the self-heating of the substrate is discovered. Proposed analytical formulas allow consider these regularities and having practical significance in designing oscillator neural networks based on VO2-switches.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Potkonjak, N., Lj Kolar-Anić, T. Potkonjak, S. Nikola Blagojević, and S. Anić. "Oscillatory Phenomena during Anodic Copper Electrodissolution in Trifluoroacetic Acid Solution." Materials Science Forum 518 (July 2006): 301–6. http://dx.doi.org/10.4028/www.scientific.net/msf.518.301.

Повний текст джерела
Анотація:
This work presents the current oscillation phenomena observed in an electrochemical Cu/0.5 M CF3COOH system. The dynamical response of this new oscillator was followed by both current density-potential (j-E) and current density-time (j-t) curves. The current oscillation phenomena of the investigated system were monitored over various potential scan rates and constant applied potentials as control parameters. The increase of potential scan rate significantly decreases both the potential range of current oscillations and the frequency of oscillations. At the j-t curves both the simple and the complex (period adding) oscillations were found. Moreover, with the increase of applied potential, the increase of period of oscillations and current oscillation amplitudes were observed. It appears that the period of current oscillations exponentially grows with applied potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leontini, Justin S., David Lo Jacono, and Mark C. Thompson. "A numerical study of an inline oscillating cylinder in a free stream." Journal of Fluid Mechanics 688 (November 3, 2011): 551–68. http://dx.doi.org/10.1017/jfm.2011.403.

Повний текст джерела
Анотація:
AbstractSimulations of a cylinder undergoing externally controlled sinusoidal oscillations in the free stream direction have been performed. The frequency of oscillation was kept equal to the vortex shedding frequency from a fixed cylinder, while the amplitude of oscillation was varied, and the response of the flow measured. With varying amplitude, a rich series of dynamic responses was recorded. With increasing amplitude, these states included wakes similar to the Kármán vortex street, quasiperiodic oscillations interleaved with regions of synchronized periodicity (periodic on multiple oscillation cycles), a period-doubled state and chaotic oscillations. It is hypothesized that, for low to moderate amplitudes, the wake dynamics are controlled by vortex shedding at a global frequency, modified by the oscillation. This vortex shedding is frequency modulated by the driven oscillation and amplitude modulated by vortex interaction. Data are presented to support this hypothesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hehner, Marc T., Davide Gatti, Marios Kotsonis, and Jochen Kriegseis. "Effects of actuation mode on plasma-induced spanwise flow oscillations." Journal of Physics D: Applied Physics 55, no. 20 (February 22, 2022): 205203. http://dx.doi.org/10.1088/1361-6463/ac526b.

Повний текст джерела
Анотація:
Abstract Two different plasma actuation strategies for producing near-wall flow oscillations, namely the burst-modulation and beat-frequency mode, are characterized with planar particle image velocimetry in quiescent air. Both concepts are anticipated to work as non-mechanical surrogates of oscillating walls aimed at turbulent flow drag reduction, with the added benefit of no moving parts, as the fluid is purely manipulated by plasma-generated body forces. The current work builds upon established flow-control and proof-of-concept demonstrators, as such, delivering an in-depth characterization of cause and impact of the plasma-induced flow oscillations. Various operational parameter combinations (oscillation frequency, duty cycle and input body force) are investigated. A universal performance diagram that is valid for plasma-based oscillations, independent of the actuation concept is derived. Results show that selected combinations of body force application methods suffice to reproduce oscillating wall dynamics from experimental data. Accordingly, the outcomes of this work can be exploited to create enhanced actuation models for numerical simulations of plasma-induced flow oscillations, by considering the body force as a function of the oscillation phase. Furthermore, as an advantage over physically displaced walls, the exerted body force appears not to be hampered by resonances and therefore remains constant independent of the oscillation frequency. Hence, the effects of individual parameter changes on the plasma actuator performance and fluid response as well as strategies to avoid undesired effects can be determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bergadà, Josep M., Masoud Baghaei, Bhanu Prakash, and Fernando Mellibovsky. "Fluidic Oscillators, Feedback Channel Effect under Compressible Flow Conditions." Sensors 21, no. 17 (August 27, 2021): 5768. http://dx.doi.org/10.3390/s21175768.

Повний текст джерела
Анотація:
Fluidic oscillators are often used to modify the forces fluid generates on any given bluff body; they can also be used as flow, pressure or acoustic sensors, with each application requiring a particular oscillator configuration. Regarding the fluidic oscillators’ main performance, a problem which is not yet clarified is the understanding of the feedback channel effect on the oscillator outlet mass flow frequency and amplitude, especially under compressible flow conditions. In order to bring light to this point, a set of three-dimensional Direct Numerical Simulations under compressible flow conditions are introduced in the present paper; four different feedback channel lengths and two inlet Reynolds numbers Re = 12,410 and Re = 18,617 are considered. From the results obtained, it is observed that as the inlet velocity increases, the fluidic oscillator outlet mass flow frequency and amplitude increase. An increase of the feedback channel length decreases the outlet mass flow oscillating frequency. At large feedback channel lengths, the former main oscillation tends to disappear, the jet inside the mixing chamber simply fluctuates at high frequencies. Once the Feedback Channel (FC) length exceeds a certain threshold, the oscillation stops. Under all conditions studied, pressure waves are observed to be traveling along the feedback channels, their origin and interaction with the jet entering the mixing chamber are thoroughly evaluated. The paper proves that jet oscillations are pressure-driven.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Frequency of oscillation"

1

Chartrand, Daniel 1955. "Ventilation by high-frequency body-surface oscillation in rabbits." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75917.

Повний текст джерела
Анотація:
Ventilation by high-frequency body-surface oscillation (HFBSO) was studied in normal rabbits. Adequate ventilation and acceptable gas exchange took place during HFBSO from 3 to 15 Hz. The tidal volume required to maintain a normocapnic state was established at each frequency studied. Using catheter-tip micromanometers inserted in the esophagus or the superior vena cava, new techniques to measure high-frequency intrathoracic pressure oscillations were developed. Using a gamma-function to fit the thermodilution curve, a new technique was developed to measure the cardiac output in small animals. No detrimental hemodynamic effect was found during HFBSO used either for normocapnic ventilation or with large pressure oscillations (30 cm H$ sb{ rm 2}$O) in the body chamber. Finally, during normocapnic ventilation by HFBSO in normal rabbits, the mechanical behavior of the respiratory system was characterized using transfer impedances.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kaise, Takashi. "Hes1 oscillation frequency correlates with activation of neural stem cells." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/265196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rudenkiy, Sergiy [Verfasser]. "Contact mechanical measurements under higher frequency oscillation / vorgelegt von Sergiy Rudenkiy." [Clausthal-Zellerfeld] : [Univ.-Bibliothek], 2007. http://d-nb.info/987267094/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ainsworth, Matt. "Cross species comparison of the spatiotemporal properties of the gamma frequency oscillation." Thesis, University of Newcastle Upon Tyne, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Laser, Allan Paul. "Calculation of the maximum frequency of oscillation for microwave heterojunction bipolar transistors." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29630.

Повний текст джерела
Анотація:
An investigation into various methods of calculation of the high frequency performance parameter f[formula omitted] for microwave heterojunction bipolar transistors is presented. Two high frequency representations of the device are developed: equivalent circuits consisting entirely of lumped circuit elements, and a two-port network based on drift-diffusion equations. Proper account is taken in these representations of the phase delay associated with carrier transit time through the base and base-collector space charge region. Also included are the charging time effects due to the various parasitic circuit elements associated with actual devices. A single-sided isolated structure is used in simulations and it is found that both representations yield remarkably similar characteristics for the behavior of unilateral gain U with frequency. For devices in which the dominant factors limiting high frequency performance are the parasitic resistances and capacitances, it is found that U rolls off at 6 dB/octave through the region where U = 1 and the values predicted for f[formula omitted] via these two methods, as well as via the widely-used analytical expression involving f[formula omitted] and (R[formula omitted]C[formula omitted])[formula omitted], are in agreement. However, when the periods of the oscillations are on the order of the carrier transit times, and the device parasitics are sufficiently low so as to not limit performance, resonance effects occur in U in the region where U = 1 and the prediction of f[formula omitted] obtained via the two equivalent circuit approaches deviates markedly from the predictions of the analytical expression.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shamas, Mohamad. "Observability of epileptic high frequency oscillations : insights from signal processing and computational modeling." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S096/document.

Повний текст джерела
Анотація:
Cette étude a été divisée en 2 parties principales. Dans la première partie, nous examinons la relation entre l'activité des sources neuronales et les HFOs observés sur les électrodes intracérébrales. La deuxième partie traite de l'étude des conditions d'observabilité des HFO sur les électrodes du cuir chevelu. Les simulations ont montré que le modèle de champ neuronal proposé est capable de générer des HFOs montrant une forte ressemblance avec les signaux réels dans les deux cas EEG (cuir chevelu) et SEEG (intracérébral). De plus, nous avons pu relier les mécanismes physiopathologiques (GABA dépolarisant, inhibition directe, activité désynchronisée des populations neuronales) aux différentes caractéristiques morphologiques et spectrales des HFOs intracérébrales. Une hypothèse unifiée pour la production des HFOs et des pointes intercritiques est également formulée. Enfin, nous avons réussi à établir les conditions nécessaires sur l'activité temporelle et l'organisation spatiale des sources neuronales pour observer des HFOs sur les électrodes intracérébrales.En ce qui concerne la deuxième partie, la baisse inexpliquée de fréquence dans les HFOs collectées sur les électrodes du cuir chevelu a été abordée. Nous avons constaté que les mécanismes «non oscillatoires» de la génération de HFOs sont à l'origine de la faible fréquence (<200Hz) des HFOs du cuir chevelu et que le rapport signal / bruit (SNR) influe fortement sur la fréquence des oscillations. De plus, nous avons étudié la topographie des HFOs sur les électrodes du cuir chevelu et analysé comment cette topographie est affectée par différents paramètres (étendue spatiale épileptique, SNR, géométrie 3D). Enfin, nous avons montré que les HFOs du cuir chevelu peuvent être utilisés efficacement pour identifier la zone épileptique lorsque le rapport signal sur bruit des signaux enregistrés est suffisamment élevé. Une perspective de ce travail est l'identification non-invasive de la zone épileptique sans la nécessité d'enregistrements intracérébraux pré-chirurgicaux.Pour les deux études (HFO observés sur les électrodes intracérébrales et du cuir chevelu), un logiciel original et convivial a été développé. Ce logiciel a fortement facilité la simulation des signaux dans l'environnement cerveau/électrode virtuel, signaux obtenus en résolvant le problème direct de l’EEG (projection de la contribution électrique des sources neuronales sur les capteurs)
This study was divided into 2 main parts. In the first part, we address the relationship between the activity of neuronal sources and the HFOs observed on intracerebral electrodes. The second part deals with the investigation of observability conditions of HFOs on scalp electrodes. Simulations showed that the proposed neural field model is capable of generating HFOs showing strong resemblance with real signals in both cases EEG (scalp) and SEEG (intracerebral). Moreover, we were able to relate the pathophysiological mechanisms (depolarizing GABA, feedforward inhibition, desynchronized activity of neuronal populations) to different morphological and spectral features of intracerebral HFOs. A unified hypothesis for generation of HFOs and interictal spikes is also formulated. Finally, we managed to establish the necessary conditions about the temporal activity and the spatial organization of neuronal sources and about for HFOs to be observed on intracerebral electrodes. Regarding the second part, the unexplained drop in frequency in the collected HFOs on scalp electrodes was addressed. We found that the “non-oscillatory” mechanisms of the HFO generation is behind the low frequency (<200Hz) in scalp HFOs and that signal to noise ratio (SNR) heavily impacts the frequency of the oscillations. Moreover, we studied the topography of HFOS on scalp electrodes and analyzed how this topography is affected by different parameters (epileptic spatial extent, SNR, 3D geometry). Finally we showed that scalp HFOs can be effectively used to identify the epileptic zone when the SNR of the recorded signals is sufficiently high. A perspective to this work is the non-invasive identification of epileptic zone without the need for presurgical intracerebral recordings. For the purpose of both studies (HFOs observed on intracerebral & scalp electrodes) an original and user-friendly software package was developed. This software strongly facilitated the simulation of signals in the virtual brain/electrode environment obtained by solving the (S)EEG forward problem (projection of the electric contribution of neuronal sources onto electrode contacts)
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gundry, Sarah. "Implementation of an ultra-broadband high power frequency modulator based on coherent molecular oscillation." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tao, Fengfeng. "Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Lamps." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/25978.

Повний текст джерела
Анотація:
Small size, light weight, high efficacy, longer lifetime and controllable output are the main advantages of high-frequency electronic ballasts for gas discharge lamps. However, power line quality and electromagnetic interference (EMI) issues arise when a simple peak rectifying circuit is used. To suppress harmonic currents and improve power factor, input-current-shaping (ICS) or power-factor-correction (PFC) techniques are necessary. This dissertation addresses advanced high-frequency electronic ballasting techniques by using a single-stage PFC approach. The proposed techniques include single-stage boost-derived PFC electronic ballasts with voltage-divider-rectifier front ends, single-stage PFC electronic ballasts with wide range dimming controls, single-stage charge-pump PFC electronic ballasts with lamp voltage feedback, and self-oscillating single-stage PFC electronic ballasts. Single-stage boost-derived PFC electronic ballasts with voltage-divider-rectifier front ends are developed to solve the problem imposed by the high boost conversion ratio required by commonly used boost-derived PFC electronic ballast. Two circuit implementations are proposed, analyzed and verified by experimental results. Due to the interaction between the PFC stage and the inverter stage, extremely high bus-voltage stress may exist during dimming operation. To reduce the bus voltage and achieve a wide-range dimming control, a novel PFC electronic ballast with asymmetrical duty-ratio control is proposed. Experimental results show that wide stable dimming operation is achieved with constant switching frequency. Charge-pump (CP) PFC techniques utilize a high-frequency current source (CS) or voltage source (VS) or both to charge and discharge the so-called charge-pump capacitor in order to achieve PFC. The bulky DCM boost inductor is eliminated so that this family of PFC circuits has the potential for low cost and small size. A family of CPPFC electronic ballasts is investigated. A novel VSCS-CPPFC electronic ballast with lamp-voltage feedback is proposed to reduce the bus-voltage stress. This family of CPPFC electronic ballasts are implemented and evaluated, and verified by experimental results. To further reduce the cost and size, a self-oscillating technique is applied to the CPPFC electronic ballast. Novel winding voltage modulation and current injection concepts are proposed to modulate the switching frequency. Experimental results show that the self-oscillating CS-CPPFC electronic ballast with current injection offers a more cost-effective solution for non-dimming electronic ballast applications.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Björk, Joakim. "Performance Quantification of Interarea Oscillation Damping Using HVDC." Licentiate thesis, KTH, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245223.

Повний текст джерела
Анотація:
With the transition towards renewable energy, and the deregulation of the electricity market, generation patterns and grid topology are changing. These changes increase the need for transfer capacity. One limiting factor, which sometimes leads to underutilization of the transmission grid, is interarea oscillations. These system-wide modes involve groups of generators oscillating relative to each other and are sometimes hard to control due to their scale and complexity. In this thesis we investigate how high-voltage direct current (HVDC) transmission can be used to attenuate interarea oscillations. The thesis has two main contributions. In the first contribution we show how the stability of two asynchronous grids can be improved by modulating the active power of a single interconnecting HVDC link. One concern with modulating HVDC active power is that the interaction between interarea modes of the two grids may have a negative impact on system stability. By studying the controllability Gramian, we show that it is always possible to improve the damping in both grids as long as the frequencies of their interarea modes are not too close. For simplified models, it is explicitly shown how the controllability, and therefore the achievable damping improvements, deteriorates as the frequency difference becomes small. The second contribution of the thesis is to show how coordinated control of two (or more) links can be used to avoid interaction between troublesome interarea modes. We investigate the performance of some multivariable control designs. In particular we look at input usage as well as robustness to measurement, communication, and actuator failures. Suitable controllers are thereby characterized.
Övergången till förnybar energi och avregleringen av elmarknaden leder till förändrade produktions-och överföringsmönster. Dessa förändringar medför behov av en ökad överföringskapacitet. En begränsande faktor, som kan leda till ett underutnyttjande av stamnätet, är interareapendlingar. Dessa systemövergripande pendlingar involverar grupper av generatorer som svänger i förhållande till varandra. Interareapendlingar är ibland svåra att styra på grund av deras skala och komplexitet. I denna avhandling undersöker vi hur förbindelser med högspänd likström, engleska high-voltage direct current (HVDC), kan användas för att dämpa interareapendlingar. Avhandlingen har två huvudbidrag. I det första bidraget visar vi hur stabiliteten hos två olika synkrona nät kan förbättras genom att modulera den aktiva effekten hos en enda HVDC-länk. Ett bekymmer med aktiv effektmodulering är att växelverkan mellan interareapendlingar hos de två näten kan ha en negativ inverkan på systemets stabilitet. Genom att studera styrbarhetsgramianen visar vi att det alltid är möjligt att förbättra dämpningen i båda näten så länge som frekvenserna hos deras interareapendlingar inte ligger för nära varandra. För förenklade modeller visas det uttryckligen hur styrbarheten och därmed de möjliga dämpningsförbättringarna, försämras då frekvensskillnaden blir liten. Avhandlings andra bidrag visar hur koordinerad styrning av två (eller fler) länkar kan användas för att undvika växelverkan mellan besvärliga interareapendlingar. Vi undersöker prestandan hos olika typer av flervariabla regulatorer. I synnerhet undersökers styrsignalsanvändning samt robusthet mot mät-, kommunikations- och aktuatorfel. Därigenom karakteriseras lämpliga regulatortyper.

QC 20190308

Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gillies, Martin John. "Modulation of excitation as a mechanism of oscillation frequency transition in the hippocampus in vitro." Thesis, University of Leeds, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Frequency of oscillation"

1

M, Burkin I., and Shepeljavyi A. I, eds. Frequency methods in oscillation theory. Dordrecht: Kluwer Academic, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Leonov, G. A., I. M. Burkin, and A. I. Shepeljavyi. Frequency Methods in Oscillation Theory. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0193-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Leonov, Gennadiĭ Alekseevich. Frequency methods in oscillation theory. Dordrecht: Kluwer Academic Publishers, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

K. B. M. Q. Zaman. A natural low frequency oscillation in the wake of an airfoil near stalling conditions. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bumueller, Achim. Integrated high frequency oscillator. Leicester: De Montfort University, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Samoĭlenko, A. M. Elements of the mathematical theory of multi-frequency oscillations. Dordrecht: Kluwer Academic Publishers, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tang, Johan van der. High-frequency oscillator design for integrated transceivers. Boston: Kluwer Academic, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tang, Johan van der. High-frequency oscillator design for integrated transceivers. Boston, MA: Kluwer Academic, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Samoilenko, A. M. Elements of the Mathematical Theory of Multi-Frequency Oscillations. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3520-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kelly, Brendan. Radio frequency oscillator design using coaxial ceramic resonators. [s.l: The Author], 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Frequency of oscillation"

1

Verster, Joris C., Thomas M. Tzschentke, Kieran O’Malley, Francis C. Colpaert, Bart Ellenbroek, Bart Ellenbroek, R. Hamish McAllister-Williams, et al. "Frequency of Oscillation." In Encyclopedia of Psychopharmacology, 546. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_4268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Redmann, K., P. P. Lunkenheimer, G. Meurer, and S. Fischer. "High Frequency Oscillation." In Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E., 323–32. Milano: Springer Milan, 1996. http://dx.doi.org/10.1007/978-88-470-2203-4_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Leonov, G. A., I. M. Burkin, and A. I. Shepeljavyi. "Yakubovich Auto-Oscillation." In Frequency Methods in Oscillation Theory, 129–47. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0193-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hayek, Z. "External High-Frequency Oscillation." In Respiratorische Therapie nach operativen Eingriffen, 190–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78399-9_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Harr, Jeffrey N., Philip F. Stahel, Phillip D. Levy, Antoine Vieillard-Baron, Yang Xue, Muhammad N. Iqbal, Jeffrey Chan, et al. "High-Frequency Oscillation (HFO)." In Encyclopedia of Intensive Care Medicine, 1114. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_1700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Leonov, G. A., I. M. Burkin, and A. I. Shepeljavyi. "Classical Two-Dimensional Oscillating Systems and their Multidimensional Analogues." In Frequency Methods in Oscillation Theory, 1–33. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0193-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Leonov, G. A., I. M. Burkin, and A. I. Shepeljavyi. "Frequency Criteria for Stability and Properties of Solutions of Special Matrix Inequalities." In Frequency Methods in Oscillation Theory, 34–51. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0193-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leonov, G. A., I. M. Burkin, and A. I. Shepeljavyi. "Multidimensional Analogues of the van der Pol Equation." In Frequency Methods in Oscillation Theory, 52–128. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0193-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leonov, G. A., I. M. Burkin, and A. I. Shepeljavyi. "Cycles in Systems with Cylindrical Phase Space." In Frequency Methods in Oscillation Theory, 148–201. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0193-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Leonov, G. A., I. M. Burkin, and A. I. Shepeljavyi. "The Barbashin-Ezeilo Problem." In Frequency Methods in Oscillation Theory, 202–48. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0193-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Frequency of oscillation"

1

Li, Xiaopeng, Xiangxi Duan, Fuchuan Hao, Ling Yu, Siyu Xiong, Jiuyuan Song, and Ling Fu. "An Estimation Algorithm for Oscillation Frequency under Power Oscillations." In 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES). IEEE, 2021. http://dx.doi.org/10.1109/aeees51875.2021.9402978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bezroukov, M. Yu, K. V. Gorbachev, A. L. Lisichkin, V. M. Mikhailov, E. V. Nesterov, V. Yu Petrov, S. D. Plaksina, S. A. Roschoupkin, and V. A. Stroganov. "Reflex triode oscillation frequency tuning." In 2005 15th International Crimean Conference Microwave and Telecommunication Technology. IEEE, 2005. http://dx.doi.org/10.1109/crmico.2005.1565094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gardner, R. Matthew, Wei Li, Joey West, Jingyuan Dong, Yilu Liu, and Guorui Zhang. "Power system frequency oscillation characteristics." In Energy Society General Meeting. IEEE, 2008. http://dx.doi.org/10.1109/pes.2008.4596283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wanjing Zhu, Tan Lu, Weijie Zhu, and Jianguo Ma. "Statistical analysis for the oscillation frequency of a ring oscillator." In 2010 IEEE International Conference of Electron Devices and Solid- State Circuits (EDSSC). IEEE, 2010. http://dx.doi.org/10.1109/edssc.2010.5713684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dvorak, Jan, Jan Jerabek, Pavel Seda, and Panagiotis Bertsias. "Fractional-Order Oscillator with Extended Control of Frequency of Oscillation." In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). IEEE, 2020. http://dx.doi.org/10.1109/tsp49548.2020.9163530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Milicevic, Sinisa, Leonard MacEachern, and Samy Mahmoud. "Frequency of oscillation for a multi-band voltage controlled ring oscillator." In 2007 IEEE North-East Workshop on Circuits and Systems (NEWCAS 2007). IEEE, 2007. http://dx.doi.org/10.1109/newcas.2007.4487967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Chaojiang, Fei Gong, and Pingshan Wang. "Analysis of the oscillation frequency and waveform amplitude for a high-frequency differential ring oscillator." In 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2013. http://dx.doi.org/10.1109/mwscas.2013.6674717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zeng, Yun, Lixiang Zhang, Jing Qian, and Tianmao Xu. "Simulation Method of Low Frequency Oscillation Signal on Studying Generating Units Oscillation." In 2012 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2012. http://dx.doi.org/10.1109/appeec.2012.6307605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xiao, Youqiang, Wen Qian, Hangpeng Ni, Tao Lin, and Ruyu Bi. "Oscillation Center Migration Law in Multi-Frequency Out-of-Step Oscillation Scenario." In 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC). IEEE, 2017. http://dx.doi.org/10.1109/iccsec.2017.8446814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

He, Tingyi, Shengnan Li, Lei Chen, Kaibin Li, Cheng Guo, and Wei Huang. "Distinction and Conversion Between Frequency Oscillation Mode and Rotor Angle Oscillation Mode." In 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2021. http://dx.doi.org/10.1109/ei252483.2021.9713570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Frequency of oscillation"

1

Kayser, B. The frequency of neutral meson and neutrino oscillation. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/666171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tiwari, Vivek. Measurement of the Bs anti-Bs oscillation frequency using semileptonic decays. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/908840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Raven, Gerhard. Measurements of the B0-anti-B0 Oscillation Frequency in Hadronic B Decays. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/787194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bozzi, Concezio. Measurement of the B0-anti-B0 Oscillation Frequency with Inclusive Dilepton Events. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/798958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Yong, Jose R. Gracia, Stanton W. Hadley, and Yilu Liu. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1113693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chao, Ming. Measurement of the Neutral B Meson-B Bar Meson Oscillation Frequency Using Dilepton Events at BABAR. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/883296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Niu, Hong-quan. Limit on the $B^0_s \bar{B}^0_s$ meson oscillation frequency from $p\bar{p}$ collision data at $\sqrt{s} = 1.8$-TeV. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/1372835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lecci, Claudia. A neural jet charge tagger for the measurement of the B$0\atop{s}$-$\bar{B}$$0\atop{s}$ oscillation frequency at CDF. Office of Scientific and Technical Information (OSTI), July 2005. http://dx.doi.org/10.2172/911837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aubert, B. Measurement of the {bar B}{sup 0} lifetime and of the B{sup 0}-{bar B}{sup 0} oscillation frequency using partially reconstructed {bar B}{sup 0} --> D*{sup +} {ell}{sup -} {anti {nu}}{sub l} decays. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/829705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weber, Gernot August. Measurement of the Oscillation Frequency of Bs Mesons in the Hadronic Decay Mode Bs→ π Ds(Φ π)X with the D0 Detector at the Fermilab Tevatron Collider. Office of Scientific and Technical Information (OSTI), березень 2009. http://dx.doi.org/10.2172/960260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії