Дисертації з теми "Fractional noise"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Fractional noise".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Walkington, Robert. "New approaches in noise shaping fractional-N synthesis." Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406013.
Повний текст джерелаMoshrefi-Torbati, Mohamed. "Fractional calculus and its applications to dynamic systems." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296421.
Повний текст джерелаKapfer, Maëlle. "Dynamic of excitations of the Fractional quantum Hall effect : fractional charge and fractional Josephson frequency." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS393/document.
Повний текст джерелаIn some quantum matter states, the current may remarkably be transported by carriers that bear a fraction e* of the elementary electron charge. This is the case for the Fractional quantum Hall effect (FQHE) that happens in two-dimensional systems at low temperature under a high perpendicular magnetic field. When the number of magnetic flux in units of h/e is a fraction of the number of electron, a dissipationless current flows along the edges of the sample and is carried by anyons with fractional charge. The observation of the fractional charge is realized through small current fluctuations produced by the granularity of the charge. Here is presented a reliable method to measure the fractional charge by the mean of cross-correlation of current fluctuations. Moreover, the dynamical properties of those charges is probed when the sample is irradiated with photos at GHz frequency. The long predicted Josephson frequency of the fractional charge is measured. Those measurements validate Photoassisted processes in the FQHE and enable timedomain manipulation of fractional charges in order to realize a single anyon source based on levitons to perform tests of the anyonic statistics of fractional charge
Giordano, Luca Maria. "Stochastic equations with fractional noise: continuity in law and applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670179.
Повний текст джерелаEl objetivo principal es estudiar la continuidad en la ley de una familia de ecuaciones diferenciales parciales estocásticas. Las ecuaciones consideradas son las ecuaciones estocásticas de calor y ondas, en varios entornos diferentes. Suponemos que el ruido sea ruido blanco en la variable de tiempo y que sea ruido fraccional, dependiendo del parámetro H, en la variable de espacio. Investigamos la dependencia de las ecuaciones del parámetro H, demostrando que son continuas con respecto a él. También mostramos un resultado similar en el marco de la teoría de rough paths, en un entorno unidimensional. En fin, damos una aplicación para esta familia de ruidos fraccionarios: modelamos los precios de la electricidad en el mercado liberalizado italiano de electricidad por medio de un modelo fraccionario.
The main objective is to study the continuity in law of a family of stochastic partial differential equations. The equations considered are the stochastic heat and wave equations, in various different settings. We suppose that the driving noise is white noise in the time variable and it is fractional noise, depending from the parameter H, in the space variable. We investigate the dependence of the equations from the parameter H, proving that they are continuous with respect to it. We also show a similar result in the framework of rough paths theory, in a one dimensional setting. Finally, we give an application for this family of fractional noises: we model the electricity prices in the liberalized Italian electricity market by means of a fractional-driven model.
Neuenkirch, Andreas. "Optimal approximation of stochastic differential equations with additive fractional noise /." Aachen : Shaker, 2006. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015005376&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаAllegre, Daniel. "Reducing phase noise and spurious tones in fractional-n synthesizers." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1684.
Повний текст джерелаJiang, D. "Design techniques for low-noise, high-speed fractional-N frequency synthesisers." Thesis, University College London (University of London), 2009. http://discovery.ucl.ac.uk/17932/.
Повний текст джерелаSkeen, Matthew E. (Matthew Edward). "Maximum likelihood estimation of fractional Brownian motion and Markov noise parameters." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/42527.
Повний текст джерелаAl-Talibi, Haidar. "On the Relevance of Fractional Gaussian Processes for Analysing Financial Markets." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1762.
Повний текст джерелаIn recent years, the field of Fractional Brownian motion, Fractional Gaussian noise and long-range dependent processes has gained growing interest. Fractional Brownian motion is of great interest for example in telecommunications, hydrology and the generation of artificial landscapes. In fact, Fractional Brownian motion is a basic continuous process through which we show that it is neither a semimartingale nor a Markov process. In this work, we will focus on the path properties of Fractional Brownian motion and will try to check the absence of the property of a semimartingale. The concept of volatility will be dealt with in this work as a phenomenon in finance. Moreover, some statistical method like R/S analysis will be presented. By using these statistical tools we examine the volatility of shares and we demonstrate empirically that there are in fact shares which exhibit a fractal structure different from that of Brownian motion.
Feng, Zijie. "Stock-Price Modeling by the Geometric Fractional Brownian Motion: A View towards the Chinese Financial Market." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78375.
Повний текст джерелаGrecksch, Wilfried, and Christian Roth. "Approximation of a Quasilinear Stochastic Partial Differential Equation driven by Fractional White Noise." Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800521.
Повний текст джерелаSorfleet, Winston L. Carleton University Dissertation Engineering Electrical. "Noise and transient analysis of a fractional-n phase-locked loop frequency synthesizer." Ottawa, 1991.
Знайти повний текст джерелаMunyai, Pandelani Reuben Mulalo. "On the improvement of phase noise in wideband frequency synthesizers." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/63003.
Повний текст джерелаThesis (MEng)--University of Pretoria, 2017.
Electrical, Electronic and Computer Engineering
MEng
Unrestricted
Jian, Heng-Yu. "A multi-band fractional-N frequency synthesizer using binary-weighted digital/analog differentiator and offset-frequency delta-sigma modulator for noise and spurs cancellation." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1835512521&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаMa, Bo [Verfasser], and Sabine [Akademischer Betreuer] Heiland. "Effect of Gradient Vectors Scheme and Noise Correction on Fractional Anisotropy in Diffusion Tensor Imaging of the Peripheral Nervous System / Bo Ma ; Betreuer: Sabine Heiland." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1217660119/34.
Повний текст джерелаSmigelski, Jeffrey Ralph. "Water Level Dynamics of the North American Great Lakes:Nonlinear Scaling and Fractional Bode Analysis of a Self-Affine Time Series." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1379087351.
Повний текст джерелаMakarava, Natallia. "Bayesian estimation of self-similarity exponent." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6409/.
Повний текст джерелаDie Abschätzung des Selbstähnlichkeitsexponenten hat in den letzten Jahr-zehnten an Aufmerksamkeit gewonnen und ist in vielen wissenschaftlichen Gebieten und Disziplinen zu einem intensiven Forschungsthema geworden. Reelle Daten, die selbsähnliches Verhalten zeigen und/oder durch den Selbstähnlichkeitsexponenten (insbesondere durch den Hurst-Exponenten) parametrisiert werden, wurden in verschiedenen Gebieten gesammelt, die von Finanzwissenschaften über Humanwissenschaften bis zu Netzwerken in der Hydrologie und dem Verkehr reichen. Diese reiche Anzahl an möglichen Anwendungen verlangt von Forschern, neue Methoden zu entwickeln, um den Selbstähnlichkeitsexponenten abzuschätzen, sowie großskalige Abhängigkeiten zu erkennen. In dieser Arbeit stelle ich die Bayessche Schätzung des Hurst-Exponenten vor. Im Unterschied zu früheren Methoden, erlaubt die Bayessche Herangehensweise die Berechnung von Punktschätzungen zusammen mit Konfidenzintervallen, was von bedeutendem Vorteil in der Datenanalyse ist, wie in der Arbeit diskutiert wird. Zudem ist diese Methode anwendbar auf kurze und unregelmäßig verteilte Datensätze, wodurch die Auswahl der möglichen Anwendung, wo der Hurst-Exponent geschätzt werden soll, stark erweitert wird. Unter Berücksichtigung der Tatsache, dass der Gauß'sche selbstähnliche Prozess von bedeutender Interesse in der Modellierung ist, werden in dieser Arbeit Realisierungen der Prozesse der fraktionalen Brown'schen Bewegung und des fraktionalen Gauß'schen Rauschens untersucht. Zusätzlich werden Anwendungen auf reelle Daten, wie Wasserstände des Nil und fixierte Augenbewegungen, diskutiert.
Tiagaraj, Sathya Narasimman. "Design of an Ultra-Low Phase Noise and Wide-Band Digital Phase Locked Loop for AWS and PCS Band Applications and CppSim Evaluation." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461262041.
Повний текст джерелаSchaeffer, Nicolas. "Étude d'équations aux dérivées partielles dirigées par une perturbation stochastique." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0054.
Повний текст джерелаThe subject of this thesis is the study of some nonlinear partial differential equations driven by a stochastic perturbation. In Chapter 1, we define the notion of white noise and fractional noise. We then describe the general procedure to prove the local well-posedness of the models under consideration. After having presented a state of the art, we detail and comment the different results obtained, we insist on the novelties and we precise the possible perspectives. In Chapter 2, we present the stochastic tools we will need throughout our study. We start by defining the fractional Brownian motion. We then recall the essential notions concerning Wiener integral and the integration against the Fourier transform of a white noise. We also establish the harmonizable representation formula of the fractional Brownian motion that will be a precious tool when doing computations. We state the main results related to the regularity of stochastic terms, namely Kolmogorov's criterion and the Garsia-Rodemich-Rumsey inequality. To end with, we define Hermite polynomials that will allow us to renormalize our equations and we develop the notion of Wiener Chaoses in order to benefit from the classical inequality of control of moments of order "p". In Chapter 3, we study a stochastic nonlinear heat equation (SNLH) with a quadratic nonlinearity, forced by a fractional space-time white noise. Two types of regimes are exhibited, depending on the ranges of the Hurst index "H=(H_0,...,H_d) in (0,1)^{d+1}". In particular, we show that the local well-posedness of (SNLH) resulting from the Da Prato-Debussche trick, is easily obtained when "2H_0+sum_{i=1}^{d}H_i >d". On the contrary, (SNLH) is much more difficult to handle when "2H_0+sum_{i=1}^{d}H_i leq d". In this case, the model has to be interpreted in the Wick sense, thanks to a time-dependent renormalization. Helped with the regularising effect of the heat semigroup, we establish local well-posedness results for (SNLH) for all dimension "d geq 1". In Chapter 4, we study a stochastic Schr"{o}dinger equation with a quadratic nonlinearity and a space-time fractional perturbation. When the Hurst index is large enough, precisely when "2H_0+sum_{i=1}^{d}H_i >d+1", we prove local well-posedness of the problem using classical arguments. However, for a small Hurst index, that is when "2H_0+sum_{i=1}^{d}H_i leq d", even the interpretation of the equation needs some care. In this case, a renormalization procedure must come into the picture, leading to a Wick-type interpretation of the model. Our fixed-point argument then involves some specific regularization properties of the Schr"{o}dinger group, which allows us to cope with the strong irregularity of the solution. In Chapter 5, we study a stochastic quadratic nonlinear Schr"{o}dinger equation (SNLS), driven by a fractional derivative (of order "-alpha<0") of a space-time white noise. When "alpha < frac{d}{2}", the stochastic convolution is a function of time with values in a negative-order Sobolev space and the model has to be interpreted in the Wick sense by means of a time-dependent renormalization. When "1 leq d leq 3", combining both the Strichartz estimates and a deterministic local smoothing, we establish the local well-posedness of (SNLS) for a small range of "alpha". Then, we revisit our arguments and establish multilinear smoothing on the second order stochastic term. This allows us to improve our local well-posedness result for some "alpha"
Saggaf, Muhammad M. "Seismic deconvvolution based on fractionally integrated noise." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/57660.
Повний текст джерелаIncludes bibliographical references (leaves 60-62).
by Muhammed M. Saggaf.
M.S.
Lütkemeyer, Christian. "Konzeption eines Fractionally-Spaced Entzerrers mit quantisierter Rückkopplung und Noise-Whitening /." Düsseldorf : VDI-Verl, 1999. http://www.gbv.de/dms/bs/toc/270561633.pdf.
Повний текст джерелаCatellier, Rémi. "Perturbations irrégulières et systèmes différentiels rugueux." Thesis, Paris 9, 2014. http://www.theses.fr/2014PA090032/document.
Повний текст джерелаIn this work we investigate a priori ill-posed differential systems from an analytic and probabilistic point of view. Thanks to technics inspired by the rough path theory and pathwise study of stochastic processes, we want to define those ill-posed systems and then study them. The first chapter of this thesis is related to ordinary differential equations perturbed by some irregular (stochastic) processes and the effects induced by the regularization of such processes. The second chapter deals with the linear transport equation multiplicatively perturbed by a rough path. Finally, in the last chapter we investigate the stochastic quantization equation Phi4 in three dimensions
Milica, Žigić. "Primene polugrupa operatora u nekim klasama Košijevih početnih problema." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2014. https://www.cris.uns.ac.rs/record.jsf?recordId=90322&source=NDLTD&language=en.
Повний текст джерелаThe doctoral dissertation is devoted to applications of the theoryof semigroups of operators on two classes of Cauchy problems. In the firstpart, we studied parabolic stochastic partial differential equations (SPDEs),driven by two types of operators: one linear closed operator generating aC0−semigroup and one linear bounded operator with Wick-type multipli-cation. All stochastic processes are considered in the setting of Wiener-Itôchaos expansions. We proved existence and uniqueness of solutions for thisclass of SPDEs. In particular, we also treated the stationary case when thetime-derivative is equal to zero. In the second part, we constructed com-plex powers of C−sectorial operators in the setting of sequentially completelocally convex spaces. We considered these complex powers as the integralgenerators of equicontinuous analytic C−regularized resolvent families, andincorporated the obtained results in the study of incomplete higher or frac-tional order Cauchy problems.
Esstafa, Youssef. "Modèles de séries temporelles à mémoire longue avec innovations dépendantes." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD021.
Повний текст джерелаWe first consider, in this thesis, the problem of statistical analysis of FARIMA (Fractionally AutoRegressive Integrated Moving-Average) models endowed with uncorrelated but non-independent error terms. These models are called weak FARIMA and can be used to fit long-memory processes with general nonlinear dynamics. Relaxing the independence assumption on the noise, which is a standard assumption usually imposed in the literature, allows weak FARIMA models to cover a large class of nonlinear long-memory processes. The weak FARIMA models are dense in the set of purely non-deterministic stationary processes, the class of these models encompasses that of FARIMA processes with an independent and identically distributed noise (iid). We call thereafter strong FARIMA models the models in which the error term is assumed to be an iid innovations.We establish procedures for estimating and validating weak FARIMA models. We show, under weak assumptions on the noise, that the least squares estimator of the parameters of weak FARIMA(p,d,q) models is strongly consistent and asymptotically normal. The asymptotic variance matrix of the least squares estimator of weak FARIMA(p,d,q) models has the "sandwich" form. This matrix can be very different from the asymptotic variance obtained in the strong case (i.e. in the case where the noise is assumed to be iid). We propose, by two different methods, a convergent estimator of this matrix. An alternative method based on a self-normalization approach is also proposed to construct confidence intervals for the parameters of weak FARIMA(p,d,q) models.We then pay particular attention to the problem of validation of weak FARIMA(p,d,q) models. We show that the residual autocorrelations have a normal asymptotic distribution with a covariance matrix different from that one obtained in the strong FARIMA case. This allows us to deduce the exact asymptotic distribution of portmanteau statistics and thus to propose modified versions of portmanteau tests. It is well known that the asymptotic distribution of portmanteau tests is correctly approximated by a chi-squared distribution when the error term is assumed to be iid. In the general case, we show that this asymptotic distribution is a mixture of chi-squared distributions. It can be very different from the usual chi-squared approximation of the strong case. We adopt the same self-normalization approach used for constructing the confidence intervals of weak FARIMA model parameters to test the adequacy of weak FARIMA(p,d,q) models. This method has the advantage of avoiding the problem of estimating the asymptotic variance matrix of the joint vector of the least squares estimator and the empirical autocovariances of the noise.Secondly, we deal in this thesis with the problem of estimating autoregressive models of order 1 endowed with fractional Gaussian noise when the Hurst parameter H is assumed to be known. We study, more precisely, the convergence and the asymptotic normality of the generalized least squares estimator of the autoregressive parameter of these models
Snguanyat, Ongorn. "Stochastic modelling of financial time series with memory and multifractal scaling." Queensland University of Technology, 2009. http://eprints.qut.edu.au/30240/.
Повний текст джерелаSoltane, Marius. "Statistique asymptotique de certaines séries chronologiques à mémoire." Thesis, Le Mans, 2020. http://cyberdoc-int.univ-lemans.fr/Theses/2020/2020LEMA1027.pdf.
Повний текст джерелаThis thesis is devoted to asymptotic inferenre of differents chronological models driven by a noise with memory. In these models, the least squares estimator is not consistent and we consider other estimators. We begin by studying the almost-sureasymptotic properties of the maximum likelihood estimator of the autoregressive coefficient in an autoregressive process drivenby a stationary Gaussian noise. We then present a statistical procedure in order to detect a change of regime within this model,taking inspiration from the classic case driven by a strong white noise. Then we consider an autoregressive model where the coefficients are random and have a short memory. Here again, the least squares estimator is not consistent and we correct the previous statistic in order to correctly estimate the parameters of the model. Finally we study a new joint estimator of the Hurst exponent and the variance in a fractional Gaussian noise observed at high frequency whose qualities are comparable to the maximum likelihood estimator
Richter, Raik. "Ein Beitrag zur Modellierung und Realisierung der direkten digitalen Frequenzsynthese." Doctoral thesis, [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=963112023.
Повний текст джерелаRichter, Raik. "Ein Beitrag zur Modellierung und Realisierung der direkten digitalen Frequenzsynthese." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2000. http://nbn-resolving.de/urn:nbn:de:swb:14-994337562500-99246.
Повний текст джерелаLa, Delfa Patricio. "Contribution à la conception silencieuse par démarches directe et inverse de machines synchrones à aimants permanents et bobinage dentaire." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0036/document.
Повний текст джерелаThis thesis deals the quiet design by inverses approaches of synchronous machines with permanent magnets concentrated windings. Our work focuses on the analysis of magnetic noise origin of air gap radial force orders. Firstly a direct electromagnetic model allowed us to determine the spatio-temporal spectrum of air gap radial pressure. The latter offers us the possibility of obtaining step by step and in an analytical way the radial induction in the gap, result of the product of the total magnetomotive force and global air gap permeance. Several machines equipped with a concentrated winding and distributed were evaluated, compared to simulations by finite elements and corroborated by an operational deflection shape on an existing prototype in the laboratory. In the second time two inverse approaches named predictive methodology identified the radial pressure low order origin. Finally, the resolution of the inverse problem is carried out by means of an iterative optimization loop giving among a sample of solutions, a winding function, aimed at attenuating or eliminating a potential risky line in terms of acoustic nuisances
Klapil, Filip. "Frekvenční syntezátor pro mikrovlnné komunikační systémy." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413162.
Повний текст джерелаLeboeuf, Antoine. "Méthode de calcul de la biomasse aérienne des arbres de peuplements d'épinette noire (Picea mariana) en forêt subarctique à l'aide de la fraction d'ombre sur les images Quickbird et Ikonos." Sherbrooke : Université de Sherbrooke, 2005.
Знайти повний текст джерелаBrazeau, Stéphanie. "La cartographie de la fraction du rayonnement photosynthétiquement actif (FPAR) des peuplements d'épinette noire (Picea mariana) en Abitibi à l'aide d'une image satellitaire de Landsat ETM+." Mémoire, Université de Sherbrooke, 2004. http://savoirs.usherbrooke.ca/handle/11143/2423.
Повний текст джерелаScipioni, Angel. "Contribution à la théorie des ondelettes : application à la turbulence des plasmas de bord de Tokamak et à la mesure dimensionnelle de cibles." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10125.
Повний текст джерелаThe necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information
Garcette-Lepecq, Anouk. "Origines et dégradation des lipides libres et liés et mécanismes de formation de la fraction "Kerogen-like" dans des sédiments récents de la mer noire nord-occidentale." Paris 6, 2003. http://www.theses.fr/2003PA066128.
Повний текст джерелаLeboeuf, Antoine. "Méthode de calcul de la biomasse aérienne des arbres de peuplements d'épinette noire (Picea mariana) en forêt subarctique à l'aide de la fraction d'ombre sur les images Quickbird et Ikonos." Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/2411.
Повний текст джерелаPislar, Vincent. "Etude d'Amas de Galaxies observés avec le satellite ROSAT." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1998. http://tel.archives-ouvertes.fr/tel-00068737.
Повний текст джерелаLa première partie concerne l' étude de l'amas de galaxies Abell 85 en utilisant les données en rayons X du satellite ROSAT ainsi que des données optiques et radio. Plusieurs méthodes d'analyse ont été appliquées aux données. Nous avons ainsi pu étudier des régions particulières de l'amas comme la partie centrale, siège des courants de refroidissement ou la région de la radiosource 0038-096 où la mesure des flux X et radio a permis d'obtenir la valeur du champ magnétique.
Une seconde partie du travail a consisté à étudier les
caractéristiques des courants de refroidissement ainsi que la masse de gaz et de matière noire dans 11 amas de galaxies, grâce à un programme conçu pour ajuster les données de ROSAT. Nous avons également obtenu la fraction de baryons de ces amas et discuté les conséquences cosmologiques des valeurs obtenues.
Vannerom, David. "Search for new physics in the dark sector with the CMS detector: From invisible to low charge particles." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/293380/4/thesis.pdf.
Повний текст джерелаDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Navarrete, Hurtado Hugo Ariel. "Electromagnetic models for ultrasound image processing." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/398235.
Повний текст джерелаEl ruido Speckle aparece cuando se utilizan sistemas de iluminación coherente, como por ejemplo Láser, Radar de Apertura Sintética (SAR), Sonar, Resonancia Magnética, rayos X y ultrasonidos. Los ecos dispersados por los centros dispersores distribuidos al azar en la estructura microscópica del medio son el origen de este fenómeno, que caracteriza las imágenes coherentes con un aspecto granular. Se puede demostrar que el ruido Speckle es de carácter multiplicativo, fuertemente correlacionados y lo más importante, con estadística no Gaussiana. Estas características son muy diferentes de la suposición tradicional de ruido aditivo gaussiano blanco, a menudo asumida en la segmentación de imágenes, filtrado, y en general, en el procesamiento de imágenes; lo cual se traduce en la reducción de la eficacia de los métodos para la extracción de información de la imagen final. La modelización estadística es de particular relevancia cuando se trata con datos Speckle, a fin de obtener algoritmos de procesamiento de imágenes eficientes. Además, el procesamiento no lineal de señales empleado en sistemas clínicos de imágenes por ultrasonido para reducir el rango dinámico de la señal de eco de entrada de manera que coincida con el rango dinámico más pequeño del dispositivo de visualización y resaltar así los objetos con dispersión más débil, modifica radicalmente la estadística de los datos. Esta reducción en el rango dinámico se logra normalmente a través de un amplificador logarítmico es decir, la compresión logarítmica, que comprime selectivamente las señales de entrada y una forma analítica para la expresión de la función de densidad de los datos transformados logarítmicamente es por lo general difícil de derivar. Esta tesis se centra en las distribuciones estadísticas de la amplitud de la señal comprimida logarítmicamente en las imágenes coherentes, y su principal objetivo es el desarrollo de un modelo estadístico general para las imágenes por ultrasonido comprimidas logarítmicamente en modo-B. El modelo desarrollado se adaptó, realizando las analogías físicas relevantes, del modelo multiplicativo en radares de apertura sintética (SAR). El Modelo propuesto puede describir correctamente los datos comprimidos logarítmicamente a partir datos generados con los diferentes modelos propuestos en la literatura especializada en procesamiento de imágenes por ultrasonido. Además, el modelo se aplica con éxito para modelar ecocardiografías en vivo. Se enuncian y demuestran los teoremas necesarios para dar cuenta de una demostración matemática rigurosa de la validez y generalidad del modelo. Además, se da una interpretación física de los parámetros y se establecen las conexiones entre el teorema central del límite generalizado, el modelo multiplicativo y la composición de distribuciones para los diferentes modelos propuestos hasta a la fecha. Se demuestra además que los parámetros del amplificador logarítmico se incluyen dentro de los parámetros del modelo y se estiman usando los métodos estándar de momentos y máxima verosimilitud. Por último, tres aplicaciones se desarrollan: filtrado de ruido Speckle, segmentación de ecocardiografías y un nuevo enfoque para la evaluación de la fracción de eyección cardiaca.
Liao, Kun-Hsun, and 廖崑勛. "A Fractional-N Frequency Synthesizer with Noise-Filtering Technique." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/32357484760938721207.
Повний текст джерела國立臺灣大學
電子工程學研究所
102
The raw performance of wireless communication system primarily hinges upon that of their constituent frequency synthesizers. The phase noise requirement and channel bandwidth limitations for wireless communication standards underline the consequence of fractional-N frequency synthesizer. The phase noise performances of fractional-N frequency synthesizer imposed by the quantization noise have motivated various noise-cancelling techniques that afford the use of low phase noise fractional-N frequency synthesizer in modern wireless devices. This thesis explores the notion of quantization noise cancellation technique in the design of fractional-N frequency synthesizer and introduces the proposed noise-filtering technique with an overview of wireless communication system. In chapter 2, a noise-filtering technique to suppress the quantization noise of a 3.6GHz fractional-N frequency synthesizer is realized in a 40-nm CMOS technology. The injection-locked oscillator (ILO) incorporated with digital calibration circuits are implemented as a noise filter to cancel quantization noise. The active area and power consumption of noise filter with calibration circuit are 0.0067 mm2 and 0.1mW, respectively. It is shown that the ILO based noise filter offers significant advantages over the previous arts in area and power consumption issues. Analysis of the noise filter model is present and demonstrates its low-pass characteristic. The circuit description and the corresponding design issues are also analyzed and discussed. Finally, the experiment results show that the proposed architecture achieves 9.95dB quantization noise suppression at 10MHz frequency offset and the root-mean-square (RMS) jitter can be improved from 3.57ps to 2.56ps.
Veale, Gerhardus Ignatius Potgieter. "Low phase noise 2 GHz Fractional-N CMOS synthesizer IC." Diss., 2010. http://hdl.handle.net/2263/27921.
Повний текст джерелаDissertation (MEng)--University of Pretoria, 2010.
Electrical, Electronic and Computer Engineering
unrestricted
Chiu, Te Hsuan, and 邱德旦. "The Application of Fractional Gaussian Noise in (Q, r) Inventory Model." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/97524685718845782699.
Повний текст джерела國立臺灣科技大學
工業管理系
90
In many studies about inventory control reported in the literature, there are many assumptions about probability density function (pdf) of the variate of demand processes. Every pdf’s has been used for some purposes. Among these probability density functions, the normal or Gaussian probability density function maybe the first and the most frequently employed one. Although normal probability density function has some advantages it also has drawbacks and limitation, especially in its suitability for describing demand. Factional Gaussian noise, a generalization of Gaussian white noise, it implies dependent Gaussian variable and has been successfully used in hydrology to describes the “persistence” or “anti-persistence” in processes. The application of fractional Gaussian noise in hydrology inspires us to look for analogous improvements in inventory models. In this study, we select a (Q, r) inventory model with a fixed replenishment lead time and the lead time demand being composed of “fractional Gaussian noise” demand, namely dependent Gaussian variables. The fixed replenishment lead time demand is influenced by a parameter H, called “Hurst exponent”, which is to decide the magnitude of “persistence” or “anti-persistence” in the lead time demand. Hence we would like to consider the dependence of the variate of fixed replenishment lead time demand and try to find the effects of H in the (Q, r) inventory model. Finally, we will illustrate the effects with sensitivity analysis.
Tsai, Sung-Lin, and 蔡松林. "A Quantization Noise Suppression Technique for All-Digital Fractional-N PLLs." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/83866671609961119810.
Повний текст джерела國立臺灣大學
電子工程學研究所
100
This thesis presents a quantization noise suppression technique for all-digital fractional-N PLL to address the quantization noise and fractional spur issues from the ΔΣ modulator. The proposed technique builds a new modulation path that allows the quantization step and modulation frequency to be designed independently and not limited by the loop parameters. The quantization noise power is thus reduced and shifted to higher frequency offset. In addition, by increasing modulator input value and compensating later in digital domain, the fractional spur is also shifted to higher frequency offset. Therefore, both quantization noise and fractional spur are filtered by the loop more effectively. The proposed technique is implemented in the design of a 3.6-GHz ADPLL. Fabricated in the TSMC 90-nm CMOS technology, the whole system dissipates 9.48 mA from a 1.2-V supply. At 3.6 GHz, the reference spur at 25 MHz offset is -70 dBc and the phase noise measured at 10-MHz offset is reduced from -90 dBc/Hz to -121 dBc/Hz. The fractional spur is also reduced by 5 dB.
Lin, Jiang-Hong, and 林江鴻. "A low-noise fractional-N frequency synthesizer using self-injection-locking." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/ysyv56.
Повний текст джерела國立高雄第一科技大學
電腦與通訊工程系碩士班
106
Due to the significant improvement in communication technology in recent years, the requirements for communication system stability and bandwidth are getting higher and higher. Therefore, this paper first discusses the principle of starting the voltage controlled oscillator, and derives the energy and power consumption through the reflection coefficient derivation. The relationship between the lock characteristics analyzed by the traditional injection-locked voltage-controlled oscillator model depends on the output power of the local oscillator, the Q value of the voltage-controlled oscillator, the maximum lock bandwidth, and the frequency and power of the injected signal. Its characteristics are the lock-in steady-state angle and the delay in which the injection is locked. The 10 GHz high-frequency oscillator is implemented by TSMC's 0.18um process. The frequency of the simulation results is adjustable from 9.47GHz to 10.77GHz. The phase noise is -115.45~-112.226 dBc/Hz at 1MHz of the center carrier frequency. Then improve the integer frequency synthesizer and combine the differential integral modulation technology to achieve fractional frequency division to make a fractional frequency synthesizer with a frequency range of 2.421 GHz to 2.473 GHz, and use two different voltage controlled oscillators for analysis. The phase noise is preferably up to -104.35 dBc/Hz@1MHz and -109.81dBc/Hz@1MHz, respectively. Finally, this thesis proposes a self-injection locking technique by combining the principle of injection locking technology and combining the front voltage controlled oscillator with the fractional frequency synthesizer to design a self-injection-locked fractional frequency synthesizer, and takes six sets of frequencies for spectrum and phase mismatch. The measurement analysis shows that the self-injection locking greatly reduces the phase noise of the fractional frequency synthesizer, and the phase noise improvement can be as low as 10.62 dBc/Hz and up to 25.792 dBc/Hz.
Li, Shiun-Jeng, and 李旬政. "Dimension Estimation of Fractional Gaussian Noise and Its Application to Physiological Signals." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/54448612864295950777.
Повний текст джерела國立清華大學
電機工程學系
95
Rhythmic signals from physiological systems usually have memory and long term correlation. They can be modeled as fractional Brownian motion or fractional Gaussian noise depending on if the signals are derived from cumulative effects of nerves and muscles. That is, they can be treated as signals with fractional dimension and the value of its fractal dimension (FD) can be used to characterize the intensity of physiological signals. In this study, a novel method of dimension estimation based on the calculation of spectral distribution function (SDF) of discrete-time fractional Gaussian noise using Legendre polynomials (LPs) as basis set is proposed. The dimension estimation is statistically consistent and its standard deviation is small when the system is under positive correlation. Hence, this estimator is especially suitable for investigating synergic physiological functions. Due to SDF, two indicators, FD and spectral frequency, can be obtained simultaneously. These two indicators can be applied in illustrating the synergic behavior of detrusor of the bladder and external urethral sphincter (EUS) during micturition. Another application of these two indicators is the dynamical performance evaluation of the pharmacological effects on micturition in spinal-cord-injury (SCI) rats. Capsaicin and resiniferatoxin (RTX) are administered and their effects are compared. Results indicate that the synergy of micturition using RTX is better than that of capsaicin. It is believed that this methodology would be useful in the assessing of other synergic physiological functions and studying functional effects of pharmacology for animals under dynamical diseases.
Robbertse, Johannes Lodewickes. "Estimation of parameters and tests for parameter changes in fractional Gaussian noise." Thesis, 2013. http://hdl.handle.net/10210/8570.
Повний текст джерелаFractional Brownian motion and its increment process, fractional Gaussian noise, are syn- onymous with the concept of long range dependence. A strictly stationary time series is said to exhibit long range dependence or long memory if its autocorrelations decrease to zero as a power of the lag, but their sum over all lags is not absolutely convergent. This phenomenon has been observed in numerous scientific areas such as hydrology, ethernet traffic data, stock returns and exchange rates, to name just a few. The extent of long memory dependence is characterized by the value of the so called Hurst exponent or Hurst coefficient H. Approximate normality and unbiasedness of the maximum likelihood estimate of H hold reasonably well for sample sizes as small as 20 if the mean and scale parameters are known. We show in a Monte Carlo study that if the latter two parameters are unknown, the bias and variance of the maximum likelihood estimate of H both increase substantially. We also show that the bias can be reduced by using a jackknife or parametric bootstrap proce- dure. However, in very large samples, maximum likelihood estimation becomes problematic because of the large dimension of the covariance matrix that must be inverted. We consider an approach for estimating the Hurst exponent by taking first order differ- ences of fractional Gaussian noise. We find that this differenced process has short memory and that, consequently, we may assume approximate independence between the estimates of the Hurst exponents in disjoint blocks of data. We split the data into a number of con- tiguous blocks, each containing a relatively small number of observations. Computation of the likelihood function in a block then presents no computational problem. We form a pseudo likelihood function consisting of the product of the likelihood functions in each of the blocks and provide a formula for the standard error of the resulting estimator of H. This formula is shown in a Monte Carlo study to provide a good approximation to the true standard error. Application of the methodology is illustrated in two data sets. The long memory property of a time series is primarily characterized by H. In general, such series are exceptionally long, therefore it is natural to enquire whether or not H remains constant over the full extent of the time series. We propose a number of tests for the hypothesis that H remains constant, against an alternative of a change in one or more values of H. Formulas are given to enable calculation of asymptotic p-values. We also propose a permutational procedure for evaluating exact p-values. The proposed tests are applied to three sets of data.
Wu, Pao-Sheng, and 吳寶生. "Quantization-Noise Cancellation and Channel Preset Techniques in a Fractional–N Frequency Synthesizer." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/61252212613831237466.
Повний текст джерела國立高雄第一科技大學
電腦與通訊工程所
97
In this thesis , we study to develop a Fractional-N Frequency Synthesizer with high frequency resolution , low noise , fast setting and it is applied in 2.4GHz frequency band. The system use Peregrine company’s frequency synthesizer chip , PE3336 , to match up with XILINX Virtex-E and bring digital signal into practice. By using Quantization Noise Cancellation(QNC) technique and Channel Preset technique , the Fractional-N Frequency Synthesizer’s performance was dramatically advanced. Quantization Noise Cancellation technique mainly uses Digital to Analog Converter(DAC) to offset the phase error of the original quantization on the signal deliver path and then to advance the output signal purity of Fractional-N Frequency Synthesizer. Channel Preset technique ; on the other hand , use the Digital to Analog Converter of Quantization Noise Cancellation technique wisely. It adds channel preset voltage on the way of noise offsetting to accelerate the locking time for frequency hopping. By combining Quantization Noise Cancellation and Channel Preset technique, we successfully accomplish a low noise and fast setting time Frequency Synthesizer. Its phase noise performance is extremely excellent comparing to the non-technique used ones. The test result show the phase noise was 5 to 10 dB improved. And setting time is even promoted about 30 times.
Lin, Jia-Hau, and 林嘉豪. "Research on Reducing Out-of-Band Phase Noise of Fractional-N Frequency Synthesizer." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/28340222981729492820.
Повний текст джерела國立臺灣大學
電信工程學研究所
103
Phase noise is an important parameter to evaluate a frequency synthesizer. It not only represents the degree of purity of output signal, but also can be utilized to predict the effect on signal interaction between two neighboring channels. In regard to some specific systems, such as RF receiver and optical clock-data recovery circuits, out-of-band phase noise dominates the sensitivity and bit error rate (BER) of these systems. Out-of-band phase noise is produced by phase noise of voltage-controlled oscillators (VCOs) and quantization noise of delta-sigma modulator (DSM). Therefore, reducing the phase noise of VCOs and the quantization noise of DSM can improve the out-of-band phase noise of a frequency synthesizer. In this thesis, two circuits are discussed. First one is inserting resistors into the dc path of the VCO to improve phase noise. Another one is utilizing the phase interpolator to reduce the quantization noise of DSM and then the phase noise can be improved. The first circuit is focused on inserting resistors into the path of direct current of the VCO. Thus the period in saturation region is decreased and the production of flicker noise of the transistors is reduced as well. Finally, the out-of-band phase noise of VCOs can be improved. The VCO is operated at 19.15-22.78 GHz. It includes a modified complementary LC-VCO, a 3-stage current mode logic (CML) divider, and a differential-to-single (D2S) circuit. The VCO phase noise at 1-MHz offset frequency is -98.4 dBc/Hz. Its output power is -3.8 dBm. The power consumption of VCO is 2.9 mW, and the power consumption of buffers is 8 mW. The chip size is 0.335 mm2. It is fabricated by TSMC 90-nm CMOS technology. The second part of this thesis is focused on utilizing phase interpolator (PI) to reduce minimum phase jump, which has a critical effect on quantization noise. One period of input signal of PI is divided equivalently into 32 parts. Therefore, the minimum phase jump has decreased 32 times. Consequently, the quantization noise of DSM can be reduced as well. This circuit is used to implement a 3.65 GHz fractional-N frequency synthesizer and which includes a complementary LC-VCO, a 2-stage CML divider, a dual-reference interpolator (DI), DI controller (DC), a 5-stage 2/3 divider cell (23Cell), a delta-sigma modulator (DSM), a phase frequency detector (PFD), a charge pump (CP), and a 2nd low pass filter (2nd LPF). The reference frequency is 26 MHz and the loop bandwidth is 66.7 kHz. The phase noise at 1-MHz offset frequency is -115.5 dBc/Hz. The output power is -3.57 dBm, and the total dc consumption is 54.7 mW. It is fabricated by TSMC 180-nm CMOS technology, and the chip size is 0.43 mm2.
Sheng, Yun-Chen, and 盛允楨. "A 3.6-GHz Quantization Noise Cancellation Fractional-N ADPLL using Time-Division Multiplexing TDC." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/22948516598514363923.
Повний текст джерела國立臺灣大學
電子工程學研究所
103
A 3.6-GHz quantization noise cancellation fractional-N ADPLL using time-division multiplexing time-to-digital converter (TDM TDC) is presented. With quantization noise cancellation technique, quantization noise from delta-sigma modulator (DSM) can be greatly reduced. In a conventional approach, a gain calibration loop is adopted to estimate cancellation gain factor, and thus PLL lock time is degraded. With the proposed TDM TDC, no gain calibration is required. TDM TDC achieves fast and accurate cancellation gain estimation, and PLL lock time is not degraded as that of a conventional approach. The proposed technique is implemented in the design of a 3.6-GHz ADPLL. Fabricated in the TSMC 90-nm CMOS technology, the whole system dissipates 8.16 mA from a 1.2-V supply and the active area is 0.329 mm2. At 3.6 GHz, the reference spur at 26 MHz offset is -45 dBc and the phase noise measured at 10-MHz offset is reduced from -99.79 dBc/Hz to -123.44 dBc/Hz, corresponding to 23-dB improvement. RMS jitter integrated from 10 kHz to 40 MHz is reduced from 10.88 ps to 4.605 ps. The measured lock time of the proposed ADPLL is 6 μs.
Li, Shiang-wei, and 李祥瑋. "Quantization-Noise Cancellation Technique and Phase-Locked Loop IC Design in a Fractional–N Frequency Synthesizer." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/z6f55y.
Повний текст джерела國立中山大學
電機工程學系研究所
95
For the fractional-N frequency synthesizers using delta-sigma modulation (DSM) techniques, higher PLL bandwidth is highly desirable in order to achieve faster settling time. As the PLL bandwidth is increased, more quantization noises pass through the PLL so that the output phase noise performance is degraded. There is a tradeoff between phase-noise performance and PLL bandwidth. To improve the problem, the thesis studies the quantization noise cancellation technique. With this technique, the PLL bandwidth can be increased without the cost of degrading phase-noise performance. With the help of Agilent EEsof’s ADS, the phase-noise performance of the studied fractional-N frequency synthesizers can be predicted. For demonstration, this research implements a 2.6 GHz fractional-N frequency synthesizer hybrid module, and compares the measured phase noises with and without the technique under considering various combinations of MASH DSM orders and PLL bandwidth. Another demonstration of this thesis is to design a PLL IC using TSMC 0.18 μm CMOS process, and make a discussion on the testing performance of the PLL IC.
Lin, Yu-Liang, and 林宇亮. "The Implementations of Wideband Low Noise Amplifier and Fractional-N Frequency Synthesizer with Delta-sigma Modulator." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/42589447149290764504.
Повний текст джерела國立中央大學
電機工程研究所
96
The thesis presents an Ultra Wideband low noise amplifier and a Fractional-N frequency synthesizer with delta-sigma modulator for WiMax applications, which are implemented in TSMC 0.18-μm CMOS technology. The first section is the design of a broadband low noise amplifier, and the circuit adopts two-stage cascaded scheme. By adopting the bridged-shunt-series peaking technique, both the maximum bandwidth and the maximally flat response can be achieved in a way. The LC high-pass filter and the typical narrow band designs with a feedback resistor construct input matching network, which provides good input match while contributing a small amount in NF degradation. The measured power gain reaches its maximum value of 14.2 dB at around 3 to 4 GHz, and remains 1 dB flatness from 2.5 to 9.3 GHz. The 3-dB bandwidth is occurred from 2.2 to 11 GHz. The measured input and output return loss are larger than 9 dB and 10 dB over the entire UWB band. The measured isolation is greater than 32 dB. The measured noise figure is from 3.4 to 4.5 dB, and its average value is lower than 4 dB across the band of interested. Finally, the measured P1dB and IIP3 are better than -8.5 dBm and -0.5 dBm, respectively. The total power consumption is 30 mW. The second section is the design of a Fractional-N frequency synthesizer with delta-sigma modulator, which includes a complementary LC cross-coupled voltage controlled oscillator (VCO), a delta-sigma modulator (DSM), a multi-modulus divider (MMD), a true single phase clock (TSPC) divider, a phase frequency detector (PFD), a charge pump (CP) and a loop filter (LF). In the VCO design, the binary weighted band switching capacitors are used to calibrate the frequency drifting under process variations. Besides, by adopting the multi-stage noise shaping (MASH) architecture of DSM avoids unstable condition. The measured VCO tuning range is from 2.42 to 2.69 GHz, and yields an output power from -1.5 to 0.1 dBm. The measured close loop phase noise under band switching are from -88.7 to -95.3 dBc/Hz and -117.1 to -122.9 dBc/Hz at 100 kHz offset and 1 MHz offset, respectively. The dc power consumption of VCO is 4.14 mW, and its associated FOM reaches the best value of 184.9 dBc/Hz.