Добірка наукової літератури з теми "FOXP2, alternative splicing, PTBP1"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "FOXP2, alternative splicing, PTBP1".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "FOXP2, alternative splicing, PTBP1"
Babenko, Vladimir N., Galina T. Shishkina, Dmitriy A. Lanshakov, Ekaterina V. Sukhareva, and Nikolay N. Dygalo. "LPS Administration Impacts Glial Immune Programs by Alternative Splicing." Biomolecules 12, no. 2 (February 8, 2022): 277. http://dx.doi.org/10.3390/biom12020277.
Повний текст джерелаHinkle, Emma R., Hannah J. Wiedner, Eduardo V. Torres, Micaela Jackson, Adam J. Black, R. Eric Blue, Sarah E. Harris, et al. "Alternative splicing regulation of membrane trafficking genes during myogenesis." RNA 28, no. 4 (January 26, 2022): 523–40. http://dx.doi.org/10.1261/rna.078993.121.
Повний текст джерелаZhu, Huayuan, Xiaotong Li, Xinqi Zheng, Juejin Wang, Hanning Tang, Wei Xu, and Jianyong Li. "PTBP1 Regulates Alternative Splicing of Apoptotic Protein: Implications in CLL and Ibrutinib Resistance." Blood 134, Supplement_1 (November 13, 2019): 1290. http://dx.doi.org/10.1182/blood-2019-126945.
Повний текст джерелаMéreau, Agnès, Vincent Anquetil, Hubert Lerivray, Justine Viet, Claire Schirmer, Yann Audic, Vincent Legagneux, Serge Hardy, and Luc Paillard. "A Posttranscriptional Mechanism That Controls Ptbp1 Abundance in the Xenopus Epidermis." Molecular and Cellular Biology 35, no. 4 (December 15, 2014): 758–68. http://dx.doi.org/10.1128/mcb.01040-14.
Повний текст джерелаLi, Nana, Haibo Du, Rui Ren, Yanfei Wang, and Zhigang Xu. "Alternative Splicing of Cdh23 Exon 68 Is Regulated by RBM24, RBM38, and PTBP1." Neural Plasticity 2020 (July 25, 2020): 1–11. http://dx.doi.org/10.1155/2020/8898811.
Повний текст джерелаPina, Jeffrey M., Luis A. Hernandez, and Niroshika M. Keppetipola. "Polypyrimidine tract binding proteins PTBP1 and PTBP2 interact with distinct proteins under splicing conditions." PLOS ONE 17, no. 2 (February 3, 2022): e0263287. http://dx.doi.org/10.1371/journal.pone.0263287.
Повний текст джерелаFochi, Stefania, Pamela Lorenzi, Marilisa Galasso, Chiara Stefani, Elisabetta Trabetti, Donato Zipeto, and Maria Grazia Romanelli. "The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases." Genes 11, no. 4 (April 8, 2020): 402. http://dx.doi.org/10.3390/genes11040402.
Повний текст джерелаZhu, Wei, Bo-lun Zhou, Li-juan Rong, Li Ye, Hong-juan Xu, Yao Zhou, Xue-jun Yan, et al. "Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis." Journal of Zhejiang University-SCIENCE B 21, no. 2 (February 2020): 122–36. http://dx.doi.org/10.1631/jzus.b1900422.
Повний текст джерелаLiu, Pan, Guo-Chao He, Yu-Zhen Tan, Ge-Xin Liu, An-Min Liu, Xiao-Peng Zhu, Yang Zhou, and Wan-Ming Hu. "PTBP1 is a Novel Poor Prognostic Factor for Glioma." BioMed Research International 2022 (March 8, 2022): 1–11. http://dx.doi.org/10.1155/2022/7590997.
Повний текст джерелаSasabe, Toshikazu, Eugene Futai, and Shoichi Ishiura. "PTBP1 regulates the alternative splicing of dopamine receptor D2 (DRD2)." Neuroscience Research 65 (January 2009): S90. http://dx.doi.org/10.1016/j.neures.2009.09.369.
Повний текст джерелаДисертації з теми "FOXP2, alternative splicing, PTBP1"
Guidi, Mònica. "Micro RNA-Mediated regulation of the full-length and truncated isoforms of human neurotrophic tyrosine kinase receptor type 3 (NTRK 3)." Doctoral thesis, Universitat Pompeu Fabra, 2009. http://hdl.handle.net/10803/7114.
Повний текст джерелаnervous system. Neurotrophin-3 binds preferentially to its high-affinity receptor
NTRK3, which exists in two major isoforms in humans, the full-length kinaseactive
form (150 kDa) and a truncated non-catalytic form (50 kDa). The two
variants show different 3'UTR regions, indicating that they might be differentially
regulated at the post-transcriptional level. In this work we explore how
microRNAs take part in the regulation of full-length and truncated NTRK3,
demonstrating that the two isoforms are targeted by different sets of microRNAs.
We analyze the physiological consequences of the overexpression of some of the
regulating microRNAs in human neuroblastoma cells. Finally, we provide
preliminary evidence for a possible involvement of miR-124 - a microRNA with no
putative target site in either NTRK3 isoform - in the control of the alternative
spicing of NTRK3 through the downregulation of the splicing repressor PTBP1.
Las neurotrofinas y sus receptores constituyen una familia de factores cruciales
para el desarrollo del sistema nervioso. La neurotrofina 3 ejerce su función
principalmente a través de una unión de gran afinidad al receptor NTRK3, del cual
se conocen dos isoformas principales, una larga de 150KDa con actividad de tipo
tirosina kinasa y una truncada de 50KDa sin dicha actividad. Estas dos isoformas
no comparten la misma región 3'UTR, lo que sugiere la existencia de una
regulación postranscripcional diferente. En el presente trabajo se ha explorado
como los microRNAs intervienen en la regulación de NTRK3, demostrando que las
dos isoformas son reguladas por diferentes miRNAs. Se han analizado las
consecuencias fisiológicas de la sobrexpresión de dichos microRNAs utilizando
células de neuroblastoma. Finalmente, se ha estudiado la posible implicación del
microRNA miR-124 en el control del splicing alternativo de NTRK3 a través de la
regulación de represor de splicing PTBP1.
Ferrarini, Federica. "PTBP1 regulates autism-associated FOXP2 gene by Alternative Splicing." Doctoral thesis, 2020. http://hdl.handle.net/11562/1018864.
Повний текст джерелаThe language gene Forkhead Box P2 (FOXP2) encodes a transcription factor and mutations in gene coding region have been associated with human speech and language disorder type 1 (SPCH1). Linkage disequilibrium and genome wide association studies (GWAS) linked FOXP2 also to neurodevelopmental diseases, among others autism spectrum disorders (ASDs), but since no mutations in the coding region were found, post-transcriptional defects were hypothesized. While some data on miRNA regulation are available, little is known on alternative splicing regulation of FOXP2 and the ribonucleoproteins (RBPs) involved. FOXP2 protein is encoded by full-length (FOXP2-FL) transcript, composed of 17 canonical exons and two alternative small in frame alternatively spliced exons, 3b and 4a. Bioinformatic analysis of FOXP2 genomic sequence revealed several putative binding sites in the intronic regions around FOXP2 exon 11 and exon 3b for the Polypyrimidine Tract Binding Protein 1 (PTBP1). PTBP1 is a ubiquitous ribonucleoprotein often regulating exon skipping. Moreover, PTBP1 and its paralog PTBP2, that recognizes the same binding sequences in most cases, play key roles during neuronal differentiation. By RNA ImmunoPrecipitation (RIP) and PTBP1 overexpression in HEK293 cells we demonstrated that PTBP1 binds FOXP2 transcripts and promotes the exclusion of exon 11 generating a FOXP2-△11 transcript. Interestingly, up-regulation of FOXP2-△11 transcript was accompanied by down-regulation of FOXP2-FL transcript and subsequent FOXP2 protein decrement of about 50%. These findings were further confirmed by in vitro minigene assays performed on FOXP2 gene region from exon 9 to exon 13 subcloned in a suitable expression vector. Interestingly, Myc-tagged PTBP2 was also able to up-regulate FOXP2-△11. The minigene approach allowed us also to restrict the intronic regions required for PTBP1 binding sufficient to promote the exclusion of exon 11. Similarly, we analyzed the ability of PTBP1 to regulate the alternatively spliced 3b exon. Despite the presence of numerous predicted binding sites for PTBP1 around exon 3b, PTBP1 appeared unable to promote its skipping, suggesting specificity towards exon 11. The exclusion of exon 11 creates a Premature Termination Codon (PTC) within exon 12, which will generate a truncated FOXP2 protein lacking the DNA binding domain, if translated. Nevertheless, we could not find FOXP2-△11-derived peptides in our cell system. Feature analysis of FOXP2-△11 nucleotide sequence led us to hypothesize this transcript could be degraded by Nonsense-Mediated Decay (NMD), a conserved degradation pathway for aberrant or PTC-bearing mRNAs. By using selective inhibitors, we showed that FOXP2-△11 transcript is indeed a target of NMD. Finally, siRNA-mediated PTBP1 silencing did not show a significative variation of FOXP2 protein or transcript in HEK293 cells, but since the silencing of PTBP1 will promote PTBP2 expression, we co-silenced PTBP1 and PTBP2 and observed a FOXP2 protein overexpression of about 2.5 fold. Transcripts analysis of the same samples revealed a FOXP2-FL increment of about 26%, but no variation of FOXP2-△11 transcript expression, thus pointing to an alternative splicing-indipendent regulation performed by PTBP1 and PTBP2. Since PTBP1 may also control transcript translation, we performed a bioinformatic analysis of FOXP2 5' UTR regions and found a cluster of putative binding sites for PTBP1 in one of the alternatively spliced 5’ UTR of FOXP2 gene, whose function is yet to be elucidated. In conclusion, we propose a model for the control of FOXP2 expression mediated by PTBP1 via upregulation of the noncoding FOPX2-△11 transcript by alternative splicing and degraded by NMD.
Тези доповідей конференцій з теми "FOXP2, alternative splicing, PTBP1"
Kim, Jung-Hyun, Joshua K. Stone, Jianfeng Li, Alexander Richard, Lana Vukadin, G. Yancey Gillespie, Robert W. Sobol, Steve Lim, and Eun-Young Erin Ahn. "Abstract LB-204: SON controls the oncogenic alternative splicing program in glioblastoma by regulating PTBP1/2 switch and RBFOX2 activity." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-lb-204.
Повний текст джерела