Добірка наукової літератури з теми "Frequency drift interferometry"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Frequency drift interferometry".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Frequency drift interferometry"
Wu, Wan Duo, Qiang Xian Huang, Chao Qun Wang, Ting Ting Wu, and Hong Xie. "The Analysis and Design of a Large Stroke with High-Precision Polarized Laser Interferometer System." Key Engineering Materials 679 (February 2016): 129–34. http://dx.doi.org/10.4028/www.scientific.net/kem.679.129.
Повний текст джерелаLiu, Tiegen, Junfeng Shi, Junfeng Jiang, Kun Liu, Shuang Wang, Jinde Yin, and Shengliang Zou. "Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation." IEEE Photonics Journal 7, no. 6 (December 2015): 1–7. http://dx.doi.org/10.1109/jphot.2015.2494505.
Повний текст джерелаQian, Yibin, Jiakun Li, Qibo Feng, Qixin He, and Fei Long. "Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber." Sensors 23, no. 8 (April 19, 2023): 4108. http://dx.doi.org/10.3390/s23084108.
Повний текст джерелаKakuma, Seiichi, and Yasuhiko Katase. "Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes." Optical Review 19, no. 6 (November 2012): 376–80. http://dx.doi.org/10.1007/s10043-012-0061-3.
Повний текст джерелаZhang, Jinge, Hamish A. S. Reid, Eoin Carley, Laurent Lamy, Pietro Zucca, Peijin Zhang, and Baptiste Cecconi. "Imaging a Large Coronal Loop Using Type U Solar Radio Burst Interferometry." Astrophysical Journal 965, no. 2 (April 1, 2024): 107. http://dx.doi.org/10.3847/1538-4357/ad26fd.
Повний текст джерелаMonselesan, D. P., R. J. Morris, P. L. Dyson, and M. R. Hyde. "Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions." Annales Geophysicae 22, no. 8 (September 7, 2004): 2819–35. http://dx.doi.org/10.5194/angeo-22-2819-2004.
Повний текст джерелаDenbina, Michael, Marc Simard, Ernesto Rodriguez, Xiaoqing Wu, Albert Chen, and Tamlin Pavelsky. "Mapping Water Surface Elevation and Slope in the Mississippi River Delta Using the AirSWOT Ka-Band Interferometric Synthetic Aperture Radar." Remote Sensing 11, no. 23 (November 21, 2019): 2739. http://dx.doi.org/10.3390/rs11232739.
Повний текст джерелаLiu, Sixun, Zhuo Wang, and Yueyang Zhai. "In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry." Photonics 10, no. 10 (September 28, 2023): 1091. http://dx.doi.org/10.3390/photonics10101091.
Повний текст джерелаSaito, S., M. Yamamoto, S. Fukao, M. Marumoto, and R. T. Tsunoda. "Radar observations of field-aligned plasma irregularities in the SEEK-2 campaign." Annales Geophysicae 23, no. 7 (October 13, 2005): 2307–18. http://dx.doi.org/10.5194/angeo-23-2307-2005.
Повний текст джерелаMa, Maoli, Guifré Molera Calvés, Giuseppe Cimò, Ming Xiong, Peijia Li, Jing Kong, Peijin Zhang, et al. "Detecting the Oscillation and Propagation of the Nascent Dynamic Solar Wind Structure at 2.6 Solar Radii Using Very Long Baseline Interferometry Radio Telescopes." Astrophysical Journal Letters 940, no. 2 (November 25, 2022): L32. http://dx.doi.org/10.3847/2041-8213/ac96e7.
Повний текст джерелаДисертації з теми "Frequency drift interferometry"
Roubeau-Tissot, Amaël. "Interférométrie à dérive de fréquence pour la mesure de la lumière parasite sur l'instrument spatial LISA." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5036.
Повний текст джерелаLISA (Laser Interferometer Space Antenna) is a space interferometer dedicated to the detection of gravitational waves in the frequency range [20 µHz-1 Hz], currently under development (phase B). This international project, managed by ESA, will comprise a constellation of three satellites in a triangular formation, each emitting two laser beams towards the other two. There are therefore a total of 6 laser links, and 6 units, called MOSA (Moving Optical Sub-Assembly) responsible for transmitting and receiving the beams, and for measuring inter-satellite distance variations. Each MOSA contains three heterodyne interferometers, and as with any optical device, stray light can compromise measurement accuracy, resolution and dynamics. It is therefore necessary to develop an instrumentation (called the SL-OGSE, Stray Light-Optical Ground Support Equipment) capable of detecting and identifying the contributions of coherent stray light interfering with the device's nominal beams. It will have to meet two requirements in particular: determine the optical path length of the stray light with a resolution better than 2 mm, giving an accuracy of 1 mm on the position of the faulty component, and achieve a measurement floor in fractional optical amplitude of 1,1.10-6 (or 2,2.10-6 in electrical fractional amplitude) in the range of optical paths to be covered.The chosen method is frequency-drift interferometry (FMCW, Frequency Modulated Continuous Wave) by injecting a frequency-swept laser beam into the system under test. The outgoing optical and electrical signals are captured during the optical frequency sweep, and any modulation of these signals will be attributed to the existence of a stray light amplitude, which interferes with the nominal light amplitude. The optical path difference (OPD) between stray and nominal light is deduced from the frequency of these interference fringes. It is by exploiting the OPD value that we can identify the path followed by the stray light, and trace it back to the offending component.The aim of this thesis is to develop a prototype of this instrumentation, comprising a laser diode that can be scanned over 2 nm (to achieve the desired OPD resolution), a laser phase-locked loop, a precise frequency ramp measurement, a real-time ramp calibrator and a data acquisition and processing system.This prototype, tested first on a simplified set-up where we control the presence of stray light, then on a complex system close to the MOSA, has enabled various verifications. The method works for the detection of any type of stray light (stray beam or scattered light type), effectively resolving the contributions from the two sides of a 1mm glass plate and achieving a detection floor below 10-6 in fractional optical amplitude (below 10-12 in fractionnal optical power) in a range of OPD values from 15 mm to over 10 m, covering typical stray light paths in the MOSA. The prototype was finally used to measure stray light in an interferometric demonstrator whose complexity is close to that of a MOSA. This test enabled us to identify certain disturbances, such as changes in the polarization of the injected beam due to the frequency scanning, or imperfections in the frequency scanning, which affect the optical signals recorded. Strategies are proposed to reduce these disturbances, or to take them into account when processing the recorded signals
Тези доповідей конференцій з теми "Frequency drift interferometry"
Li, Xiuming. "Analysis on the drift of measured distance in laser frequency scanning interferometry." In Conference on Advanced Laser Technology and Application, edited by Zhiyi Wei, Jing Ma, Wei Shi, Xuechun Lin, Wenxue Li, Zhaojun Liu, Xiaodong Xu, Yonglin Song, Yong-Zhen Huang, and Jian Zhang. SPIE, 2021. http://dx.doi.org/10.1117/12.2606540.
Повний текст джерелаMorrison, G. L., and B. Nelson. "ND-YAG Monitoring for DGV Application (Keynote Paper)." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55306.
Повний текст джерелаHjelme, Dag Roar, Alan Rolf Mickelson, L. Hollberg, and B. Dahmani. "Novel Optical Frequency Stabilization of Semiconductor Lasers." In Semiconductor Lasers. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/sla.1987.tub4.
Повний текст джерелаDeSlover, Daniel H., Dennis R. Slaughter, William M. Tulloch, and William E. White. "A Technique for Measuring Winds in the Lower Atmosphere Using Incoherent Doppler Lidar." In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/orsa.1993.pd.13.
Повний текст джерелаBourbin, Y., A. Enard, M. Papuchon, C. Moronvalle, and M. Werner. "High Frequency Intrinsic Resonance in Traveling Wave Y-fed Directional Couplers." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.wd6.
Повний текст джерелаTao, Long, Zhigang Liu, and Weibo Zhang. "Auto-elimination of fiber optical path-length drift in a frequency scanning interferometer for absolute distance measurements." In SPIE Optical Engineering + Applications, edited by Erik Novak and James D. Trolinger. SPIE, 2015. http://dx.doi.org/10.1117/12.2186377.
Повний текст джерелаHall, John L., and Dieter Hills. "Phase-stable laser sources for sub-Hz-linewidth optical spectroscopy." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wm1.
Повний текст джерелаMin, Xiao, and H. J. Kimble. "Propagation of quantum fluctuations through passive optical systems." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.tuj4.
Повний текст джерела